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ERDOS-RENYI LAWS

By SANDOR CSORGO
Szeged University

Almost sure limit theorems are proved for maxima of functions of moving
blocks of size ¢ log n of independent rv’s and for maxima of functions of the
empirical probability measures of these blocks. It is assumed that for the
functions considered a first-order large deviation statement holds. It is well
known that the indices of these large deviations are, in most cases, expressible
in terms of Kullback-Leibler information numbers, and the a.s. limits of the
above maxima are the inverses of these indices evaluated at 1/c. Several
examples are presented as corollaries for frequently used test statistics and point
estimators.

1. Introduction and summary. Let Y, Y,,- - - be a sequence of i.i.d. nonde-
generate real rv’s with a finite moment-generating function R(f) in a nondegenerate
interval around the origin. Set Zy =0, Z, =Y, + - - - +Y,, I(x) = sup,(tx —
log R(#)), and I(x) = oo for all those x’s, where the former expression is meaning-
less. For any ¢ > 0 we have

Z, clogn] = Zi

P{limn—mo MaXy;<n—[c log n] %]‘_ = a(c)} =1,
where [-] denotes integer part, the limit a(c) is defined by a(c) = sup{x : I(x) <
1/¢} and, as a function of ¢, it uniquely determines the common distribution of the
summands Y|, Y,, - - - . This is the “new law of large numbers” of Erdds and
Rényi (1970). (For an extension of it and some elaboration of the limit function,
see the Appendix at the end of the present paper). They used it to give a new proof
for Bartfai’s solution to the stochastic geyser problem, and later on it played an
important role when Komlés, Major and Tusnady (1974) and (1975) proved that
their O (log n)-rate strong approximation of partial sums (by a Wiener process)
cannot be improved.

Koml6s and Tusnady (1975) gave a deep insight into this Erdés-Rényi (E-R)
phenomenon, when investigating the almost sure behaviour and limit distributions
of “first large blocks” and their indices. In the coin-tossing situation (P{Y, = 0}
=P{Y =1} = %) Erdés and Révész (1976) proved interesting refinements of this
special case of the original law, giving a full characterization of the length of the
longest head-run. Chan, M. Cs6rgd and Révész proved common generalizations of
the E-R law and the LIL for the increments of one- and multi-parameter Wiener
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and Kiefer processes. The references of this direction can be found in Chan and
Csorgd (1976).

In another series of papers Book proved various generalizations of the E-R law
for weighted sums and nonidentically distributed rv’s and also several (as he calls
them) versions of this law for generalized averages, where, in the latter, the limits
(or, equivalently, the lengths of the blocks) do not determine the distribution of the
summands. A description of his own work and references are in Book (1976). In
these “versions” of Book (1975a) and (1975b) the length of a block is approxi-
mately (¢ log n)? with 8 > 1, so they are not E-R laws any more in the sense that
the stochastic geyser problem (or the original E-R law) plays the role of the lower
limit to the strong invariance principle. Thus it is entirely natural that the limit in
these versions of Book is a(c) = (2/c)'/? the E-R limit-function of N(0, 1)-
summands, and in fact, these versions (at least in the i.i.d.-case) are consequences
of the strong invariance principle of Komlos, Major and Tusnady.

Finally, Book and Truax (1976) developed the analogous E-R law for sample
quantiles (see Example (B) in Section 3). It seems that this is the full story at
present. (See also references added in proof).

One goal of the present paper is to extend the E-R law for other than the
sum-function, of the underlying Y-sequence, and the other one is to develop such
laws for functionals of empirical df’s. Erdés and Rényi based their proof on the
Bahadur-Ranga Rao refinement of Chernoff’s large deviation theorem. But (as it
can also be seen from the proof in Section 2 here) their result can be proved using
only the original limit theorem of Chernoff without the Bernstein-Chernoff inequal-
ity (Theorem 3.1 in Bahadur (1971)), a first-order large deviation statement. This
observation is the base for the following Theorems 1 and 2.

THEOREM 1. For a fixed natural number k let X, X, - - - (=1, -, k) be
k independent sequences of independent rv’s, taking values in an arbitrary measurable
space (X, B). For each n let h be an arbitrary (X", B")-measurable extended
real-valued function, j =1, - ,k, and construct the new (real) rv’s T,-)(’,? =
XD, -+« s X)), Furthermore, let H be a k-variate Borel-measurable function.
If, in a neighbourhood of a

(1.1) lim 2 log P{H(TSY, - - -, TK) > a} = —I(a),

n—o0 n

where I(a) is a positive function, strictly increasing in some neighbourhood of a, then

MaXeyg;<n—in) H( T"(,ll)(n)’ T Ti(,k)(n)) as&
as n — oo, where I(n) = [(I(a))” ! log n].

