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LOCALLY ROBUST TESTS FOR SERIAL CORRELATION IN
LEAST SQUARES REGRESSION!

By TAKEAKI KARIYA
Hitotsubashi University

Kariya and Eaton and Kariya studied a robustness property of the usual
tests for serial correlation against departure from normality. When the results
were applied to a regression model y = X8 + u(X:nxk), it was assumed that
the column space of X is spanned by some k latent vectors of the covariance
matrix of error term u. In this paper we delete this assumption and in a much
broader class of distributions derive a locally best invariant test for a one-sided
problem and a locally best unbiased and invariant test for'a two-sided problem.
The null distributions of these tests are the same as those under normality.

1. Introduction. Usually tests for serial correlation in a linear regression model

(1.1 y = XB + u, where X:n X kandrank (X) = k,
are developed under normality for u;

(1.2) u ~ N,(0,=(0?,p)), where =(02,p) = o2®(p),
(1.3) ®(p)™' =1, + pd,andp € A = {p €R|®(p)”" > 0}.

Here A is an n X n known matrix and ®(p)~! > 0 denotes the positive definiteness
of ®(p)~! (see [2], [8], [9]). In this normal model, for testing H:p = 0 versus
K:p > 0, the test which rejects for small values of

(1.4) T = y’NANy/y'Ny,where N = I — X(X'X)™'X",

is a uniformly most powerful invariant (UMPI) test provided the following assump-
tion holds;

(1.5) L(X) is spanned by some k latent vectors of A4,

where L(X) denotes the column space of X. And for testing H:p = 0 versus
K:p # 0, the test with c.r. (critical region) T < ¢, or T > ¢, is uniformly most
powerful unbiased and invariant (UMPUI) under the assumption (1.5) (Anderson
[2]). Under (1.5), Kariya and Eaton [9] and Kariya [8] showed that the UMPI and
UMPUI propeities of these tests can be extended to much broader classes of
distributions and that the null distribution of T under any member of the classes is
the same as that under normal distribution (1.2) with 62 = 1 and p = 0. It should
be noted that under (1.5) the generalized least squares estimator is identically equal
to the ordinary least squares estimator since X is -invariant (see [11]). Hence if the
purpose of testing p = O lies in checking the appropriateness of the use of the
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ordinary least squares estimator rather than detecting the existence of serial
correlation, the assumption (1.5) is not interesting. Further, the assumption is not
satisfied in many problems. The Anderson-Anderson test ([1]) is an example which
satisfies it, while in the Durbin-Watson test it is not satisfied in general ([3], [4], [5]).

In this paper, without the assumption (1.5), the one-sided test is shown to be LBI
(locally best invariant) in a much broader class of distributions, and for the
two-sided problem, without the assumption, an LBUI (locally best unbiased and
invariant) test is derived in the same class. The LBUI test is different from the
two-sided test based on T stated above. Further the null distributions of these test
statistics under any member of the class are the same as those under N(0, 7). Since
the class of distributions we consider contains normal distribution, these tests are
identically equal to the LBI and LBUI tests under normality (1.2). Durbin and
Watson [5] has shown under normality (1.2) that the test with c.r.T < ¢ is LBI for
testing p = 0 versus p > 0. In this sense, our result shows that the LBI property is
robust against departure form normality. On the other hand, even under normality
(1.2), it seems that the LBUI test has not been derived yet. Under the assumption
(1.5) the LBUI is naturally reduced to the two-sided test based on T. To derive the
distribution of a maximal invariant, a theorem due to Wijsman [13] is used
although direct derivation is possible.

2. Problem and the results in [8], [9]. To state our problem in this paper, we
define three classes of pdf’s (probability density functions) with respect to
Lebesgue measure on Euclidean n-space R”. Let % be the class of all pdf’s on R"
and with an n X n matrix ¥ > 0, let

21) =) = {f€F|f(x) =27 %q(x'Z '),
where q is a function on [0,00)} ;
{feFIf(x) = [Z7 (= 'x),
where ¢ is a nonincreasing function on [ 0,00)} ; and
{f € F1/(x) = [Z]72q(x =),
where g is a nonincreasing and convex function on [O,oo)}.

