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EXPONENTIAL MODELS FOR DIRECTIONAL DATA'!

By RUDOLF BERAN
University of California, Berkeley

A rotationally invariant exponential model, which includes the Fisher-von
Mises and Bingham distributions as special cases, is proposed for directional
data in R?(p > 2). A new regression estimator for the model parameters is
developed as a competitor to the maximum likelihood estimator. Both the new
estimator and the MLE are asymptotically efficient at the postulated model and
are robust under small departures from that model. Computationally, the
regression estimator is much simpler since it requires no iterations or numerical
integrations. Goodness-of-fit can be assessed by fitting nested special cases of
the general model to the data.

1. Introduction. Two parametric models, the Fisher-von Mises and the
Bingham distributions, play an important role in the statistical analysis of direc-
tional data. Let S, denote the set of all unit (column) vectors inR?,p > 2,and let
be the rotation invariant measure on S, normalized so that u(S,) = 1. The
probability elements of the Fisher-von Mises and Bingham distributions are,
respectively,

(1.1) a,(x)exp(kr Tx)u(dx), x €S,
and
(1.2) b,(D)exp(tr[ DR "xx"R])p(dx), x €S,

Some restrictions must be imposed upon the possible values of the parameters so as
to obtain a one-to-one parametrization of the densities. The usual conventions are:
k a nonnegative scalar, » a unit vector in S,, D ap X p diagonal matrix whose
(p, p) element (say) vanishes, R a p X p orthogonal matrix. Because of its invari-
ance under the mapping x — — x, the Bingham distribution (1.2) is also a possible
model for axial data. Both the Fisher-von Mises and Bingham distributions can be
derived as conditional distributions, given X € S, of suitable multivariate normal
distributions in R” (see Mardia (1972), (1975) for details and a survey of the
literature on directional statistics).

Geometrically, the Fisher-von Mises density is unimodal at x = » and rotation-
ally symmetric about the modal direction, unless ¥k = 0, in which event the
distribution is uniform. The Bingham density is an antipodally symmetric density
whose possible shapes, when p = 3, include a bipolar distribution, symmetric and
asymmetric girdle distributions, and the uniform distribution. Thus, the distribu-
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tions (1.1) or (1.2) often provide plausible parametric models for small sets of
directional or axial data.

As sample size increases, so does the need to consider alternative models and to
assess goodness-of-fit of the various models. A lack of tractable parametric models
other than (1.1) or (1.2) has hindered practical efforts to satisfy these obligations.
Prompted by these considerations, this paper proposes a general, rotationally
invariant, exponential model for directional data and develops robust, asymptoti-
cally efficient estimators for the model parameters. Both the Fisher-von Mises and
Bingham distributions are special cases of the model. Goodness-of-fit can be
assessed by fitting nested special cases of the model to the data and carrying out a
likelihood ratio or asymptotically equivalent test.

Let C(S,) denote the set of all real-valued, continuous functions whose domain is
S,. Let M be any subspace of C(S,) which is invariant in the following sense:
h(:) € M entails h(g-) € M for every rotation g in R”. As a general model for
directional data, we propose the distribution whose density with respect to p is

(1.3) fu(x) = exp[ h(x) — d(h)]; heEM, x €S,

where d(h) is chosen to make f, integrate over S, to one. The parameter space of
this model is the subspace M. Invariance of M ensures rotational invariance of the
model in the following sense: if X has a density belonging to the family (1.3), so
does gX for every rotation g. This property is desirable since the choice of
coordinate system for directional data is often arbitrary, selected mainly for
observational convenience.

An invariant subspace is called irreducible if it does not contain any proper
nontrivial invariant subspace. Let P, be the subspace of C(S,) consisting of all
homogeneous polynomials of degree k in the components of x € §,. Let M, be the
subspace of P, which consists of all harmonic functions in P,; i.e., M, = {h € P,:
Ah = 0}, A being the Laplacian in R?. Then M, is invariant, irreducible, and is of
P+k=3) ok /(p—2) +1]if p > 3; of dimension 2 if p = 2 (see
Dunkl and Ramirez (1971), page 109). Moreover, the family of disjoint subspaces
{M,: k > 0} constitutes all possible nontrivial irreducible invariant subspaces of
C(S,). If h € C(S,) belongs to an invariant subspace M, h can be expressed in the
form h = 2, h, where h, € M, and I C Z_, the set of all nonnegative integers.
In other words, M = 3, ., ® M,.

Thus, in analyzing directional data, it is natural to consider the sequence of
nested models with densities

dimension

(14) exp[ h(x) — d(h)]; heZi.,® M, r>1
and for axial data, the sequence of antipodally symmetric densities

(1.5) exp[h(x) — d(h)]; hEZi_ © My, r> 1
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Since each of the subspaces {M,} has a finite dimensional basis in C(S,), the
models (1.4) and (1.5) can be written in canonical exponential family form:
(1.6) fo(x) = exp[ BTo(x) — c(B)]; BER,xES,
where the {v; : 1 <i < g} are functions in C(S,) such that {1, v)(x), . .., v,(x)}
are linearly independent, and v(x) is the vector (v,(x), vy(x), - - -, uq(x))T while
B=(By,By ", ,Bq)T. The parametrization (1.6) is useful for fitting the model to
the data.

