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A NOTE ON DIFFERENTIALS AND THE CLT AND LIL FOR
STATISTICAL FUNCTIONS, WITH APPLICATION TO
M-ESTIMATES'

By DennNis D. Boos AND R. J. SERFLING
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A parameter expressed as a functional T(F) of a distribution function (df)
F may be estimated by the “statistical function” T(F,) based on the sample df
F,. For analysis of the estimation error T(F,) — T(F), we adapt the differential
approach of von Mises (1947) to exploit stochastic properties of the
Kolmogorov-Smirnov distance sup,|F,(x) — F(x)|. This leads directly to the
central limit theorem (CLT) and law of the iterated logarithm (LIL) for
T(F,) — T(F). The adaptation also incorporates innovations designed to
broaden the scope of statistical application of the concept of differential.
Application to a wide class of robust-type M-estimates is carried out.

0. Introduction. Parameters of interest in statistics can often be expressed as
functionals T(F) of the underlying population distribution function (df), in which
case a natural sample analogue estimator is provided by the “statistical function”
T(F,) based on the sample df F,. The functional representation of statistical
parameters was first studied in detail by von Mises (1947), who developed a theory
of differentiation of statistical functions 7(F,) and employed related Taylor expan-
sions as a tool. This work was extended in the framework of stochastic process
theory by Filippova (1962). In the present paper, attention is focused upon the
differential of a functional T as the key concept and tool. This approach bypasses a
higher-order remainder term in the Taylor expansion but introduces the difficulty
of handling a norm. However, for the sup-norm || - ||, this enables us to take
advantage of known stochastic properties of the Kolmogorov-Smirnov distance
|F, — F|l,- The approach then yields in a very direct way the central limit
theorem (CLT) and the law of the iterated logarithm (LIL) for T(F,) — T(F). This
development is presented in Section 1. Although essentially in the spirit of Frechet
differentiation, the treatment incorporates certain modifications giving the method
greater scope and flexibility in statistical applications.

Section 2 provides application to M-estimates, obtaining the CLT, the LIL and a
differential for “M-functionals” T(-) of the type of interest in robust estimation. A
similar application to L-estimates is provided in Boos (1979).

Section 3 provides brief complements. Also see Boos (1977).
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1. The differential approach for statistical functions. Consider a functional
T(-) defined on df’s G, for example, the variance functional 7(G) = [[x —
[xdG(x)]* dG(x). Corresponding to a sample X,,- - - , X, from a df F, let F,
denote the usual sample df n~ ‘2','8,‘,,, , where §, denotes the df with point mass 1 at
x. The “statistical function” T(F,) is the natural sample analogue estimator of the
“parameter” T(F).

Let 9 be the set of df’s and 9 the linear space generated by differences G — H
of members of ¥. Let ) be equipped with a norm || - ||. The functional T defined
on ¥ is said to have a differential at the point F € & with respect to the norm || - ||
if there exists a functional T(F; A), defined on A € 9 and linear in the argument
A, such that

(D) T(G) — T(F) = T(F; G = F) = o(| G = F|)

as |G — F|| =0 (T(F; A) is called the “differential”).

If T is differentiable with respect to the sup-norm, || k||, = sup,|h(x)|, then direct
application of (D) in conjunction with known stochastic properties of the
Kolmogorov-Smirnov distance || F, — F|,, yields the CLT and the LIL for the
estimation error T(F,) — T(F). For, utilizing the fact that n%||F,, — Fll, = O,(1),
which follows from a well-known inequality of Dvoretzky, Kiefer and Wolfowitz
(1956), we immediately obtain from (D) that

ni[T(F,) — T(F) — T(F; F, — F)] = o,(1),

so that the limit distribution of niI[T (F,) — T(F)] is given by that of niIT(F s F, —
F). But, by the linearity of the differential, T(F; F, — F) is an average of i.i.d.
random variables,

T(F; F, — F) = n~'S7_,T(F; 8 — F).

Put w(T, F) = E{T(F; 8 — F)} and o%(T, F) = Var{T(F; 8y — F)}. In the case
wW(T, F) = 0 < 6XT, F) < oo, the classical CLT yields

(CLT) ni[ T(F,) — T(F)] —>,N(0, oX(T, F)).

