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A REDUCTION THEOREM FOR CERTAIN SEQUENTIAL
EXPERIMENTS. II'

By L. Le CaMm
University of California, Berkeley

The paper studies experiments which, for nonrandom stopping rules,
resemble Koopman-Darmois families. It is shown that asymptotically one can
limit oneself to sequential stopping rules which depend only on the terms
entering in the Koopman-Darmois approximations, whether or not these terms
are sums of independent variables. One can also obtain asymptotic results by
studying similar problems on suitable processes with independent increments.

1. Introduction. This is an addendum, and a correction, to the paper [5] with
the same title.

One main purpose of the paper in question was to show that for experiments
which have suitable asymptotic resemblance with Koopman-Darmois families,
asymptotic results on sequential decision problems may be obtained by studying
similar problems on an appropriate process with independent increments.

Part of the reduction is to replace stopping times of fairly nondescript sequences
of o-fields by stopping times adapted to the statistics which occur in the
Koopman-Darmois approximations. This was the object of Proposition 2 of [5].

Unfortunately, as pointed out by Dr. Albrecht Irle, the proof of Proposition 2 in
[5] is incorrect unless the o-fields involved satisfy a transitivity relation of the
Bahadur type [1]. Here the transitivity becomes available only in the limit.

In the present paper we give an alternate argument showing first that reduction
to the limit process is possible. This gives an essential improvement of Proposition
3 of [5] and allows us to deduce that Proposition 2 of [5] is valid after all. The
method of proof corresponds to what was called in [5] “an embryo of a proof”. It is
rather lengthy.

Section 2 recalls the necessary notation and assumptions as well as some minor
results of [5].

Section 3 elaborates several lemmas concerning independence of variables in-
volved in limiting distributions or continuity properties for stopping times.

Section 4 gives the main results.

Some general features of the technique of proof used here are related to the
methods used by P. Bickel and J. Yahav in [2]. However, the assumptions and
results are not comparable.
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2. Notations and assumptions. The structure considered in [5] involves a set ©
and a function ¢ from © to a finite dimensional vector space called H. There is also
a particular point §, for which one can assume that £(6,) is the origin of H.

In the present paper we shall dispense with the set ® and work directly on the
range = = £©) of £ This does not change anything essential and simplifies
notation.

It will be assumed throughout that = satisfies the following requirement:

—
-
—

AssUMPTION A. The closure = of = contains an open neighborhood of the

origin of H.

On the set = there is a certain real valued function 8. The pair (=, 8) will remain
fixed throughout.

One considers also a sequence {S,: » = 1,2, - - } of systems S, each com-
posed of the following objects.

(1) A set %,, with an increasing sequence {&,(n),n =0, 1,2, - - - } of o-fields.
It is assumed that @, (0) is always the trivial o-field of %X, .

(2) For each @,(n) and each ¢ € Z, there is a probability measure P,[¢, n]
defined on &,(n). These measures are coherent in the sense that if m <n then
P,[¢, m] is the restriction of P,[¢, n] to @, (m).

(3) For each pair (n, v) there is an &,(n) measurable map S, , of %, into the
dual H’ of the finite dimensional space H.

(4) To each » is assigned an integer n, in such a way that n, » oo if » — co.

The coherence property required in (2) above means that, at the cost of
performing a suitable completion operation on %, one could regard the P,[£, n] as
restrictions to @, (n) of probability measures defined on the o-field generated by the
union of the @,(n). We shall proceed to use language as if this was the case.
However, the property in question is irrelevant in the present context.

Let £,(¢, n) be the Radon-Nikodym density with respect to P,[0, n] of the part of
P,[¢, n] which is dominated by P,[0, n]. This is defined on {%,, &,(n)} and
assumed to be @,(n)-measurable.

On the systems {S,: » = 1,2, - - - } we shall impose an assumption as follows.