Finding basis functions {v,(x)} is simplified by the following results (Dunkl and
Ramirez (1971), page 108): for every integer k > 0,

(1.7) P =33 ® M, _,.
Thus,
h=1 @ M, =P + P_, —proj, (P,_,) ifrisodd

1.8 .
(1.8) = P, + P,_, — projy (P,) if r is even,
and
(1.9) 21 ® My =P, — PTOJMO(Pzr)’

where proj,, (-) denotes the projection into M, = span{1}. Since any additive
constant in the exponent can be absorbed into the normalizing factor, the densities
(1.4) and (1.5) can be expressed in the canonical form (1.6) with an appropriate set
of monomials as the basis {v;(x)}. Specifically, a basis for model (1.5) consists of
all distinct monomials of degree 2r, excluding xlf’, say. (The last proviso is a
consequence of the constraint x’x = 1 on every x € S,.) Similarly, a basis for
model (1.4) consists of all distinct monomials of degrees r and r — 1, excluding x;
if r is even or x; = ! if r is odd.

When r = 1, the p monomials {x; : 1 <i < p} are a basis for model (1.4) while
the (p — 1)(1 + p/2) monomials {x;x;: 1 <i <j < p} — {xpz} form a basis for
model (1.5). Thus, the Fisher-von Mises and Bingham distributions are the simplest
special cases of the general model (1.3), corresponding to the restrictions & € M,
and h € M,, respectively.

The rest of this paper is concerned with estimation of the parameter 8 in the
general model (1.6) and use of the estimates to assess goodness-of-fit. Section 2
reviews relevant results on maximum likelihood estimates in canonical exponential
families. Computation of the MLE ﬁM,,, requires an iterative algorithm. For the
discrete exponential family known as the log-linear model, there exist empirically
weighted least squares estimates of the parameters which are asymptotically equiv-
alent to the MLE, but are much simpler to calculate (see Grizzle, Starmer, Koch
(1969) and Haberman (1974) for details). A heuristic application of the idea to the
continuous model (1.6) leads to the regression estimator

(110)  Br, =[Z1i(0(X) — 8,)(0(X) — )7 'S1_i(o(X) - 5,)
x (log( f,(X) — m,),
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where the {X;} are i.i.d. observations, , = n~'37_,0(X)), £, is a suitable nonpara-
metric estimator of the density of X, and m, = n~'27_, log( f:,(X,.)). Section 3
develops asymptotic distribution theory for ,éR,,,, showing in particular that
n%(,éM,,, - ,[?R,,,) = 0p(1) when the {X;} are independently distributed according
to model (1.6). Robustness of both the MLE and the regression estimator of 8
under small perturbations of the parametric model (1.6) is analyzed in Section 4. A
brief discussion of goodness-of-fit tests in Section 5 completes the paper. Though
motivated by the directional models (1.4) and (1.5), the asymptotic results (other
than those in Section 3.2) remain valid for canonical exponential families with
continuous basis v on a compact space.

The results in this paper can be extended to multivariate directional distributions
on product spaces of the form II}_ ,Sp/ . Other questions also arise. Associated with
the Fisher-von Mises and Bingham distributions are some interesting estimation
and hypothesis testing problems which are suggested by the geometry of the model.
For instance: testing whether the modal directions of several independent Fisher-
von Mises samples are coplanar and identifying the common plane (Watson
(1960)); or testing for rotational symmetry within the Bingham model and identify-
ing the axis of symmetry (Bingham (1974)). We hope to treat elsewhere the
generalization of these questions to the directional model (1.3).

2. Maximum likelihood estimates. Let the observed random variables {X; : 1
< i < n} be independent, identically distributed according to some density g on S,.
The log-likelihood function corresponding to the density f; defined in (1.6) is

21 L,(B) = B"Zi.10(X,) — nc(B).

From the literature on canonical exponential families, we obtain the following
information (see Barndorff-Nielsen (1973), Berk (1972), Crain (1976a, 1976b),
Lehmann (1959)):
(1) L,(p) is strictly concave in S;
(ii) ¢(p) is analytic in each component of B and Ve(B) = Eg(v(X)), Vi(B) =
Covg(v(X)), the expectation and covariance matrix being evaluated under
the model (1.6);
(iii) V2c(B) is positive definite;
(iv) If the MLE B, , exists, it is unique;
(v) With probability one, there exists an integer ny = ny(X,, X, - + + ) such that
the MLE BM’,, exists for every n > ng;
(vi) A necessary and sufficient condition for existence of the MLE is that
n~'Z7_,0(X)) € int conv (K), where K = range {v(x); x € §,} C R? and
conv (K) is the convex hull of K;
(vii) The MLE ,éM,,, exists iff the equations Eg(v(X)) = n~13"_,0(X,) have a
solution; when a solution exists, it is unique and is the MLE.
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Let g be any density S, with respect to the invariant measure . Define an
R4-valued functional 8,, implicitly through the equation

(22) Jo(x)fp (g (¥)nldx) = [v(x)g(x)p(dx).
It can be shown that B3,,(g) exists and is unique (Crain (1974)) if inf . s g(x) > 0.

The asymptotic behavior of ,BM , 18 described by the following theorem (proved like
Crain (1976b); Huber (1967) has related results for MLE’s in general.)

