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SYSTEMS WITH EXPONENTIAL LIFE AND IFRA COMPONENT
LIVES!

By HENRY W. BLock AND THOMAS H. SaviTts
University of Pittsburgh

Systems with exponential life formed from independent IFRA components
are studied. It is shown that (a) in the case of monotonic systems, the system
must be essentially a series system of exponential components and (b) in the
case of systems whose life is the sum of component lives, all but one of the
components are degenerate at zero while the remaining one is exponential.

1. Introduction. Many kinds of systems can be formed using independent
components. It turns out, however, that only in very special cases can the system
lifetime be exponential if the components have increasing failure rate average
(IFRA). In particular, we show (Theorem 2.1) that if a monotonic system formed
with independent IFRA components has exponential life, then it must be essen-
tially a series system with exponential components. Results similar to this have
been mentioned in Esary, Marshall and Proschan (1970) and Esary and Marshall
(1975), but these require some assumptions on the support of the component
lifetime distributions. We need no such assumptions in our proof.

In the case of systems whose life is the sum of its component lives we obtain a
similar result. Theorem 2.8 states that if the sum of independent IFRA lifetimes is
exponential, then one must be exponential and all others are degenerate at zero.
Some related results about parallel systems of two dependent components whose
lifetime is exponential are also given in Theorems 2.4-2.6.

In Section three we use these results to give counterexamples which show that
the various definitions of multivariate IFRA distributions are not equivalent.

All definitions and notation follow that of Barlow and Proschan (1975).

2. Results.
(2.1). THEOREM. Let F be the life distribution of a monotonic system of order n
formed with independent IFRA components having life distributions F\(t), - - - , F,(?)
respectively and assume F is exponential. Then there exists a subcollection 1 < i,
< -+« <, < nsuch that for all t > 0

F(ty=F (1) - F.(2)

where each F, (?) is exponential and F=1-F.
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Before proving the theorem we introduce a lemma which will be used in the
proof of the theorem.

(2.2). LEMMA. Let h(p) be the reliability function of a monotonic system of n
independent components and p, the probability that the ith component is functioning. If
there is 0 < a < | such that

p°h(1;, p) + (1 = p)r*(0;, p) = h*(p),
then at least one of the following three conditions must hold:
(1 p=0 or p;=1

@ A1, p) = (O, p);
(3) KO, p) = 0.

Proor. This follows from the proof of Lemma 2.3, page 84, of Barlow and
Proschan (1975) since f(x) = x* is strictly concave in x > O.

PROOF OF THEOREM. Let F(f) = e ™™ = h(F\(f),- - -, E,(f)) where h is the
reliability function of a monotonic system ¢ of order n, and I~_",.(t) are IFRA for
i=1,---,n Now ¢ has the representation ¢(x) = min, . ;. ,max;e K% where x;
is the state of the ith relevant component and K; is a min cut set. Soif 7, - - -, T,
are the lifetimes, then

-\ .
e™™=P{min,_, ... ,max;cx7; >1}.

We shall now show that there is an i such that 0 < F_,.(t) < 1 for all ¢+ > 0. First,
e™ > 0 for all + > 0 implies that P{max,. 7T, >t} >0 foreachj=1,---,p.
Consequently, for eachj =1, - - - | p, there is/someij €K, such that P { T', >t} >
0 for all # > 0. Now 1 > e~ for all ¢ > 0 implies that there is a j, such that

1> P{max,cx T, > 1) = 1 =[x P{T, < 1)

and so for all t > 0, P{T; >t} <1 for each i € K;. Thus for j; € K,,0 < ﬁ_";o(t)
< lforallz>0.