AssumpTION (K.D.). The sequence {S,} satisfies the asymptotic Koopman-
Darmois assumption for the function 8 and the maps S, , in the sense that for
every integer b and every § € X:

(i) the sequences {P,[£, bn,]} and {P,[0, bn,]} are contiguous, and,

(ii) the expressions

sup }n(z, m = exp(ts,., - —::B(QH

n<bn,

tend to zero in probability.
For each system S, we shall also consider integer valued stopping variables N,
which are adapted to the sequence {&@,(n),n =0, 1, - - - } in the sense that the set



APPROXIMATING SEQUENTIAL EXPERIMENTS 849

A, , = {N, = n} belong to &, (n). Each such stopping variable defines a o-field
which will be denoted &,(N,). It is the o-field defined on the sum U ,4, , by taking
on A4, , the trace of @, (n).

The restriction to @,(N,) of the coherent sequence {P,[¢, n]; n =0, 1, - - - } will
be noted P,[£, N,].

Note that the corresponding likelihood ratios may be written

dP[EN,]
PLON,] 2,1, S[& n]

=L[EN, ]

We shall consider only, and exclusively, sequences {N,} of stopping variables
subject to the following requirement.

AssuMPTION B. For each ¢ € E the sequence of distributions £(N,/n,|§) is
relatively compact on [0, o).

It will be convenient to introduce a variety of stochastic processes as follows. Let
t denote a “time variable”, ¢ € [0, o0). The process S, is defined by letting
S,(9) = S, , whenever the integer part [n,¢] of n,t is equal to n.

These processes are adapted to the o-fields {B,(¢)} for B, () = &,(n) if [n,¢] =
n.

Note that the processes in question are right continuous with left limits. Also the
o-fields B, (¢) are right continuous.

In this framework the stopping variables N, become stopping times 7, adapted
to the {B,(7); t € [0, )} if one writes T, = N, /n,.

Conversely, if 7, is a stopping time adapted to the increasing family {B,(?); t €
[0, o0)} then the variable N, = [n,T,] is a stopping variable for the initial family
{&,(n);n=0,1,---}.

The probability measures corresponding to this system will be denoted Q,(¢, 7,)
so that Q[¢, T,] = P,I£, N,

The experiments &,(7,) = {Q,(¢ T,); £ € Z} will be called the experiments
attached to 7,

It is shown in [5] that for systems &, which satisfy both (A) and (K.D.) and for
£ = 0 the finite dimensional distributions of the processes S, converge to that of a
process S which has independent increments and satisfies the relation

E exp{£S(2)} = exp{B(£)}
for all t € [0, o0) and all £ € =. :

We shall need further on a suitable version of this process, adapted to an
increasing family of o-fields {%,; ¢ € [0, o0)} as follows.

Let £ be the set of functions from [0, o0) to H’ which have left limits and which
are right continuous. Let 2, be the product £, = @ X [0, 1] of £ by the interval
[0, 1]. The o-field %,, on ,, is generated by the evaluation maps {(w(s), v); s < ¢}
with (w(s), v) € H’ X [0, 1].



850 L. LE CAM

On  one takes for measure Pj the distribution of the process S described above.
On [0, 1] one places the Lebesgue measure A and one takes on £, the direct product
P, ® A.

Besides the measure P, we shall also need measures P, , defined on the o-fields
9, and §,, = N {F,; s > 1}. The measure P, , has density

exp{éw(t) — tB(£))
with respect to Py,

The main purpose of [5] could be described as follows. Consider (subject to (A),
(K.D.) and (B)) sequential decision problems for the systems {S,}. Then, asymptot-
ically, one may replace the o-fields %,(¢) by the o-fields ¥,,. Also, one may
replace the families Q, (£, ¢) by the limit family P, ,.

3. Basic lemmas concerning the system {S,} It will be assumed throughout, even
if this is not explicitly mentioned, that the sequence {S,} satisfies the assumptions (A)
and (K.D.).

It is also assumed that all the stopping variables under consideration satisfy
Assumption B.