THEOREM 1. Suppose the random variables {X; : 1 < i < n} are 1.i.d. with density
g in S, such that inf, . ¢ g(x) > 0. Then

(23) 1B, — Bu(8))

=[Ve(B(2))] 'n™ 221 [0(X) ~ E(o(X))] + o,(1).
Thus the limiting distribution of nV/*( By, — Br(8)) as n — o0 is N(0, =(g)) with

(2.4) 3(g) =[Ve(Bu(g))] ™ ' Cov,(o(X))[ Ve By(8)] ™"

When g = f;, By(g) reduces to B and the covariance matrix (2.4) becomes
[V2%(B)]~", which is the inverse of the Fisher information matrix for the dens1ty Ja-
From the corresponding specialization of (2.3), it can be shown that the MLE ,BM n
is asymptotically least dispersed among all regular estimators of 8 (Hajek (1970)).

Computation of the MLE for the models of Section 1 must be done by iteration.
A modified Newton-Raphson algorithm, which converges to the MLE whenever it
exists, is defined by the following iterative step:

(2.5) BrD = B + o050, 1>0
where

(2.6) s =[Covggy (o(X))] ™ [n™'Z1-10(X) = Ezg (o(X))]

and a'” is a positive real number chosen to satisfy the inequality

2.7) L(B4%D) = L(BS2.4) > ba®I[V L(BS2P)]" 50

where b is a constant in (1, co) which is fixed over all iterations. Numerical
integration will usually be necessary to evaluate the moments and ¢(8). The value
of a® which maximizes L,(B{, + a“s®) over all real a necessarily satisfies
(2.7). Moreover, for every choice of starting value B, there exists a #, such that
for every t > t;, a = 1 will satisfy (2.7). A proof of the assertions made in this
paragraph may be found in Haberman (1974), Chapter 3 and Appendix C. As a
good choice of starting value B(O) for the algorithm, we recommend the regression
estimator BR, ,» since it is asymptotically equivalent to the MLE under model (1.6).

3. Regression estimator.

3.1. Asymptotic distributions. The asymptotic behavior of the regression esti-
mator ,éR’ , defined in (1.10) will be derived from that of the estimator

(3.1) a, =[ x-lt(X)tT(X)] x-lt(X)log[ ::(Xi)],
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where ¢7(x) = (1, v7(x)) and the density estimator f, is described below. Under the
canonical exponential family model f;, &, turns out to be a consistent estimator for
a = (—c(B), BT)". The regression estimator fg , is simply the subvector of @&,
obtained by deleting the first component of &,. Formula (1.10) can be derived from
(3.1) by using a well-known expression for the inverse of a partitioned symmetric
matrix (cf. Rao (1965) page 29).

Let P be the probability on S, whose density with respect to u is g and let P, be
the empirical probability measure which assigns mass n~! to each of the observa-
tions {X, : 1 <i < n}. The density estimator ﬁ, will be required to possess the
following properties: if the {X; : 1 <i < n} are i.i.d. with density g, then

(34)  sup,eslfu(x) — g(X)] = o,(Dlim, n"E,f[ f,(x) — g(x) "u(dx) =
n'2[1(x)[ f(x) — g(x)] w(dx) = n'/[t(x)d(P, — P) + o,(1).

Construction of such an f, is deferred to subsection 3.2. Our immediate goal is to
state and prove a theorem for &,, and hence B ,, which is similar to Theorem 1.

THEOREM 2. Suppose the random variables { X, : 1 < i < n} are i.i.d. with density
gonS,, inf, o s, g(x) > 0, and the density estimator f satisfies (3.4). Then

(335) n'&, — () = VN (@n" Vi [u(X) — Eu(X))] + o,(1)
where

V(g) = E[t(X)t7(X)]
(3.6) a(g) = V(g E,[ #(X)log(g(X))]

u(x) = t(x)[1 + log(g(x)) — "(x)a(g) |-
Thus the limiting distribution of n'/%(&, — a(g)) as n — o is N(0, S(g)) with
(3.7) S(g) = V~'(g)Cov,(u(X))V ~'(g).

The nonsingularity of V(g) follows from the assumed linear independence of the
components of #(x). In the special case g = f;, log(g(x)) reduces to a Tt(x); hence
a(g) = a, u(x) = t(x), and (3.5) implies

(3.8) n1/2(BR,n - :B) .

=[Covy(v(X))] ™ 'n™17221_ [ 0(Xi) — Eg(v(X))] + 0,(1).
Comparison of (3 8) with the corresponding specialization of (2.3) in Theorem 1
shows that n'/%( ,BM ,BR ») = 0,(1) under the sequence of distributions {II7_,
fs(x))}; both nl/z(BM , — B) and n'/%( ,BR . — B) are asymptotically

N(0, [Covy(v(X))]™") in this case.
To prove Theorem 2, we begin with

LemMMA 1. Let {Z,:n > 1} be a sequence of processes with sample paths in
C(S,) such that the sequence of maxima {sup, c s |Z,(x)|} is bounded in probability.
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Then
(3.9) n'/?[Z,(x)d(P, — P) = O,(1).

PrOOF. For every subset 4 C C(S,) which is bounded in sup norm, an argu-
ment by contradiction shows that

(3.10) sup,e4|n'/2[b(x)d(P, — P)| = O,(1).

The assumption on Z, entails that for every ¢ > 0, there exists a bounded subset
A, € C(S,) such that P[Z, & A,] <e. Let T, denote the integral in (3.9). Since

(3.11) P[|T,| >8] < P[|T,| >6,Z, € 4,] + P[Z, & 4,],

the lemma follows.
Having established this lemma, we proceed to the

ProOF OF THEOREM 2. The estimator @, can be expressed in the form
(3.12) &, =[Hx)t"(x)aP,]” '3, W,
where
Wi, = [(x)log(g(x))dP
(3.13) W, = [t(x)log(g(x))d(P, — P)
Ws, = [1(x)[log(f,(x)) — log(g(x))]4P,.