Clearly %,(Z) C F,(Z) C o). If f(x) = |Z|"7g(x’S " 'x) belongs to F,(=), then
g(x) = f0°°|2|"%a'%q(x’2“'x /a)dG(a) also belongs to %,(Z) where G is a distri-
bution function on (0,00). Hence %,(X) contains contaminated normal distribution,
multivariate ¢-distribution, multivariate Cauchy distribution, etc., as well as N(0, X).

Now suppose that 4 is a pdf of the error term u in (1.1). In the papers [8] and [9],
under the assumption (1.5) the one-sided problem

24) H,:h € %,(6),06> > Oversus K, :h € %,(2(02,p)),6%2 > 0,0 > 0,
1 1 1

22 %)

(23) %3

and the two-sided problem
(2.5) Hy:h € %(0%I),0%> > Oversus K,:h € F,(2(0?,p)),06%> > 0,p # 0,
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are considered where S(o0?, p) is given by (1.2) and (1.3). The results obtained there
are summarized as

THEOREM 1. Assume (1.5) and NAN # aN for any a € R. Then for the one-sided
problem (2.4), the test with c.r.T < c is UMPI, and for the two-sided problem (2.5), the
test with cx.T < ¢, or T > ¢, is UMPUL Further the null distribution of T under
h € G(o®I) (i = 1,2) is the same as that under N(0, ).

The group leaving the problems invariant is defined in the next section.
Without assuming (1.5), this paper treats the one-sided problem
(2.6)

Hy:h € Fy(0%),6> > Oversus Ky:h € Fy(2(02,p)), 02> 0,p > 0,
and the two-sided problem
@.7)

Hy:h € Fy(0?I),6% > Oversus Koy : h € Fo(2(02,p)), 02 > 0,p # 0.

3. Main results. Let R, = {a € R|a > 0} and G = R* X R, . Then the prob-
lems (2.6) and (2.7) are left invariant under the group G with the action;

3.1 y > ay + Xg,B - aB + gand 6% - a%?,
where (g,a) € G, since under & € F(S(02,p)), y has a pdf of the form

—1 , -1
(32) f(r18,0%p) = |(c*.p)I 3q((» — XBY[2(o%,0)] "'(» — XB)).
Choose a matrix Z:n X (n — k) such that Z’Z=1_, and ZZ’ =N=1 —
X(X'X)"'X’, and define v = (X'X)":X’y,n = (X'X)*:8,w = Z’y and

H = ((X’X)_;XI).
ZI
Then w/||w]| is clearly a maximal invariant under G, H is an orthogonal matrix
and (y — XBYZ(0% 0)™'(y — XB) = (Hy — HXBY[HZ (0% p)H'|”'(Hy — HXR),
where ||w|| = (w'w)z:. From Kelker [10], the marginal pdf of w is now of the form
(B33)  J(wlone) = 1Z5(o%p)Z|Hg(w[ 2'2(a% 0)Z] W),
since the pdf of y = Hy is from (3.2)
|HZ(0%,0)H'|"3q((5 — ) [ HZ(0?,p)H'] "'(5 = 7)) where 4 = ().

Here g depends on g and (n, k) but not on 8, 62, p, and 4. In terms of w, w/||w| is
a maximal invariant under group R, with the action;
(3.4) w — aw and 0> — a%?fora € R,

and an invariant test is a test based on w/||w|| only. Without loss of generality, we
assume o2 = 1. The next lemma is an application of a theorem due to Wijsman
[13].



1068 TAKEAKI KARIYA

LEMMA 1. Let t(w) be a maximal invariant under the transformation (3.4). Let PPT
be the distribution induced by T = t(w) under p. Then the pdf of T with respect to P,
evaluated at T = t(w) is given by

deT f0°°a"_k_'f_(aw|l,p)da
3.5 = fr = = ’
(3.5) i (O = latle) = e

where f is the pdf in (3.3). Naturally f,(t(w)|0) = 1.

ProoF. In Theorem 4 of Wijsman [13], let G = {al,_,|a € R, },us(dg) =
da/a, and X = R"*. Then the result follows when R"~* is shown to be a linear
Cartan G-space. Since P(w = 0) = 0, it is sufficient to show that X° = R"~* — {0}
is a linear Cartan G-space. For x € X% let V(x) = {z € R"¥|||z — x|| < ||x]|/2).
Then the closure of the set {al € G|alV(x) N V(x) # ¢} is compact, which
completes the proof.

