A FAMILY OF MINIMAX ESTIMATORS IN SOME MULTIPLE REGRESSION PROBLEMS

By Y. TAKADA

University of Tsukuba

A family of estimators which dominate the maximum likelihood estimators of regression coefficients is given when the dependent variable and (3 or more) independent variables have a joint normal distribution.

1. Introduction. Let X_1, \dots, X_n be independently normally distributed (p + 1)-dimensional random vectors with unknown mean θ and unknown nonsingular covariance matrix Σ .

The following partitions are used in the sequel:

(1.1)
$$X_i = \begin{pmatrix} Y_i \\ Z_i \end{pmatrix}, \qquad \theta = \begin{pmatrix} \eta \\ \xi \end{pmatrix}, \qquad i = 1, 2, \dots, n$$

and

(1.2)
$$\Sigma = \begin{pmatrix} A & B' \\ B & \Gamma \end{pmatrix}$$

where Y_i , η and A are 1×1 , z_i , ξ and B are $p \times 1$. Then it is well known that for $\alpha = \eta - \beta' \xi$ and $\beta = \Gamma^{-1} B$,

$$E(Y_i|Z_i) = \alpha + \beta'Z_i.$$

The problem in this paper is to estimate the regression coefficients (α, β) of Y_i on Z_i with respect to the loss function given by Stein [4]:

(1.3)
$$L((\theta, \Sigma); (\hat{\alpha}, \hat{\beta}))$$

$$= \left[\left\{ (\hat{\alpha} - \alpha) + (\hat{\beta} - \beta)'\xi \right\}^2 + (\hat{\beta} - \beta)'\Gamma(\hat{\beta} - \beta) \right] / (A - B'\Gamma^{-1}B).$$

The maximum likelihood estimators $(\hat{\alpha}_M, \hat{\beta}_M)$ of (α, β) are given by

(1.4)
$$\hat{\alpha}_{M} = \overline{Y} - \hat{\beta}_{M}^{\prime} \overline{Z}, \qquad \hat{\beta}_{M} = V^{-1} U$$

where

$$U = \sum_{i=1}^{n} Z_i Y_i - n \overline{Z} \overline{Y}$$
 and $V = \sum_{i=1}^{n} Z_i Z_i' - n \overline{Z} \overline{Z}'$.

For this problem, Stein [4] first showed that the maximum likelihood estimators are minimax but inadmissible for $p \ge 3$. Baranchik [2] proves that each member of a family of specific estimators suggested by Stein [4] dominates the maximum likelihood estimators (1.4).

Received March 1978; revised June 1978.

AMS 1970 subject classifications. Primary 62C99; secondary 62F10, 62H99.

Key words and phrases. Minimax estimator, invariance structure, regression coefficients.

To facilitate the search for practical alternatives to the Stein rule described above, a family of minimax estimators containing Stein's is derived below.

2. A family of minimax estimators. Consider the following estimators:

(2.1)
$$\hat{\alpha} = \overline{Y} - \hat{\beta}' \overline{Z}, \qquad \hat{\beta} = f(R^2) \hat{\beta}_M.$$

Here $f(R^2)$ is any measurable function of the sample multiple correlation coefficient

$$(2.2) R^2 = U'V^{-1}U/T,$$

where

$$T = \sum_{i=1}^{n} Y_i^2 - n \overline{Y}^2.$$

The invariant structure for this problem (see [2] and [4]) implies we may assume without loss of generality that

(2.3)
$$(\xi, \Gamma, A - B'\Gamma^{-1}B) = (0, I_n, 1)$$
 and $\beta' = (\|\beta\|, 0, \dots, 0)$.

The main result follows from the next lemma, the proof of which is similar to that of Lemmas 3 and 4 of [2].