Further, by a similar argument using the fact that n%||F,, — F||l, = O(log log n)';)
with probability 1(w.p. 1), which follows from the LIL for ||F, — F||, due to
Chung (1949) for continuous F and extended by Richter (1974) to arbitrary F, the
classical LIL of Hartman and Wintner (1941) yields

1
n2| T(F) — T(F

[7(F) ( )],=1w.p.1.

(26%(T, F)log log n)*

Differentiability of T has additional applications. In the problem of “efficient”

estimation, Kallianpur and Rao (1955) utilize Frechet differentiation w.r.t. || - ||

to characterize lower bounds to the asymptotic variance of 7(F,). In the problem
of “robust” estimation, Hampel (1968, 1974) exploits the approximation of the

(LIL) lim sup,_,
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estimation error by T(F; F, — F) as a basis for suggesting T(F; 8y — F) as a
measure of the “influence” of the observation X; toward this error. Thus Q. {(x) =
T(F; 8, — F), —o0o <x < o0, is called the “influence curve” of the estimator
T(F,) for T(F). In a treatment of efficient and robust estimation, Beran (1977a, b)
utilizes Hellinger-metric differentiation of functionals of densities.

The “candidate” differential T(F; G — F) to be employed in verifying (D) is
found by routine calculus methods:

T(F + «(G — F)) — T(F)

(€) T(F; G — F) = lim,_, .

The norm || - || is not involved in this computation.

The problem of actually verifying (D) may be approached in various ways. A
device to be applied in Section 2 introduces an auxiliary functional T(-), chosen
for convenience, such that

(D1) limg_ 0 Tr(G) = 1.

Then (D) may be obtained by establishing

(D2) T(G) — T(F) — T(G)T(F; G — F) = o(| G — F||)
and

(D3) [T(G) — 1]T(F; G — F) = o(|G — F|).

This device has a significant further application. If our purpose is merely to obtain
the CLT and LIL for T(F,) — T(F), then it clearly suffices to reduce to the
random variable Tp(F,)) - T(F; F, — F) instead of to T(F; F, — F). Thus the
previous argument leading to (CLT) and (LIL) carries through with (D) replaced
by the weaker conditions {(D 1), (D2)}. Moreover, it suffices merely to establish
{(D1), (D2)} stochastically, with G replaced by F,, as n— co. Also, to find
T(F; F, — F) and the quantities u(7, F) and oX(T, F), we need only to compute
T(F; 8, — F) via (C). This general scheme is summarized as follows.

LemMMA 1.1. Let T(-) be a functional on % and F an element of %. For
T(F; 8, — F) defined by (C), suppose that u(T, F) = 0 < oX(T, F) < 0. Let Ti(*)
be an auxiliary functional. If Tg(F,) —,1 and T(F,) — T(F) — T{F,)T(F; F, — F)
= 0,(||F, — F||,), then (CLT) holds for T(F,) — T(F). If these convergences hold
w.p. 1, then (LIL) holds also. '

2. Application to M-estimation. The setting for “M-estimation” of a parameter
is based on a sample X,, - - - , X, from a df F and a function y(x, ¢) such that the
parameter of interest may be defined as the solution 7 of the equation

f¥(x, T) dF(x) = 0.

Often there are a variety of possible ¢ for the same parameter. Here we establish
properties of the functional T and the estimation error T(F,) — T(F) for a class of
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¥ functions containing the typical examples arising in robust estimation. Specifi-
cally, we show that if ¢ is continuous and bounded, then the functional T may be
defined so as to be continuous at F with respect to || - ||, and thus to satisfy
I(F,) —» T(F) w.p. 1. If ¢ is merely continuous and satisfies (2.4) and T(F)) is
consistent for 7(F), then the CLT and LIL are shown to hold for T(F,) — T(F) (¢
need not be bounded for consistency, e.g., Huber (1964) with ¢ monotone). Finally
under the further condition that ¢ is of bounded variation, it is shown that 7T is
differentiable w.r.t. | -
Defining

lloo-

Ac(t) = [¥(x, 1) dG(x), —0<t<wGEYZF,
we call T an “M-functional w.r.t. ¢” if A;(T(G)) =0, G € %.