Let 7, be a stopping time adapted to the o-fields {®,(7); ¢ € [0, ©0)}. Let X, be
the random variable X, = S,(7,). Take a number & > O and let 7, = 7, + a. Let Z,
be the difference Z, = S,(7)) — S,(7,).

Finally let Y, be a %,(r,) measurable map from %, to a certain fixed Euclidean
space.

LEMMA 1. Assume that for the measures corresponding to & = O the joint distribu-
tions L[, X,, Y,, Z,|0] converge to a limit Ly = L[t, X, Y, Z|0]. Then, for each
§ € E, the distributions C[r,, X,, Y,, Z,|€] converge to a limit L, which has, for
density with respect to Ly, the expression exp{&(x + z) — (¢t + a)B(6)}.

Furthermore, the experiment {L;; § € Z} so obtained is the weak limit of the
experiments & ,(1)).

Proor. This is essentially the same statement as that of Lemma 2 of [5].
According to the Koopman-Darmois assumption and the continuity assertion of
Lemma 1 of [5], the differences

a9, ) o
dQ,(0, ) exp{£S,(r;) — ,B(§)}

tend to zero in probability as » — co.

Fixing a value of £, the usual contiguity argument shows that the joint limiting
distribution of the quadruplet (7}, X,, Y,, Z,) has, with respect to L,, a density
exp{és — 'B(§)} with s = x + z and ¥ = ¢ + a. The first assertion follows.

The assertion concerning the limit of the experiments &,(7.) is then a con-
sequence of the fact that the pairs [S,()), 7] and, therefore, also the pairs
[S,(7,), 7,], are distinguished sequences of asymptotically sufficient statistics for the
sequence {&,(r)); » = 1,2, - - - }. (See [3], page 50).
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ReMARK. The preceding lemma shows in particular that the limit of the
experiments &,(7;) is entirely determined by the limit of the joint distributions
£[r,, S,(7,)|0]. This will be used repeatedly in the sequel. Note however that if
&,(r,) tends to a limit &, it does not necessarily follow that £[r,, X,|0] tends to a
limit, since the Laplace transform involved in Lemma 1 may well fail to determine
the underlying measures.

The following proposition will play a very essential role in all our arguments.

PROPOSITION 1. With the same assumptions and notations as in Lemma 1, the
limiting distributions L; of the quadruplets (T, X, Y, Z) are such that Z is indepen-
dent of (T, X, Y). It has a Laplace transform

E, exp{¢Z} = exp{aB(£)}
Jor all § interior to the closure of E.

PrROOF. Let g be an arbitrary bounded measurable function defined on the

space of triplets (¢, x, y). Write the distribution L, in the form
Ly(at, dx, dy, dz) = M(dt, dx, dy)K(dz|t, x, y)

for a marginal distribution M and a conditional distribution K. Consider the
expectation E.g(7, X, Y) for the distribution L,. This may be written

/g(t, x,y) exp{&(x + z) — (t + a)B(£)} dKdM
= fg(t’ x’y) exp{gx - tﬁ(g)}¢(£’ t9 x,J’) dM’
with
o(&, 1, x,y) = fexp{§z — aB(§)} K(dz|t, x, y).

However, Lemma 1 can also be applied to the limiting distribution of the triplets
(7,, X,, Y,) themselves, yielding

Eg(T, X, Y) = [g(t, x,y) exp{éx — tB(§)} M(at, dx, dy).

Since g can be selected arbitrarily, it follows that, for each £ and almost all
triplets (¢, x, y), one must have ¢(, ¢, x, y) = 1.

Applying this to a dense countable set of values of £ one concludes that for
almost all (¢, x, y) the Laplace transform fexp{¢z}K[dz|t, x, y] equals exp{aB(£)}
for all £ in an open neighborhood of the origin. This concludes the proof of the

proposition.

Instead of one number a > 0 one could consider a finite sequence, say 0 = a, <
a; < <a, and a vector Z, = {Z},i=1,2,- -, m) with Z/ = S, (1, + a)
= 8,1, + a;_y).