LEMMA. If $\phi(\cdot)$ is any measurable function on $[0, \infty)$, then under the condition (2.3),

(2.4)
$$E\left[\phi\left(\frac{R^{2}}{1-R^{2}}\right)\hat{\beta}_{M}\beta\right] = h(\|\beta\|, n)\sum_{k=0}^{\infty}\Gamma\frac{((n-1)/2+k-1)2k}{k!}r^{k}E\left[\phi\left(\frac{\chi_{p+2k}^{2}}{\chi_{n-p-1}^{2}}\right)\right],$$

and

$$E\left[\phi\left(\frac{R^{2}}{1-R^{2}}\right)\hat{\beta}'_{M}\hat{\beta}_{M}\right]$$

$$=h(\|\beta\|,n)\sum_{k=0}^{\infty}\frac{\Gamma((n-1)/2+k-1)}{k!}r^{k}$$

$$\times\left[\frac{n-3}{n-p-2}-r\frac{(n+2k-3)(p-1)}{(n-p-2)(p+2k)}\right]E\left[\phi\left(\frac{\chi_{p+2k}^{2}}{\chi_{n-p-1}^{2}}\right)\chi_{p+2k}^{2}\right],$$

where

$$h(\|\beta\|, n) = \left[2\Gamma((n-1)/2)(1+\|\beta\|^2)^{(n-1)/2-1}\right]^{-1}, r = \|\beta\|^2/(1+\|\beta\|^2),$$

and χ^2_{p+2k} is a chi-squared random variable with p+2k degrees of freedom independent of χ^2_{n-p-1} .

THEOREM. Relative to the loss function (1.3) the estimator

(2.6)
$$(\hat{\alpha} = \overline{Y} - \hat{\beta}' \overline{Z}, \, \hat{\beta} = (1 - \tau (R^2 (1 - R^2)^{-1}) (1 - R^2) R^{-2}) \hat{\beta}_M)$$

1146 Y. TAKADA

dominates the maximum likelihood estimator $(\hat{\alpha}_M, \hat{\beta}_M)$ if

- (i) n > p + 2,
- (ii) $\tau(\cdot)$ is nondecreasing,

(iii)
$$0 \le \tau(\cdot) \le 2(p-2)(n-p+1)^{-1}$$
.

PROOF. Lemma 2 of Baranchik [2] implies that the estimators (2.6) dominate the maximum likelihood estimator (1.4) under the loss function (1.3) if they do so under the loss function $\|\hat{\beta} - \beta\|^2$.

under the loss function $\|\hat{\beta} - \beta\|^2$. Let $g(R^2(1-R^2)^{-1}) = \tau(R^2(1-R^2)^{-1})(1-R^2)R^{-2}$. Then, from the above lemma,

$$E[\|\hat{\beta} - \beta\|^{2}] - E[\|\hat{\beta}_{M} - \beta\|^{2}]$$

$$= h(\|\beta\|, n) \sum_{k=0}^{\infty} \frac{\Gamma((n-1)/2 + k - 1)}{k!} r^{k}$$

$$\times \left[\left\{ \frac{n-3}{n-p-2} - r \frac{(n+2k-3)(p-1)}{(n-p-2)(p+2k)} \right\} \right]$$

$$\times E\left[\left\{ g^{2} \left(\frac{\chi_{p+2k}^{2}}{\chi_{n-p-1}^{2}} \right) - 2g \left(\frac{\chi_{p+2k}^{2}}{\chi_{n-p-1}^{2}} \right) \right] \chi_{p+2k}^{2} \right\} + 4kE\left[g \left(\frac{\chi_{p+2k}^{2}}{\chi_{n-p-1}^{2}} \right) \right].$$

Baranchik [1] showed in his proof of the theorem that the following inequality holds under assumptions (ii) and (iii):

$$(2.8) E\left[\left[g^2\left(\frac{\chi_{p+2k}^2}{\chi_{n-p-1}^2}\right) - 2g\left(\frac{\chi_{p+2k}^2}{\chi_{n-p-1}^2}\right)\right]\chi_{p+2k}^2 + 4kg\left(\frac{\chi_{p+2k}^2}{\chi_{n-p-1}^2}\right)\right] \leqslant 0.$$