For n sufficiently large and V{(g) defined by (3.6),

(3.14)  [[1(x)tT(x)dP,] ™" =[V(g) + [H(x)tT(x)d(P, — P)]™"
=V g) - V([ /t(x)tT(x)d(P, — P)]V"'(g) + O,(n7").

Note that the nonsingularity of V(g) ensures w.p. 1 the asymptotic nonsingularity
of the random matrix inverted in (3.14). Using (3.14),

(3.15) [[1(x)t7(x)dP,] ™' W,

= a(g) — V' (g)[H(x)t"(x)a(g)d(P, — P) + Op(n™").
The first assertion in (3.4) and the assumption inf, ¢ g g(x) >0 imply that

(3.16) sup, s, log(f,(x)) — log(g(x))] = o,(1).

An application of Lemma 1, followed by Taylor expansion of the logarithm to the
second derivative term and use of the second and third parts of (3.4) yields

n'/2W., = n'/21(x)[log(f,(x)) — log(g(x))]dP + o,(1)
n'2[1(x)[ £(x) = g(x)] w(dx) + 0,(1)
n'/2[H(x)d(P, — P) + o,(1).

(3.17)
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As a consequence of the approximations (3.14), (3.15) and (3.17), we have
(3.18) n'/*é, — a(g))
= V=Y (@n'2H(x)[1 + log(g(x)) — tT(x)a(g) ]d(P, — P) + o,(1),
which is equivalent to (3.5). The theorem follows.

3.2. Density estimators. It remains to construct a density estimator f:, on S,
which possesses the asymptotic properties listed in (3.4). We will explore only one
of the possible approaches to the problem—that of window density estimators. Let
w: [0, 0)—> R be any function which satisfies integrability and smoothness
assumptions to be determined. For every x, y € §,, put w,(l — xhy) =
A owle, (1~ x7y)], where {c,} is a sequence of positive constants converging to
zero at a rate to be chosen later and 4, , = [w[c, 11 = xT)] w(dy). Note that A4,,
does not depend upon x because the measure p is invariant under rotation. Taking
polar coordinates for S, with x as pole yields the expression

(319) 4,,=B"'(1/2,(p — 1)/2)fgw[c, '(1 = cos(8)) ]sin”~*(0)db

= B7(1/2, (p = 1)/2)cf™ V2[5 ®=D/2(2 — ¢,0)¢ P w(t)dk,
where B(-, -) is the beta function. Define
(3.20) fi(x) = n7I2_ w,(1 — x7X,).

If [$rP~d/2w(f)|dt < o and w is nonnegative, f, is a probability density on S,
with respect to the measure p.

The density estimator (3.20) is not really new, although its statistical behavior
appears not to have been studied. A graphical density estimator used by geologists
amounts to the special case p =3 and w(¢) = 1 in [0, 1], vanishing elsewhere
(Watson (1970), page 78). Another special case of (3.20), of greater interest for this
paper but apparently untried in practice, arises when w(f) = exp(—#) on R*. In
this instance,

(3.21) A,,= (¢, )% 1I‘(p/2)exp( = ), -i(eY)

with I(-) denoting the modified Bessel function of the first kind and order r (cf.
Whittaker and Watson (1927) page 373); moreover, w,(1 — x7X,) regarded as a
function of x € §, is just the Fisher-von Mises density with modal direction X.

The amount of bias E(f,(x)) — g(x) in the density estimator (3.20) depends upon
the smoothness of g and the choice of window w. To obtain density estimators f:,
which satisfy (3.4) when p = 2 or 3, the cases of greatest practical importance, we
investigate the asymptotic behavior of the estimator (3.20) under two different sets
of assumptions on g and w.

The first set of assumptions:

Al. w: R* - R™ is positive, bounded and continuous, with

[P~V 2y()dt < 0 and [P 2w(d)dt < oo.
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A2. There exists a p X 1 vector function V g : S, — R” such that:

(i) For every x € §,, x7 V g(x) = 0;

(i) for every x,y € S,

8(y) = 8(x) + (y = )" V g(x) + r(x, y)

where |r(x, y)| < B|ly — x| for some universal constant B and euclidean norm
I 1.

Part (i) of A2 is a convenient normalization of V g(x), rather than an additional
restriction. Indeed, V g(x) can be replaced by V g(x) + ax, a an arbitrary scalar,
without affecting the validity of the expansion in part (ii).

The second set of assumptions:
Bl.w: R* — R is bounded and continuous, with

StV w(h)|dt < o0,  [FCD2w(t)dt = o(c}/?)
and
JRP I w(1)|dt < oo, [PtPI/2w(f)dt # 0.

B2. There exists on S, a p X 1 vector function V g(x) and a bounded p X p
matrix function V%g(x) such that:

(i) For every x € S,, x7 V g(x) = 0 and x7 V%(x)x = 0;

(ii) for every x,y € S,

g(») =g(x) + (y = x)" Vg(x) + (y = x)7 Vig(x)(» = x) + r(x,y)

where |r(x, y)| < B||y — x|’ for some universal constant B.

The normalization x7V%g(x)x = 0 in B2 is possible because VZg(x) can be
replaced by V%(x) + yxx7, y an arbitrary scalar without affecting the validity of
the expansion in part (ii) of B2.