Now from (3.3), the numerator of (3.5) is evaluated as

36  120(0)Z| [ w(Z'2(p)Z2) W] "7 (a" k" 1g(a? ) da.

Here the integral in (3.6) is finite since g(w'w) is a pdf on R"~* (see Kelker [10]).
Further it is noted that (3.6) holds even when g vanishes in some region on [0,00).
The denominator of (3.5) is simply obtained by setting p = 0 in (3.6) and so (3.5) is
finally evaluated as

BT Fiwlp) = 1Z0(p)Z|H{w [ Z®(p)Z] w/ww} ",

Since this is the pdf of a maximal invariant T with respect to Py with T = #(w),
based on this pdf, we test Hy:p = 0 versus Ky:p > 0, and Hy,:p = 0 versus
Ky :p # 0. From Ferguson [7] pages 235-238, for testing H,, versus K, a locally
best invariant test, say ¢,, is given by the c.r.

(38) [3fr(¢(W)1R)/3p]lpm0 > efr(1(W)I0) = ¢

and for testing H, versus K, a locally best unbiased and invariant test, say ¢,, is
given by the c.r.

(3.9) [0/(1(w)Ip)/30?]l,=0 > 1 fr(1(W)IO) + ;[ 8fr(t(W)lP)/p ]l ,mo-
Evaluating (3.8) yields the c.r. of the form T < ¢, and evaluating (3.9) yields the c.r.
of the form

4 y'NAMANy
n—k+2 y'Ny
where T is defined by (1.4) and M = X(X'X )~ 'X’. Here c; and c, are chosen such
that for a significance level a(0 < a < 1), ¢, satisfies the size condition Ey[¢,] =

and the condition for local unbiasedness, [0E,(¢,)/0p]|,—o = 0. Since E (¢,) =
Jo,(t(w) fr(t(w)|p)dP/], the latter condition is equivalent to Ey(T¢,) = aEy(T) or

(3.11) Ey[T$,] = atrNA/ (n — k).

(3.10) T? +

> T + ¢y,

Thus we obtain
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THEOREM 2. Assume NAN # aN for any a € R. Let h be the pdf of error term u
in (1.1). Then for the one-sided testing problem in (2.6), an LBI test ¢, is given by the
cr.T < c, and for the two-sided testing problem in (2.7) an LBUI test ¢, is given by
the c.r. (3.10) where c, and c, are determined from Ey($,) = a and (3.10). Further the
null distributions of these test statistics under any h € %(0°l,) are the same as those
under N(O,1).

The latter part of this theorem is clear from [9].

As Theorem 2 shows, without the assumption (1.5) the LBUI test ¢, is not the
same as the UMPUI test under (1.5), while the LBI test ¢, is the same as the UMPI
test under (1.5). When (1.5) holds, NAM = 0 and the c.r. (3.10) is reduced to

(3.12) T2 — ¢,T—¢c, > 0.

In order for (3.12) to satisfy Eqo(¢,) = a for 0 < a < 1,¢2 + 4c, > 0 is necessary
and sufficient, in which case the c.r. T > ¢’ or T < c is derived. Hence the LBI test
coincides with the two-sided test based on T if and only if (1.5) holds. That is,
without (1.5), the usual two-sided test is not LBUIL Secondly, it is noted that the
pdf of a maximal invariant 7 = #(w) does not depend on 4 € F(Z(0?, p)) since PJ
is a uniform distribution on the sphere {x € R"“¥|||x|| = 1} and is independent of
h. Hence since any 4 € F(2(a?, p)) leads to the same pdf in (3.7), even if A is the
pdf of N(0,=(02,p)), nothing new comes out. When u ~ N(0, (02, p)), Durbin
and Watson [5] have shown that the test with c.r. 7 < ¢ is LBI for testing p = 0
versus p > 0. But they did not derive the LBUI test. Finally we remark that the pdf
of a maximal invariant in (3.7) can be directly derived by transforming w into the
polar coordinates in R"~*, as the referee points out.

Acknowledgment. The author appreciates the referees for valuable comments
and informing him that the result on the one-sided testing problem is also
contained in a paper by M. L. King submitted to The Annals of Statistics.
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