THEOREM 2.1. Let Y(x, t) be continuous in each argument and bounded. Let F be
given. Suppose that A(ty) = 0 and that at ty, A () changes sign uniquely in a
neighborhood of t,. Let G, = F. Then, for every ¢ > 0, the interval t, * & contains a
solution of Ag (£) = O for all n sufficiently large.

PrOOF. Let € > 0 be given. Without loss of generality, let #, = ¢ lie within the
hypothesized neighborhood of #,. Now, since y(x, ) is continuous in ¢ and is
bounded, by the dominated convergence theorem the functions Ag,(+), each n, and
Ar(+) are continuous. By continuity of A.(-) and the assumed uniqueness condition
for the sign change at 15, A(#, — &) and A(, + &) must be opposite in sign. By the
Helly-Bray theorem, since y(x, ) is continuous in x and is bounded, A (tp — &) —
Ap(to — €) and Ag (2, + €) > Ap(fp + €), n — o0. Hence, for all n sufficiently large,
Ag,(fo — €) and A, (o + €) have opposite signs and thus, by continuity of each
A, (+), there exists a solution of A, (D) = 0 in the interval (¢, — ¢, 1, + €). []

The weak convergence G, = F is implied, in particular, by the condition ||G, —
F|, — 0. Thus, under the conditions of the theorem, an M-functional T may be
defined so as to be continuous at F w.r.t. || - ||... By the Glivenko-Cantelli theorem,
I|F, — F||, — 0 w.p. 1. Thus, under the conditions of Theorem 2.1, with probabil-
ity 1 every e-neighborhood of T(F) contains a solution T(F,) of A () =0foralln
sufficiently large. That is, the M-functional 7 admits a strongly consistent estima-
tion sequence 7, for T(F).

Let us now apply the differential approach of Section 1. By (C), we find

I TR d[6() = F®)] _ A(T(F))
A(T(F)) A (T(F))’
assuming Az(T(F)) # 0. The device of (D 1) — (D3) is found to be productive with
the auxiliary functional Tx(G) = A (T(F))/h(T(G)), where we define
_ A() — A(T(F))
(1) = ——— NGERE
= N(T(F)), t=T(F).

T(F;G— F) =

t # T(F),
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Thus (D1) is satisfied if T(G)— T(F) as |G — F|| > 0. And the left-hand
side of (D2) becomes simply [A(T(G)) — A(T(F)) + Ag(T(F))]/H(T(G)). Since
Aq(T(G)) = 0, we may write
A(T(G)) — A(T(F)) + Ag(T(F)) =

—[[¥(x, T(G)) — ¥(x, T(F))] d[ G(x) — F(x)].
Thus (D2) is equivalent to
(21)  [[¥(x, T(G)) — ¥(x, T(F))] d[ G(x) — F(x)] = o(|G — F])).
Also, by (D1), it suffices for (D 3) to show

(22) J¥(x, T(F)) d[ G(x) — F(x)] = O(|G — FI)).
Below, in proving (2.1) and (2.2) for || - || = || * || We Will use
(2.3) |JH dK| < |H]ly - | K]l

which is easily checked, using integration by parts, for H continuous and of finite
variation ||H||,, and K right-continuous, bounded, and 0 at *co.

THEOREM 2.2. Consider an M-functional T w.rt. . Let F be given and put
to = T(F). Suppose that Ni(t;) # 0 and that 6*(T, F) = [Y*(x, ty) dF(x)/[N{(t)) is
finite and positive. Suppose that y(x, t) is continuous in x and satisfies

(24 lim, I, 1) = (., )l = 0.
Let T, = T(F,) satisfy

(25) T, =t

Then

(CLT) ni(T, — t) —4N(0, 6X(T, F)).