The directional densities (1.4) and (1.5) satisfy both 42 and B2 because the basis
functions {v, : 1 < i < ¢} which appear in the canonical form (1.6) can be mono-
mials.

Corresponding to the two sets of assumptions are the following two lemmas.

LEMMA 2. Suppose the random variables { X, : 1 < i < n} are i.i.d. with density g
on S,, assumptions Al, A2 are satisfied, and lim ¢, =0. Then

suprSPIEg(f:(x)) — g(x)| = O(c,)
(3.22) suprSpVarg(f:,(x)) = O(n"lc, P=1/2)
Squesplf;(x) — E(f(x))| = 0,(n "%, @~/

and

(323) n'2[1(x)[ f,(x) = E(f,(x))] (dx) = n'2[1(x)d(P, = P) + o,(1).
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PrOOF. Because of assumption A2, the difference E( f:,(x)) — g(x) can be
expressed as the sum of two terms 7,(x), T,,(x) such that

(3.24) Ty(x) =[ 4} wer (1 = x5)](r — ()] V g(x)

| T2(x)] < BA, ,fw[e, ' (1 — x D) ]lly — xIPPu(dp).
By switching to polar coordinates for S,, with x as pole, we find that T,,(x) is a
multiple of x7 V g(x), which vanishes, and that

(3.25) | T, (x)| < D, ,faw[c, (1 = cos(8)](1 — cos(8))sin”~*(8)db
= Dn’pcflp+1)/2]'(2)/c,.t(p—l)/2(2 _ C,,t)(p_3)/2w(t)dt,

where D, , = 0(c, ?~"/2). Since the bound in (3.25) is 0(c,), the first assertion in
(3.22) follows.
The calculation of Var(f,(x)) is similar, the essential part being

(326) E[w2(1 - x7x)] = 4, 2[ g()w?[c; (1 = x5) ] wl(dy) + o(1)]
= 0(c;™17?)
uniformly in x, since 42 implies continuity of g(x) on S,.
To verify the third part of (3.22), let U,(x) = f,(x) — E(f,(x)). If £, denotes the
(random) maximizing value of x, which exists by continuity of w,
(327) sup,eg|Up(x)] = (n'/%4,,) ' n2|fw c; (1 = £7)]d(P, — P)).

Since w is also bounded, sup, ¢ s, [wle, '(1 — ¢D)]| = 0,(1). Application of Lemma
1 to (3.27) yields the desired bound.

Let V,, and V,, denote, respectively, the integrals on the left side and right side
of (3.23). The validity of (3.23) will be established by showing that

(3.28) lim

n— oo

E[bT(V,, = V;)]" =0

for every p X 1 real column vector b. Let s(x) = b7t(x) and s5,(z) = [s(x)w,(1 —
xTz)u(dx). Evidently E(V,,) = E(V,,) =0 and Var(b™V,,) = E(s*(X)) —
[E(s(X))I’. Moreover,

(329) Var(b7V,,) = E(s3(X)) — [ E(s,(X))]*
Cov(bTV,,, 57V3,) = E(s,(X)s(X)) = [ E(s,(X)) ][ EG(X)]-
Since #(x) is a vector of monomials (see Section 1),
(330 lim, 8Up, . I5,(2) = 5(2)] = 0
by the same expansion argument as was used in (3.24) for E( ﬁ,(x)). Hence,
(3.31) lim,_,Var(67V,,) = lim,_, ,Cov(b7V\,, b7V,,)
= Var(b77,,),

n— o0

which implies (3.28).
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LEMMA 3. Suppose the random variables {X; : 1 < i < n} are i.i.d. with density g
on S,, assumptions B1, B2 are satisfied, and lim c, = 0. Then

(3.32) sup, 5 | E/(f,(x)) — 8(x)] = O(c)
and the other conclusions of Lemma 2 remain valid.

PrOOF. Because of assumption B2, the difference E( f:,(x)) — g(x) can be
written as the sum of three terms:

Win(x) =[ 4,3 we, (1= x)] (7 = )u(@)]" 7 8(x)

(333)  Wy(x) = A w[e, (1= x) (¥ = x)" Ve(x)(r — x)u(d)

|Wan(x)| < BA,  fwle, (1= x)]lly — x|Pu(dy).
Switching to polar coordinates for S,, with x as pol?, and arguing as in Lemma 2
yields the facts Wy, (x) = 0, sup, e |W;,(x)| = O(c?) and
(334)  Wy(x) = A, fow[e, (1 — cos(8)) ]

X [ D,(x)sin®(8) + Dy(x)(1 — cos(8))’ |sin”~*(0)db

for some bounded nonnegative functions D, D,. Since

Sow[ e, (1 = cos(8)) |sin?(0)dd
(3.35) = D22 P=D/22 — ¢ )P "D 2y(1)dt

= 7+ sz%/”"t("_ Y/2yw(t)dt + 0(C£p+3)/2)
and

(336)  faw[c, (1 — cos(8))](1 — cos(8))’sin” %(8)dd = O(c(P*/?)

it follows, using (3.19) and B1, that sup, g | W,,(x)| = o(cn%). Hence (3.32) holds.

The rest of the lemma is proved like Lemma 2, allowing for the fact that w(¢)
assumes both positive and negative values in this case.