This gives the following corollary.
COROLLARY. In the joint limiting distribution
[T, X, Y, Z|0] = lim,R[7, X,, ¥,, Z,0]
the triplet (T, X, Y) is independent of Z.
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Proor. First consider the pairs {(,,X,,Y,,Z,i=1,---,m—1),(Z™).
The first vector is measurable for the o-field 8, (r, + a,,_,). It may take the place
of Y, in an application of Proposition 1. This gives the independence of
(T, X,Y,Z,i<m—1) and Z™. Then we can proceed downward, with
(T,X,Y,Z',i <m—2) and Z™ ! and so forth. The result follows. To state the
next result we shall introduce a definition as follows.

Let {T,} and {T}} be two sequences of stopping times, with both 7, and T*
adapted to the increasing family B (¢); ¢ € [0, o).

DeFNITION 1. The sequences {T,} and {T}} will be called asymptotically
equivalent if

(1) for any weak cluster point (&, & *) of the sequence of pairs of experiments
(6,(T,), &,(TY)) the two experiments & and & * are equivalent;

(i) for every § € Z, the differences £[T,[¢] — £[T}|£] tend to zero, for the dual
Lipschitz norm of measures on [0, ).

This says essentially that 7, and T} yield about the same information and that
their distributions differ little.

PROPOSITION 2. Let T, and T} be stopping times of the family %,(2); t € [0, ).
Assume that the conditions (A), (K.D.) and (B) are all satisfied. Assume also that, as
v — o0, the difference T, — T¥ tends to zero in probability. Then

() {T,} and {T}} are asymptotically equivalent; and

(ii) the difference S,(T}) — S,(T,) tends to zero in probability.

PRrOOF. Let F be a finite subset of = which contains the origin and a basis of
the linear space H spanned by Z. Take a number a > 0 and consider the stopping
times I, = T, ANT* T?=T,\/ T*, and T’ = T! + a.

Any one of these stopping times yields an experiment &,(7)). We shall consider
that the experiments in question are indexed by the set F only.

For the informational ordering of experiments one may write &,(T.)) < &,(T})
< &,(T?), and similarly for T*.

Let (&', &% &%) be a cluster point of the sequence of triplets
(6,(T)), 6,(TH, 6,(TD). 1t is clear that &' < &2, but one has also & < &°. To
show this consider the set B, where T,? < T. This set belongs to both o-fields
®,(T}) and B,(T;)). By assumption the probability of B, tends to unity for £ = 0
and therefore also for all £ € Z by contiguity. On B, the measures Q,(¢, T?) and
0,(¢, T}) coincide. Thus the deficiency of &,(7T;%) with respect to &,(T2) does not
exceed sup; < {1 — Q,[£, T?; B,]}. This gives the desired inequality &> < &°.

Now we shall show that for each given ¢ > 0 it is possible to select a so small
that the deficiency 8(&', &%) does not exceed «.

For this purpose let Z, = S,(T>) — S,(T)') and let L, be a cluster point of the
sequence £{T,), S,(T,"), Z,|0} corresponding to the cluster point (&', &2, &°).
Then, according to Lemma 1, the experiment & is representable by the measures
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L,, § € F such that L, has density
g1, x, z) = exp{é(x + z) — (1 + @) B($)}

with respect to L, The experiment &' can be represented similarly, but with
densities

g'(t, x, z) = exp{éx — 1B($)}
with respect to the same L.

The Hellinger affinity between g' and g is equal to exp{a[ B(¢£/2) — 381}
This can obviously be made as close to one as desired by taking « sufficiently close
to zero. Using the inequalities between Hellinger distances and L,-norms (see for
instance [3]), one concludes that statement (i) of the proposition holds.

To show that (i) holds, we shall show that S,(7,) — S,(T.}) tends to zero. Since
the same argument will apply to T* also, the result will follow. For this purpose,
take two elements, 0 and £ of the finite set Fand let u, = Q,(0, 7,) + Q,(§, 7,) on
the o-field B,(T,) D B,(T,)). Then Q,(& T,) has, with respect to p,, a Radon-
Nikodym density ¥, on %,(7,) and a density ¥,! on B,(T,).