We now use an induction argument on the order of the monotonic system.
Clearly the result is true for n = 1. Assume it is true for any monotonic system of
order less than n and consider a monotonic system of order n. By the pivotal
decomposition using the i above

e ™ = F()[ h(1,, F(1)) = h(0, F(2))] + A(0,, F(2)),

where h((-);, F(£)) = h(F,(2), - - -, (*)pr* * * , F(1)). Now, by the lemma, since
0 < F(t) < 1 for all ¢ > 0, then either h(1,, F(z)) = h(0,, F(#)) or h(0,, F(z)) = 0.
Let y = inf{¢|h(0,, F(7)) = 0}. Assume y > 0. Then for all 0 <t <, A(0,, l_T(t)) >
0 so that h(l,, F(1)) = h(0,, F()) and for ¢ > vy, h(0,, F(¢)) = 0. Thus

e ™ = h(0, F(r)) = h(1, F(r)) for 0<r<y
= F(nh(1, F(r))  for y <t
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Now take 7, >y and 0 < a, < 1 such that ay, < y. It follows that
exp(—Aagto) = (1, F(agty)) > h(1,, F(t5)) > h(1,, F(z,))
> F_}ao(to)h%(lv i‘(to)) = exp(—Aayt).

This implies that F,(t,) = 1, a contradiction. Hence y = 0 and so h(0,, F(7)) = O for
all ¢+ > 0. Consequently for all z > 0,

e ™ = F(n)h(1,, F(z)).
But foranys > 0and 0 < a < 1,
e ™™ = F(at)h(1,, F(ar)) > FX(1)h*(1,, F(1)) = e

and so F(az) = F(¢). This gives that F(r) = e * ¢ > 0, for some A; > 0, and so
forallt > 0,

F(t)=e ™M= e"x"h(li, F(t)),

which implies that A(1;, F(1)) is also exponential. But this is a monotonic system of
order (n — 1) and so we can use the induction hypothesis.

(2.2a). REMARK. As noticed by Esary and Marshall (1975), it follows immediately
from the theorem that a multivariate exponential distribution whose one dimen-
sional marginal distributions are lifetimes of coherent systems of independent
IFRA distributions must be the multivariate distribution of Marshall and Olkin
(1967).

(2.3). ExaMPLE. Let X and Y be independent IFRA random variables and
assume max(X, Y) is exponential. Then it follows that one of X or Y is exponential
and the other has all its mass at zero.

This example is not peculiar in the sense that the assumption that max(X, Y) is
exponential is prohibitively strong. This is illustrated in the following where X and
Y are not assumed to be independent.

(2.4). THEOREM. Let X, Y and max(X, Y) be exponential. Then min(X, Y) is
exponential and P{X <Y} =1 or P{X >Y} = 1. If X and Y are identically
distributed or if the min and max are identically distributed, then P{X = Y} = 1.

PROOF. Assume X, Y, max(X, ¥Y) have means A;! A;!, (\},)~'. Thus
exp(—A;f) = P{X >t} < P{max(X, Y) > 1} = exp(—Aj,f) for all ¢ > 0 and so
A; > AQ,. Similarly A, > Aj,. Furthermore, 0 < P{min(X, Y) >} =1 - P{X <
t} — P{Y <t} + P{max(X, Y) < t} = exp(—A;?) + exp(—A,1) — exp(—A},0),
and so exp(—A?) + exp(—A,¢) > exp(—Aj,2), or exp(\}; — At + exp(A}, — A)¢
> 1. Now if A}, < A, and A}, < A,, the above inequality fails for large z. Hence
Al = A, or A}, = A,. In the case A}, = A,, P{min(X, Y) > ¢} = exp(—A,¢#). This
also implies that P{X > Y} = 1. The case A}, = A, is similar. For the second part
of the theorem assume Ap;' is the mean of min(X, Y). This yields the identity
exp(—Ajp) + exp(—Aj,t) = exp(—A;7) + exp(—A,¢) for all ¢. Clearly if A, = A,
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then Aj, = A; = A, and the above gives that P{X = Y} = 1. The case A|, = A}, is
similar.

(2.5). COrROLLARY. If max(aX, bY) is exponential for all a, b > 0, then
min(aX, bY) is exponential for all a, b > 0.

Proor. Apply Theorem 2.4.
It turns out that an even stronger result than the one given in the corollary holds.

(2.6). THEOREM. If max(aX, bY) is exponential for all a, b > 0, then there is a
¢ > 0 such that P{X = cY} = 1.

ProoF. From the hypothesis and Corollary 2.5 it follows that X and Y are
exponential. Let A;"! and A; ! be their means respectively. Choose a, b > 0 such
that A;b = Aa. Then since aX and bY are identically distributed, we know from
Theorem 2.4 that aX = bY with probability one.