The two lemmas just proved enable us to ensure that the density estimator (3.20)
has the properties (3.4) which are needed for Theorem 2. If p = 2 and w satisfies
Al, the fulfillment of (3.4) follows from Lemma 2, provided lim,_n'/%, = 0,
lim,_,_n'/%!/2 = 0. This construction. fails when p = 3, because the bias in f, is
then too large relative to the variance of f:, However, if p = 3 and w satisfies Bl,
then (3.4) follows from Lemma 3, provided lim, n'/%}/? =0, lim,_,,
o0. Choosing w is not difficult; w(r) = exp(—¢) satisfies A2 while w(?) = (1 —
t/2)exp(— t) satisfies Bl if p = 3.

n'/%, =

4. Robustness of the estimators. A good estimator of the parameter 8 should
not only be asymptotically efficient if the postulated exponential family model (1.6)
were in fact correct, but should also be robust against the small departures from
this ideal model that will occur in practice. By robust, we mean that the distribu-
tion of the estimator is not greatly perturbed if the assumed model is only
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approximately true. A mathematical formulation of this robustness concept was
first set forth by Hampel (1971); a different technical formulation, introduced in
Beran (1978) will be used in this section.

Since it is not feasible to calculate the exact distributions of an estimator over a
very large set of alternative models, asymptotic methods become indispensable in
analyzing robustness of a procedure. However, we cannot assess an estimator’s
robustness by studying only its asymptotic distributions over a neighborhood of
possible models for the data. The convergence in law to the limit distributions
might not be uniform over the neighborhood, in which event some of the limit
distributions would approximate poorly some of the exact distributions. The
theorem proved in this section shows that the convergence in law established in
Theorem 1 for the MLE BM, , and in Theorem 2 for the regression estimator BR, 2 IS
locally uniform at the exponential family model f,. Thus, the asymptotic distribu-
tions of these estimators under models near f; provide reliable approximations to
the exact distributions and can be examined to assess robustness.

Technically, the theorem proved in this section describes the asymptotic be-
havior of BM’,, and /?R’,, under general sequences of densities {II}.,g,(x;)} which
are contiguous to the model densities {II7_;fs(x;)}. Contiguity is achieved by
requiring that
4.1) g\/(x) = cos(bn~'/?)f3/*(x) + sin(bn~"/?)8(x)
for some scalar b and some function § € L,(S,) which has unit length in L,-norm
and is orthogonal to fﬁ‘/ 2, Both b and § are allowed to vary over their domains so as
to generate different sequences of densities {g,}. As in Le Cam (1969), the
log-likelihood ratio L, = log[II7_,(8,(X;)/f3(X;))] can be approximated, under the
model distribution II7_, fz(x;), by
(4.2) L, = 2n~ 237 8(X)fg A(X,) — 26 + o,(1).

Thus, the limiting distribution of L, under {II7_,fp(x;)} is N(—2b?, 4b?), which
implies the contiguity of {II7.,g,(x;)} and {II7.; fe(x)}.

Let || - || » denote the Prohorov metric on probabilities and let 9, (7,,) stand for
the distribution of the argument statistic 7, = T,X,), when X, =
(X1, Xy, - -+, X,) is distributed according to the density II7_, g,(x;). Let Bz(g) be

the ¢ X 1 vector obtained by deleting the first component of a(g), which was
defined in (3.6). The phrase “weakly compact” in the theorem statement below
means compact in the product topology generated by weak convergence in Ly(S,)
and ordinary convergence on the real line.

THEOREM 3. Suppose {g,} is defined by (4.1). Let K be an arbitrary weakly
compact subset of {(b,8) € R X Ly(S,): [8*(x)u(dx) = 1, 8L f3/?, SUp, ¢ 5 |8(x)|
< C < w}. Then

(4.3) limn—»oosup(b, ekl D ,,[ n l/2( .éM, n = Br(g,) ]

=N(0, [V%(B)] )il =0
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and
(44) lim,_, sup, 5)exll GDg,,[ n l/2( BR, » — Br(8) ]

= N(0, [V%(B8)])ll» =0.

Since BM, . is centered by the same functional 8,, in both (2.3) of Theorem 1 and
(4.3) of Theorem 3, Theorem 3 indicates that the convergence to the limiting
distributions in Theorem 1 occurs uniformly over a rich set of local (in Hellinger
metric) perturbations of f;. Moreover, the distributions of the centered estimator
under these local perturbations are all approximately N(0, [VZ%(8)]"") for n large
enough. From this and the property lim, , B8(g,) = B8, which follows from the
proof below, we may conclude that sufficiently small, fairly arbitrary perturbations
of f; do not affect the exact distributions of BM,,, very much, at least in large
samples. This conclusion is an asymptotic version of the qualitative robustness
property discussed at the beginning of this section.

Similarly, Theorem 2 and (4.4) of Theorem 3 justify the assertion that the
regression estimator BR, . is robust, at least in large samples.

Proor or THEOREM 3. Since the two results are analogous, we give only the
argument for (4.4). Suppose (4.4) were false. Then, by weak compactness of K,
there would exist a weakly convergent sequence {(b,,9d,) € K} such that

Dy [1'/*(Br, » — Br(:)] 7% N(O, [Ve(B)] ") for
(4.5) gl/%(x) = cos(b,,n_‘/z)fﬁl/z(x) + sin(b,n~'/2)8,(x).

Thus, to prove (4.4), it suffices to show that

(4.6) Dy [ 172 B, n — Br(8))] = N(0, [V(B)]7")

for every sequence {(b,, §,) € K} converging weakly to some {(b, §) € K}, with
{ g,} defined by (4.5).