Let 8, be the deficiency 8[&,(T.}), &,(T,)]. According to the inequalities of [4]
one may write [|V,! — V,|%du, < 28,. Thus, by part (i) these integrals tend to zero.
According to the contiguity assumption included in (K.D.) this implies that
log(V,/1 — V,) — log(V,!/1 — V) also tends to zero in probability. However, by
assumption, this latter difference is asymptotically equivalent to

¢[5,(T,) = 5(T,)] = (T, = T,)BE®-

One concludes that £S,(7,) — S,(7,")] tends to zero in probability for all £ € F.
Since F contains a basis of H, this concludes the proof.

REMARK. An alternate proof can be carried out without having recourse to the
deficiencies and to the inequalities of [4] by using martingale inequalities on the
likelihood ratios.

In the next section we shall use a consequence of Proposition 2 applicable to
dyadic approximations of the times 7. These are defined as follows.

For each integer m > 1, the mth dyadic approximation T, , of T, is defined by
first letting T)% , = k2™ whenever (k — 1)27" < T, < k2™ and then letting
T,,=QYNT,,.

COROLLARY. Let {T,} be a sequence 'of stopping times such that £[T,, S,(T,)|0]
converges to a limit on [0, o) X H'. Then, for every § € Z one has

lim,, ,E,{1 A IS(T,,,) — S(T)I} =0

if m and v both tend to infinity in any arbitrary manner.
In particular, for every ¢ € Z the limit of R[T,, S,(T,)|£] is equal to the iterated
limit
lim, im,2[ T,, ,, S,(T,, ,)I¢].
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Note. In this iterated limit, the first limit over » may not exist. What the
statement is supposed to mean is that for any arbitrary selected cluster point M,,(§)
of £[T,, ,, S(T,, ,)|0] the limit lim,, M,,(£) is lim,£[T,, S,(T,)|¢].

Proor. It is sufficient to show that for every € one can find a number r(e) so
large that » > r(e) and m > r(e) will imply Eo{1 A ||S(T,) — S(T,, )|} <e.

Assuming the contrary, one could readily construct sequences which would
violate Proposition 2. Hence the assertion.

4. Reduction theorems. In the present section we shall first show that the
limits of the sequences of experiments {&,(7,)} can be realized on the process with
independent increments described at the end of Section 2. Then it will be argued
that, asymptotically, it is enough to consider stopping times which are adapted to
the increasing family of o-fields {¥,,, ¢ € [0, o0)} instead of the possibly more
general B, (?).

The proof of the possibility of reduction to the process with independent
increments has been separated into two parts for greater clarity. It should be clear
that the main part of the argument is the first part referring only to dyadic times.

Recall that the space £, is a product £, = Q X [0, 1] where © is the space of
functions from [0, 00) to H’ which have left limits and are right continuous. For
£ = 0, the measure P, used on £, is the product P; ® A where A is the Lebesgue
measure and where Pg is the distribution of a process w with independent incre-
ments such that Egexp{{w(?)} = exp{t B(£)}.

Let D, ={t4;k=0,12,---, 22'"}, with ¢, = k27", Then the set U (m) of
functions from D,, to H' is a factor of £. The measures induced on U,(m) =
W (m) X [0, 1] by P, or P, will still be noted P, and P,, by abuse of notation.

In the following statement the integer m will be kept fixed and omitted from the
notation.

PROPOSITION 3. Let the assumptions (A) and (K.D.) be satisfied and let T, be a
stopping time adapted to the o-fields B (1), t € [0, ).

Assume that T, takes its values in D and that £{T,, S,(T,)|0} converges to a limit.

Then, there is on U, a stopping time T adapted to the o-fields %,, t € D such that

(i) the distribution Ly of [7, ()] for P, is the limit of the distributions
£IT,, S,(T,)|0);

(ii) the experiment given by the measures

dL, = exp{éw(r) — B(§)}dL,
is the limit of the experiments & ,(T,).