Then the left hand side of (2.7) is bounded above by $h(||\beta||, n)$ times

$$\sum_{k=0}^{\infty} \frac{\Gamma((n-1)/2 + k - 1)4k}{k!} r^k$$

(2.9)
$$\left[1 - \left\{ \frac{n-3}{n-p-2} - r \frac{(n+2k-3)(p-1)}{(n-p-2)(p+2k)} \right\} \right] E \left[g \left[\frac{\chi_{p+2k}^2}{\chi_{n-p-1}^2} \right] \right]$$

$$= \frac{4(p-1)}{(n-p-2)} \sum_{k=0}^{\infty} \frac{\Gamma((n-1)/2+k-1)k}{k!} r^k \left[r \frac{(n+2k-3)}{p+2k} - 1 \right]$$

$$\times E \left[\tau \left[\frac{\chi_{p+2k}^2}{\chi_{n-p-1}^2} \right] \frac{\chi_{n-p-1}^2}{\chi_{p+2k}^2} \right].$$

This can be simplified by noticing that $E[\psi(\chi_m^2)] = mE[\psi(\chi_{m+2}^2)/\chi_{m+2}^2]$ for any function $\psi(\cdot)$. The simplified version of equation (2.9) is

(2.10)
$$\sum_{k=0}^{\infty} t_k [r(n+2k-3)-(p+2k)],$$

where

$$t_k = \frac{4(p-1)}{(n-p-2)} \frac{\Gamma((n-1)/2+k-1)k}{k! (p+2k)(p+2k-2)} r^k E \left[\tau \left[\frac{\chi_{p+2k-2}^2}{\chi_{n-p-1}^2} \right] \chi_{n-p-1}^2 \right].$$

The upper bound (2.10) is nonpositive as shown below.

As $t_0 = 0$, equation (2.10) can be expressed as

(2.11)
$$\sum_{k=1}^{\infty} t_{k-1} r(n+2k-5) - \sum_{k=1}^{\infty} t_k (p+2k).$$

Using the inequality

$$E\left[\tau(\chi_{p+2k-4}^2/\chi_{n-p-1}^2)\chi_{n-p-1}^2\right] \le E\left[\tau(\chi_{p+2k-2}^2/\chi_{n-p-1}^2)\chi_{n-p-1}^2\right],$$

we get

$$t_{k-1}r \le t_k 2(k-1)(p+2k)(p+2k-4)^{-1}(n+2k-5)^{-1},$$

which can be applied to the first term of (2.11), giving

$$\sum_{k=1}^{\infty} t_k 2(k-1)(p+2k)(p+2k-4)^{-1} - \sum_{k=1}^{\infty} t_k (p+2k)$$
$$= \sum_{k=1}^{\infty} t_k (p+2k)(p+2k-4)^{-1} (2-p).$$

Since $p \ge 3$, each term of the above infinite series is negative which completes the proof of the theorem.

EXAMPLE 1. Setting $\tau(\cdot)$ in the theorem equal to a constant c satisfying $0 < c \le 2(p-2)(n-p+1)^{-1}$, we have the estimators obtained by Baranchik [2],

$$\hat{\beta}_c = (1 - c(1 - R)^2 R^{-2}) \hat{\beta}_M.$$

EXAMPLE 2. Setting $\tau(R^2(1-R^2)^{-1}) = c/[1+c(1-R^2)R^{-2}]$ for $0 < c \le 2(p-2)(n-p+1)^{-1}$, we have a new family of estimators $\hat{\beta}$ given by

$$\hat{\beta} = \left[R^2 / \left(R^2 + c(1 - R^2) \right) \right] \hat{\beta}_M,$$

which contain Narula's estimate (Narula [3], page 17) as a special case, namely $c = p(n - p - 2)^{-1}$.

Acknowledgment. The author wishes to thank Professor N. Sugiura for his suggestions. The author also wishes to thank the referee and associate editor for their suggestions.

REFERENCES

- [1] BARANCHIK, A. J. (1970). A family of minimax estimators of the mean of a multivariate normal distribution. *Ann. Math. Statist.* 41 642-645.
- [2] BARANCHIK, A. J. (1973). Inadmissibility of maximum likelihood estimators in some multiple regression problems with three or more independent variables. *Ann. Statist.* 1 312–321.
- [3] NARULA, S. C. (1974). Predictive mean square error and stochastic regressor variables. Appl. Statist. 23 11-17.
- [4] STEIN, C. (1960). Multiple regression. In Probability and Statistics. Stanford Univ. Press.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF TSUKUBA SAKURA-MURA, NIIHARI-GUN IBARAKI 300-31 JAPAN