(2.7). ReMark. Esary and Marshall (1974) have studied the class of distributions
whose scaled minimums are exponential. The above theorem shows why this is
fruitless for scaled maximums.

The result following is similar to Theorem 2.1 but deals with a system whose
lifetime is the sum of its component lifetimes instead of dealing with a monotonic
system.

(2.8). THEOREM. If the convolution of n IFRA distributions is exponential, then
(n — 1) of the distributions are degenerate at zero and the other distribution is
exponential.

Proor. It is sufficient to consider two independent IFRA random variables X
and Y with survival functions F and G respectively such that for all # > 0, P{X +
Y >t} = e ™ with A > 0. Since 0 < e™™ < 1 for all > 0, it easily follows that
either 0 < F(£) < 1 forall 0 < < oo or 0 < G(£) < 1 for all 0 < r < co0. Assume
the latter case holds. Suppose now that X is neither exponential nor degenerate at
zero. Then there is some 0 < a < | and, by right-continuity, some interval I C
[0, o0) such that F(ax) > F*(x) for all x € I. Consequently, for sufficiently large 7,
since G is IFRA and 0 < G(7) < 1, we have that

e = [FF(ar = y) dG(y) > [FF*(1 — y/ ) dG(y).
But

JEF(t = y/@) dG(y) > {[FF(1 — y) dG(y)}" = e
from Lemma 2.1 of Block and Savits (1976). Hence it must be that X is either
exponential or degenerate at zero. Now if X is exponential, then 0 < F(¢) < 1 for
all 0 <t < oo and the above argument can be repeated so that Y is either
exponential or degenerate at zero. But since we have assumed 0 < G(¢) < 1 for all
t > 0, it follows that ¥ must be exponential and so, consequently, X + Y is not
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exponential. This is a contradiction. Hence X must be degenerate at zero and
therefore Y is exponential.

(2.9). REMARK. An immediate eorollary is that a multivariate exponential distrib-
ution whose univariate marginal distributions are convolutions of independent
IFRA distributions must have univariate marginals which are either pairwise
independent or pairwise identical.

3. Applications. In this section examples are constructed to show that certain
definitions of multivariate IFRA distributions are not equivalent. We compare
Condition C of Esary and Marshall (1975), the definition of multivariate IFRA
(MIFRA) of Block and Savits (1977) and another definition designated condition
2. We list the definitions below.

(3.1). DeFintTION. 1. (T, - - -, T,) is MIFRA if
E[NT,,---,T)] <EY*[hT\/a, - -, T,/a)]
for all continuous nonnegative nondecreasing functions # and all 0 < a < 1.

2. (T, - - -, T, satisfies Condition C if, for some independent IFRA random
variables X, - -, X,, and some coherent life functions 7,,- -, 7, of order
k,T,=1(X, -, X)fori=1_---,n

3. (T}, - - -, T,) satisfies Condition Z if, for some independent IFRA random
variables X,,- - -, X, and some nonempty subsets S; C {l,-::,k},i=
l’ s ,n,

T, = ZjesX;

(3.2). ExamPLE. (MIFRA 5% C). Consider F(x, y) = exp(—(x* + yz)%) which has
exponential marginals and is MIFRA. By Remark 2.2a if this distribution satisfied
Condition C, it would have the Marshall and Olkin distribution, but it obviously
does not.

(3.3). ExampLE. (MIFRA 5 X). Let (T}, T,) be given by 7, = min(X, Z) and
T, = min(Y, Z), where X, Y and Z are independent exponential random variables.
Then (T, T,) is MIFRA. Now if (T, T,) satisfied Condition =, we would have, by
Remark 2.9, that either T and T, are independent or that 7, = T,. However, both
of these are impossible. '

It should be mentioned that both Condition C and Condition £ imply MIFRA
as is shown in Block and Savits (1977).

Added in proof. Theorem 2.1 can be improved by replacing the assumption that
the component lives are IFRA with the assumption that they are NBU (new better
than used). This fact was observed by the authors and also by Mark Brown and
Moshe Shaked.
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