PrOOF. Let °V be the space of functions from D to the product {0, 1} X H’ of
the two point set {0, 1} by the finite dimensional space H'. Let J, (k) be the
indicator of the event T, < #,, for , € D and let Z, , be the difference Z, , =
S,(t) — S,(tr_), k=1,2,---,2> Put Z, o = 0. Then the vector {J,(k), Z, ,; k
=0,1,---, 22"'} is a random element which takes values in the space V. The
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corresponding joint distributions, for Q,[0, 2>™], have at least one cluster point, say
M.

To this M one may apply Proposition 1 repeatedly (as indicated in the remark
which follows Proposition 1) using instead of the stopping time 7, of that proposi-
tion, times which are deterministic, with values , #; € D. The vectors Y, which
occur in Proposition 1 will then be taken equal to the vectors Y, = {J, (%), Z, ;;
k < j} and the difference called Z, previously will be Z, ; ., = S,(4,,,) — S,(¢), in
the present case.

Let V = {(U(?), Z(¢)); t € D} be a random element which has distribution M
on V. According to Proposition 1, for eachj = 0, 1, - - - , 22 the sets of variables

{UGs), Z(s); s <4} and  {Z(2); 1 > 4,4}

are independent.

Let 6, be the o-field generated on V' by the coordinate evaluations {z(s); s < ¢}.
For each ¢ € D, let ¢, be the conditional expectation E [ U(¢)|§] where § is the
o-field § = U,cpb,.

We claim that one can select versions of the ¢, so that

(i) ¢, is 8, measurable;

(i) 0 < ¢y < ¢, < ¢, < ¢, = 1 (with b = 1. for simplicity).

To prove this, let f be any bounded §, measurable function and let g be any
bounded function which is measurable with respect to the o-field §, generated by
{Z(s); s >t,s € D}.

According to Proposition 1, the pair (f, U(¢)) is independent of g. Thus ¢, must
satisfy the relation

E,fU(1)g = Eo[ fU(1) | Eo(8) = Eo[ fo8]-

However, if y, = E[fU(?)|§,] one has also E,fU(t) = Eyfy, and E,f},g =
E,fy,E,g. Since this is true for all pairs (f, g) it follows that ¢, = ¢, almost
everywhere. Thus one may select for ¢, a §, measurable function such that
0 < ¢, < 1. By construction J,(s) < J,(¢) if s <t It follows that U(s) < U(?)
almost surely and therefore that ¢, < ¢, almost surely.

One can also let ¢, = 1 for the last element b of D. Then, replacing ¢, by the
equivalent q—b, = sup{¢,; s < t} gives the desired functions.

Now let AU be the space of H’ valued functions defined on D. Map the second
components called z of the vectors v € V into @U by the operation w(r) =
3, <.2(s). The selected cluster point M induces in this manner a certain distribution
on 9. It is no other than the distribution P§ induced by our process with
independent increments.

Let U, = U X [0, 1] be given the product measure P, = P ® A. For each pair
(w, v) € U, define a stopping time 7 as the first + € D for which ¢,(w) > v.
Similarly define T on V' by T < ¢ if U(¢) = 1.

We claim that the distributions £[7, w(T)] and £[r, w(t)] are the same. To see
this consider a particular # € D and a bounded measurable function f defined on
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D X H’. Assume that f(u, x) =0 unless u = ¢ and consider the expectations
E,f[T, w(T)]. Let s be the element of D which immediately precedes ¢. By
assumption

Eof[T, W(T)] = Eo[ U(¥) - U(s) ] f[ 5 w(®)]
= O(¢t - ¢s)f[ Z W(t)].
However, for the stopping time 7 the conditional probability Pj[r < #|w] is equal to
¢,. Thus Ey(é, — ¢,)f[t, w(?)] is also equal to E, f[r, w(T)].
The identity of distributions follows. The second statement is a consequence of

Lemma 1, hence the result as claimed.
This leads to the following result.