For every such sequence {g,}, the approximation (4.2) to the log-likelihood
ratio L, continues to hold. Thus, by a standard contiguity argument, the
limiting distribution of n'/%( ,éRN,, — B) under {II7., g,(x)} is
NQbB[VZ(B)] ™ fo(x)8(x)fg/(x)p(dx), [Ve(B)]™"). Hence, (4.6) is true if and only
if

(A7)  lim,_, n"/%(Be(g,) — B) = 2b[ VZe(B)] ™' fo(x)8(x)f3/*(x)u(dx)

for every sequence {(b,, §,) € K} which converges weakly to some (b, §) € K. In
the notation of Section 3.1, (4.7) is equivalent to

(4.8) lim,_,.,n"/%(a(g,) = @) = 26V ~'(f5) [ 1(x)8(x)f3*(x)(x),

which will now be established.
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From the definition (3.6), a(g,) = V ~'(g)S3,T,,, where
Ty, = [1(x)log( fo(x))fs(x)p(dx) = V(fg)a
(4.9) Ty, = [t(x)log( fo(x))[ 8x(x) — fo(x)] n(dx)
Ty, = [1(x)[log(g,(x)) — log(fs(x))] 8,(x)s(dx).

Straightforward calculations based upon (4.1) yield

(4.10)
V=g =[1+ V' (fa) ()T (x)( 8a(x) — fo(x))u(dx) ]~ V=1 (fp)
= V~l(f/3) - V_l(fﬂ)[ft(x)tr(x)(gn(x) - fﬁ(x))y(dx)] V—l(fﬁ) + 0(n")

and

(4.11) n'/?T,, = 2bft(x)log(fﬁ(x))S(x)fﬁl/z(x)p,(dx) + o(1)
= 25 J ()T ()83 2(x)n(d) Jo + o).
A more complicated series of approximations, described below, shows that
(4.12) n'/2Ty, = 2b[1(x)8(x)fd/*(x)u(dx) + o(1).
Combining equations (4.9) through (4.12) gives
(4.13) n'*(a(g,) — @)
=V (f)- 2bft(x)[ —tT(x)a + tT(x)a + 1]8(x)f,}/2(x)u(dx) + o(1),

and hence (4.8).
It remains to prove (4.12). For any ¢ > 0, let

(4.14) A, . ={x €S, :|f3H(x)g A (x) - 1] >e},

n, e

and let 4, , denote the complement in S, of 4, ,. Then
(4.15) [n'7%f, 1(x)[log(8.(x)) — log(fa(x))] gu(x)p(dx)|
<n'2f, |1(x)log(g,(x)) + 1(x)tT(x)a| g, (x)u(dx) = O(n~'/?),
because #(x) is bounded, log(g,(x)) is bounded by definition of K, and
S, 8u(X)nldx) = P, [1f3/2(x)g; ' *(x) = 1| > ]

(4.16) <e [ f3/3(x) — 8/*(x) ]"wldx)
- o(n™")
by Chebyshev’s inequality and (4.5).
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On the other hand, by Taylor expansion,
n'/?f 7 1(x)[log(g,(x)) — log(fs(x))] g.(x)(dx)

(4.17) = —2n'2 [ t(x)log[ 1 + (f3/2(x)g; "/*(x) — 1)] gu(x)n(dx)
== (Wln + W2n)

where
Wi, =202 7 1(x)] f3/2(%)g; /X (%) = 1] g,(x)n(dx)
(4.18) Wi, =2n'2[ 7 ((x)r,(x)g,(x)p(dx)
()] < 2711 = &) [ £/ H(x)g, VA (x) — 177, x€eA
Evidently, W,, = O(n~'/?) and, using (4.16),
Wi, = 202 1(x)[ f3/2(x)g; /2 (x) = 1] g,(x)(dx)
(4.19) —2n'2f, ()] f3/H(x)8; /2 (x) — 1] g,(x)p(dx)

= —2b[1(x)8(x)fz"*(x)p(dx) + o(1).
The limit (4.12) follows from the approximations of the last two paragraphs.

5. Testing goodness-of-fit. The question of whether model (1.3) is appropriate
for a given set of observations can be formulated as a hypothesis testing problem.
Under the hypothesis H,, the {X; : 1 <i < n} are i.i.d. with density

5.1 Su(x) = exp[ h(x) — d(h)]

for some function 4 belonging to a specified invariant subspace M of C(S,). Since
tests with optimal power against all possible alternatives do not exist, we are led to
consider a more restricted alternative K, which still allows for a broad range of
deviations from H,. Under K,, the {X,} are iid. with density (5.1) for some
function # € N — M, where N O M is another specified invariant subspace of
C(S,). The subspace N is chosen so as to model anticipated departures from H.
The idea of constructing alternatives to H, in this way is due to Neyman (1937).