If the convergence in (2.5) is w.p. 1, then
1
nE(Tn B 10)
(20%(T, F)log log n)%
PrROOF. We apply Lemma 1.1. Note that
(T, F) = — E{(W(X, 1) /A1) = —As{to)/Ax(tg) = 0.
By the inequality (2.3) with K = F, — Fand H = (-, T,) — (-, t,), and by (2.4)

and (2.5), we obtain (2.1) with G = F,. Thus the appropriate stochastic versions of
(D1) and (D2) hold. [

(LIL) lim sup,_, ., =1wp. L

THEOREM 2.3. Consider an M-functional T w.r.t. . Let F be given and put
to = T(F). Suppose that Ag(ty) # 0 and that T(-) is continuous at F w.rt. || « ||
Suppose that Y(x, t) is continuous in x and satisfies (2.4) and ||Y(-, ty)||y < o0. Then
T(-) is differentiable at F w.r.t. || - ||, with T(F; A) = — [Y(x, to) dA(X) /N (t)-

PrROOF. Similar to that of Theorem 2.2. []
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ExampLES. Consider M-estimation of a location parameter, in which case the
function y(x, £) may be replaced by Y(x — ¢), where Y(+) is now a function of one
argument. Our Theorem 2.2 requires that this ¢ be continuous and satisfy

(*) lim,_o|l¥(- =) — ¢()lly = 0.

(In checking (*), a helpful relation is ||H||, = [|H'(x)| dx, for H absolutely
continuous.) These conditions are satisfied by typical ¢ considered in robust
estimation: “least pth power” estimates y(x) = |x|?~!sgn(x), 1 <p < 2; “Hubers”
Y(x) = min(k, max(—k, x)); Hampel’s 3-part “redescenders”; the “AMT” sine
curves.

Theorem 2.2 exchanges condition (*) for the condition that ¢ have a uniformly
continuous derivative in an asymptotic normality result (Lemma 5) of Huber
(1964), and provides the LIL as well.

Theorem 2.2 has a similar comparison with work of Collins (1976). He requires F
to be governed by the standard normal density on an interval (¢, — d, ¢, + d) and
allows F to be arbitrary elsewhere, and requires that ¢ be continuous with
continuous derivative and skew-symmetric and vanish outside an interval [—c, c],
¢ < d. His estimator 7, is the Newton method solution of >‘F.. () = O starting with
the sample median. Collins proves that T, —,f, and establishes the CLT. Our
theorem, under the additional assumption of uniformly continuous ¢/, extends to
one-step Newton method estimators based on consistent starters.

Theorem 2.2 can also be compared with results’of Portnoy (1977). He assumes F
symmetric and absolutely continuous with density satisfying certain regularity
properties, and that ¢ is bounded and has a derivative which is bounded and
uniformly continuous a.s. (Lebesgue). His 7, is the solution of Ag (7) = O nearest to
a given consistent estimator 7. " for ¢,

3. Complements. (i) The treatment of T(F,) — T(F) by the method of Section
1 extends in straightforward fashion to the case of possibly dependent observations
X}, X,, - - . The probabilistic part of the analysis rests entirely upon the classical
CLT and LIL for sums and the stochastic behavior of ||F, — F||.,. The various
extensions of the latter results to dependent variables immediately yield correspond-
ing extensions for T(F,) — T(F).

(i) The differential approach of Section 1 reduces 7(F,) — T(F) to a random
variable of the form Tu(F,)-T(F; F, — F), where T«F,)— 1 in a suitable
stochastic sense and T(F; F, — F) has the usual structure of a differential. This
leads to a broader concept of differential. We call T(F; A) a quasi-differential w.r.t.
|| || and Tg(-) if Tp(-) satisfies (D1) and T(F; A) satisfies the definition of
differential with (D) replaced by (D2). Thus we may think of T(F; F, — F) as a
“stochastic quasi-differential” w.r.t. || - ||, and T(-).

(iii) A different approach toward the CLT and LIL for M-estimates has been
carried out by Carroll (1978), via Bahadur-type (see Bahadur (1966)) almost-sure
representations. To establish the desired representation, Carroll requires that y be
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bounded and possess two continuous bounded derivatives piecewise on intervals,
and that F be Lipschitz in neighborhoods of the endpoints of these intervals. []
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