THEOREM 1. Let the assumptions (A) and (K.D.) be satisfied by the systems S,
and let T, be a sequence of stopping times which satisfies condition B. The time T, is
assumed to be adapted to the family B (1), t € [0, ).

Assume, in addition, that the sequence of distributions £{T,, S,(T,)|0} converges to
a limit.

Then there is on R, a stopping time T adapted to the family %, ; t € [0, o) such
that

() the distribution L, of (7, (7)) for P; is the limit of the distributions
£IT,, S,(T)k]

(ii) the experiment given by the measures
dL; = exp{éw(t) — 7B(§) }dL,
is the limit of the experiments & ,(T,).

Proor. Consider the dyadic sets D, = {t,; k=0,1,2,- - -, 22’”}, t,=k2™"
and form the corresponding spaces V,,, U (m) and W,(m). Let T,, , be the mth
dyadic approximation to 7,. This has values in D,,. Proceeding as in the proof of
Proposition 3, the (7, ,, S,(T,, ,)) induce a certain distribution M, , on V.
Taking an appropriate subsequence if necessary, one may assume that, for all
integers m, M,, , have limits on their space V.

Thus the construction used in Proposition 3 with o-fields §, becomes available. It
can also be carried out directly on €, itself, using the o-fields %, instead of the §,.

This yields certain stopping times 7,,.

The successive 7,, are compatible. In fact the possible values of 7,, are the subset
{(k2=+*D) of D, ,,, where k is even and k < 2*"*'. If 7, takes a value
@2n = 1)27™*D or 2n)2~*+D with 2n < 2*"*! then 7,, must almost surely take
the value 2n2~™*D,

It follows that for every integer b, as soon as b < 2*"  the 7, /\b form a
sequence which decreases almost surely to a limit 7 A b with 7 = lim,,7,,.

This stopping time 7 is a stopping time of the o-fields %,,; ¢t € [0, o). The
decreasing property implies that £[7,,, w(7,,)] converges to £[r, w(7)], since the w
are right continuous.
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However, by Proposition 3 and the corollary of Proposition 2, we have

B[T, w('r)] 11m lim B[ mv’S( )]
= lim,£[T,, S,,(T,)].

This concludes the proof of statement (i) of the theorem. The second statement is
then immediate and the result is completely proved.

Theorem 1 effectively reduces the study of the possible limits of the experiments
&,(T,) and associated distributions £[7,, S,(7,)|§] to the study of analogous
objects defined on the limit process with values in ,.

However, this need not be the most convenient way to proceed. For many
purposes it is more satisfactory to note first that one can replace the general
o-fields %, (¢) by the o-fields ¥,. Because of this we shall now restate Proposition 2
of [5] and elaborate a proof of it.

Take pairs (S,, y) which consist of the process S, itself and of a variable y
uniformly distributed on [0, 1]. These can be considered random elements in the
space ;. They are adapted to the o-fields F,; ¢ € [0, o) themselves.

THEOREM 2. Let the assumptions (A) and (K.D.) be satisfied and let T, be a
sequence of stopping times such that T, is adapted to the family B ,(t); t € [0, o) and
satisfies assumption (B).

Then there are stopping times 7, defined on Q, and adapted to the o-fields
9,; t €[0, o) such that as v — oo the Prohorov distance between L[T,, S,(T,)|¢] and
L[7,, S,(1,)|€] tends to zero for all £ € E.

PROOF. Let us first show that it is sufficient to prove the result for the dyadic
approximations 7,, , instead of the 7, themselves. Indeed, suppose constructed
times 7, , such that, for all m, the Prohorov distance ,(m) between
L[T,,,» S(T, 0] and L[, ,, S,(7,,,)|0] tends to zero. Then one can find an
increasing sequence {m,} such that =,(m,) still tends to zero. The corresponding
distances m,(m,, §) computed for distributions induced for the parameter ¢ will also
tend to zero according to the usual contiguity arguments. The result for the T,
follows then from the corollary of Proposition 2.