To complete the discussion begun in the introduction, we describe below a
simple goodness-of-fit test for H, versus K, which is asymptotically equivalent to
the likelihood ratio test. By appropriate choice of the basis functions {v,(x)} (see
Section 1), the testing problem can be reduced to the following canonical form: the
{X;:1<i<n} areiid. with density

(52) fa(x) = exp[ BTo(x) — ¢(B)],
where the components of v(x) = (v,(x), v(x), - - -, vq(x))T form a basis for N, the
subset {v;(x), vy(x), - - -+, v(x)}, r < g, constitutes a basis for M, and

{1, v)(x), - - -, v,(x)} are linearly independent. Thus the hypothesis to be tested is
H,:B=0r+1<j<gq.
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Let B, denote any estimator of 3, such as ,éM‘ » OF ,[?R,n, which has the property
(53) ”1/2( Bn - :3) =[COV/;(U(X))]_l”_]/227-1[v(xi) - EB(U(X))] + op(l)
under {II7_; fs(x;)}. Let ,é,,‘z denote the (¢ — r) X 1 lower subvector of ,é,,, let
(54) W, =[n""21_0(X)oT(X) — (n'Sio,0(X))(n ™' io,0T(X))]

and let W, ,, denote the (¢ — r) X (¢ — r) lower right-hand submatrix of W,. The
proposed test is to reject H, for sufficiently large values of

(5.5 A, = nBl W, BT,

Suppose By = (By, By * =+ s B, 0,+ - =, 0)T and Wyy(By) is the (¢ — r) X (¢ — 1)
lower right-hand submatrix of W(,) = [Cov, (v(X))]™". Under H,, n'/%( B, — B,)
is asymptotically N(0, W(B,)) and W, —,W(B,). Hence, the distribution of 4,
under H, is asymptotically chi-square with ¢ — r = dim(N) — dim(M) degrees of
freedom; moreover A4, is asymptotically equivalent to the normalized likelihood
ratio statistic (Wald (1943)).

The goodness-of-fit test based upon A4, is much easier to perform than the
likelihood ratio test, particularly if ,é,, is the regression estimator of 8. The main
computational difficulty with the likelihood ratio test is the need to evaluate ¢( 3).
Even in relatively simple special cases of (5.2), such as the Bingham distribution,
closed forms for ¢(8) may not exist.

Let {g,} be any sequence of densities on S, such that lim,_, [[n"/*(g}/*(x) —
Jo/2(x)) = ¥(x)Pu(dx) = 0 for some y € Ly(S,); necessarily, v is orthogonal to f;/>
in Ly(S,). Indeed,

s u(dx) = lim,_,,n'/?[(8,"* = f3/*)fp/ w(dx)

(5.6) = lim, . — 27'n"/2((g}/? — f3/?) ()
=0.

By a contiguity argument (cf. Section 4), the limiting distribution of 4, under the
sequence of local alternatives {II7_, g,(x;)} is noncentral chi-square with dim(N) —
dim(M) degrees of freedom and noncentrality parameter d”W,, '( 8,)d, where d is
the (¢ — r) X 1 lower subvector of 2 W{( B,)v(x)y(x)f, ]o/ 2(x)u(dx). The asymptotic
powers of the A4, -test and the likelihood ratio test are the same under these local
alternatives.

REFERENCES

BARNDORFF-NIELSEN, O. (1973). Exponential families: exact theory. Aarhus Univ. monograph.

BERrAN, R. (1978). An efficient and robust adaptive estimator of location. Ann. Statist. 6 292-313.

BErRK, R. H. (1972). Consistency and asymptotic normality of MLE’s for exponential models. Ann.
Math. Statist. 43 193-204.

BINGHAM, C. (1974). An antipodally symmetric distribution on the sphere. Ann. Statist. 2 1201-1225.

CRrAIN, B. R. (1974). Estimation of distributions using orthogonal expansions. Ann. Statist. 2 454—463.

CRAIN, B. R. (1976a). Exponential models, maximum likelihood estimation, and the Haar condition. J.
Amer. Statist. Assoc. T1 737-740.



1178 RUDOLF BERAN

CRAIN, B. R. (1976b). More on estimation of distributions using orthogonal expansions. J. Amer. Statist.
Assoc. T1 741-745.

Dunki, C. F. and RaMIrez, D. E. (1971). Topics in Harmonic Analysis. Appleton-Century-Crofts.

GRIZZLE, J. E., STARMER, C. F., and KocH, G. G. (1969). Analysis of categorical data by linear models.
Biometrics. 25 489-504.

HABERMAN, S. (1974). The Analysis of Frequency Data. Univ. Chicago Press.

HAJEK, J. (1970). A characterization of limiting distributions of regular estimates. Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete. 14 323-330.

HawmpEL, F. R. (1971). A general qualitative definition of robustness. Ann. Math. Statist. 42 1887-1896.

HuUBER, P. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. Proc.
Fifth Berkeley Symp. Math. Statist. Probability 1 221-233.

Le CaM, L. (1969). Théorie Asymptotique de la Decision Statistique. Les Presses de I'Université de
Montreal.

LEHMANN, E. L. (1959). Testing Statistical Hypotheses. John Wiley and Sons.

MARDIA, K. V. (1972). Statistics of Directional Data. Academic Press.

MARDIA, K. V. (1975). Statistics of directional data. J. Roy. Statist. Soc. Ser. B 37 349-393.

NEYMAN, J. (1937). “Smooth” test for goodness of fit. Skand. Aktuarietidskr. 20 149-199.

RaAo, C. R. (1965). Linear Statistical Inference and its Applications. John Wiley and Sons.

WALD, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of
observations is large. Trans. Amer. Math. Soc. 54 426-482.

WATSON, G. S. (1960). More significance tests on the sphere. Biometrika. 47 87-91.

WATSON, G. S. (1970). Orientation statistics in the earth sciences. Bull. Geol. Inst. Univ. Uppsala. N.S. 2
73-89.

WHITTAKER, E. T. and WATSoN, G. N. (1927). A Course of Modern Analysis (4th edition). Cambridge
Univ. Press.

DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720