Thus it is sufficient to proceed assummg that 7, itself takes values in the dyadic
set D= {4,;k=0,1, L2 1 = k2m

Introduce the spaces GllY and AU, used in the proof of Proposition 3. Let QU be
the space of functions from D to the product {0, 1} X H’ of the two point set
{0, 1} by the space H’ and let U, = A x [0, 1].

The elements of AU are vectors {(u(s), w(s)); s € D}. Let ¥, be the o-field
generated on Gllf by the evaluations (w(s), v), s < ¢,y €0, 1] and let & 6~ be the

o-field generated by the evaluations (u(s), w(s)), s < ¢.

Then T, may be redefined as a stopping time adapted to the fam11y st €D,
while the 7, of interest are adapted to %,; t € D.



858 L. LE CAM

Select such a , so that the Prohorov distance, say a,, between £[r,, S,(,)|0] and
£[T,, 5,(T,)|0] does not exceed the infimum of all such possible distances by more
than 27”. Let M, be the distribution induced by T, on W,.

Suppose that a, does not tend to zero. Then there is an ¢ > 0 and a sub-
sequence, say »(r), such that a,,, > ¢, for all r. One may assume that the sub-
sequence has been chosen so that along it the distributions £[r,, S,(r,)|0],
L[T,, S,(T,)|0] and M, will converge. If M is the limit of the M. ,» Proposition 3
shows that there is on Gllf a stopping time of the o-fields %,; t € D such that
£[r, S(7)] is the limit of the £[T,, S,(T})|0].

Let 4, be the subset of AW, where T = . Consider it as a subset of the product
€U, X [0, 1] where U, is a product of H/ = H’, for s < ¢

Then, for each e € (0, &), there is a compact set K, and an open set G,, such that
in W, X [0, 1] one has K, C 4, C G, and M(G, — K)) < e2™".

For each a > 0 let K" be the set of points in U, X [0, 1] whose distance to K, is
at most a. Then, for a small enough, K* C G,. Also, at least one of these K* C G,
must have a boundary which has M measure zero. Select such a set K and call it
B,. Let B U,{B,; s <t} and let 7’ be the stopping time such that 7’ < ¢ if (w, v)
belongs to B,.

The sets 1_3; can also be used in the same way to define stopping times, say 7/, for
the processes {S,(¢); t € D}.

Since all the B, have negligible boundaries for M, so does B Thus M (B,) -
M(B,)) for all ¢ € D. In particular L[, S,(1,)|0] converges to £[7’, w(r")|0]. How-
ever, £[r, w()|0] and 2[+’, w(7")|0] differ by at most ¢ < eo

This yields a contradiction to the assertion that a, > e, The desired result
follows.

S. Concluding remarks. Our previous paper [5] described how the foregoing
theorems could be applied to obtain lower bounds on asymptotic variances of
estimates or upper bounds on the power of sequential tests.

Because at that time we did not have available the equivalent of Theorem 1, the
descriptions had to be limited to cases where the sequences of stopping times T,
were “regular” as explained there. Theorem 1 says that in fact all sequences
(subject to (B)) are regular.

As mentioned earlier, the technique of passing through dyadic times is remi-
niscent of the “block  technique used by Bickel and Yahav in [2]. However, here it
is mainly used to allow application of the transitivity conditions on the limit
experiments. For the problems considered in [2], transitivity is available all the way
along.

Of course, under the assumptions made here we cannot conclude (as in [2]) that
the Bayes risks for the systems &, will converge to the Bayes risks on the limiting
processes. (One can assert that the limit of the Bayes risk is not smaller than the
Bayes risk computed on the limit process.) This is partly because we have not
controlled in any way the expectations E(7,) but only the distributions £(T,), and
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partly because we have dealt only with pointwise convergence on =. Convergences
which are uniform on compacts could be induced at the cost of assuming that the
distributions P,[¢, bn,] satisfy additional conditions such as the condition that if
¢ — ¢ then ||P,[¢, bn,] — P,[£ bn,]|| tends to zero.
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