On choosing X = R, k=L h,(x;, -+ *,x,)=(x; + - -+ +x,)/n and H(x)
= x we get the original E-R law from Theorem 1 via Chernoff’s theorem.
Towards formulating the other aim, first consider X, X,, - - -, a sequence of

independent d-dimensional random vectors with an arbitrary common df F(x),
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x € A7 and let F,(x), x € R“, be the empirical df of X, - -, X,. If Z(x) =
n(F,(x) — F(x)), Z, = 0, then the E-R law says that for each fixed x € R4 and
0 < a < 1, such that F(x) < 1 — a, we have

max0<t<n I(n) l( )( +1(n)(x) Zz(x)) a5

where I(n) = [(I*(a, F(x)))~! log n] and
(12) I*(a 1)

= (a + t)log( at

= o for t>1-—a.

t)+(]—a—t)log(1_1—ﬁt_t-) for 0<t<1—a,

Our noted second goal is to develop analogous strong laws for the appropriate
maximums of JC([c log n]~!(Z, i+lc1ogn(*) — Zi(+))) for some reasonable class of
functionals JC, or, more generally, for functionals of several such averages. The
theory of first-order large deviations of functionals of empirical df’s is rather
unified, and the general formulation will also give nearly complete information
about the real notion of the a.s. limits in E-R type laws.

In order to be in accordance with the existing generality in the literature, we
formulate the result for empirical probability measures (pm’s). Let & be a separ-
able complete metric space and % the o-field of Borel sets in S. Let A be the set of
all pm’s on B. For P, Q € A

I(Q, P) = [sqlogqdP if Q<P
= o0 otherwise

(with ¢ = dQ/dP) denotes the Kullback-Leibler (K-L) information number (or
I-divergence) of Q relative to P (specifically, if S = R¢, F and G are d-dimen-
sional df’s with respective induced Borel measures p, and p; then, by definition

(1.3) I(G, F) = I(pg 1)
is the K-L number of G realtive to F). Fix a natural number k. For P =
PO, .- - PO Q=(QD,---,0®W) e Aand ¢ = &n s 8 € (0, 1F with

Zfo18 =1 define I(Q, P) = Sk_ {1(QP, PY). For an extended real-valued
function JC on A* and a real number « set
Q, =9,(3) = {Q e A H(Q) > a}
and define
I(a) = I(a, I, P) = inf{Ig(Q P): Q€ Q,}.

Further, for each 1 <j <k, let X{?, - - -, X, be iid. rv’s taking values in &
according to a pm PY €A, where we suppose that the k samples are also
independent. Denote by P(ﬁ the empirical pm of the jth sample, i.e., n; P(ﬁ(B)

the number of X, - - X U) with values in B € @?) Suppose that all the sample
sizes n; tend to 1nf1mty such ‘that n, ,/N—=§, 1 <j<kwhere N=n+--- +n.
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Then, if JC is a nice enough function, we find that

(14) limy ... + log P {(PY, - - -, P®) > a) = —Iy(a)

Motivated by Sanov (1957), Hoadley (1967) was the first to prove (1.4) in case of
S = Q! and when PO, . - -, P® are all nonatomic. With an extra rate condition
on the convergence of 7, he requires JC to be uniformly continuous in the product
topology on A* induced by the usual supremum metric on A. In case of kK = 1 (but
S = R4, d > 1) his result was further developed by Stone (1974). A result of
Borovkov (1967) reduces uniform continuity of JC to continuity in this one-sample
case. Special functionals were treated before and after by a number of authors (see
the examples in Section 3, and the references in Bahadur (1971); it was, in fact,
Bahadur’s exact slope that motivated this research in the most part). Finally, in a
very substantial paper, Groeneboom, Oosterhoff and Ruymgaart (1976) proved
(1.4) without any special restriction, assuming only that JC is continuous in the
k-product of the topology 7 (on A) of convergence on all Borel sets, and I; is
continuous from the right in a. (Even this last assertion is only a special case of
their Corollary 3.2).

Here we shall be concerned with equal sample sizes (n; = - - - = n, = n). In
this case
1. . )
Lok, .. 10(a) = % mf{zf-ll(Q(')a P9 (QM,---,0W) e Qa},
and we denote by I, («) this quantity. Then (1.4) becomes
(1.5) lim, ., (kn)™" log P{IC(P®, - - -, PP) > a} = — [ ().

Let S = 0, S = nPYP, and Ui, n) =1(SLP, — S), 1 < j < k. Now we can
formulate the following

THEOREM 2. Assume that a functional I satisfies (1.5) at each point in some
neighbourhood of a and that « is a point of strict growth of I,. Then

(1'6) maXocicn—i(n) 3C( U(l)(i’ l(n))’ T U(k)(i’ 1(”))) —a5.Q

as n — o, where I(n) = l(n, k, a) = [(kI,(a))™' log n]. (An alternative formulation
is as follows. If (a,, a,) is the (possibly infinite) interval where I,(a) is positive and
strictly increasing, and c is any number in the range of (kI (@)™ !, a € (a;, a,), then
(1.6) holds with I(n) = [c log n], and the as. limit is a(c) for which I (a(c)) =
(ke)™1)

We have just seen conditions under which (1.5) holds. Note that I, («) is always a
nonnegative and monotonically nondecreasing function. The condition that I, is
strictly increasing in some neighbourhood of « is a very mild one. For example, if
Q, is convex and I, («) is attained on some Q € @, then 7, is strictly increasing.
On the other hand, I, («) is attained if Q, is closed in the topology of total variation
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as shown by Csiszar (1975), or closed in 7-topology (see Lemma 3.2 of
Groeneboom et al. (1976)). In fact, it is hard to imagine a functional for which I,
would be constant on some interval. In typical cases the interval (a,, a,) is such
that f,(a; + ) = 0 and I;(a, — ) = L, say, where this L, can be co. Therefore a(c)
is determined, in these cases, on ((kL,)~!, o), it is strictly decreasing and a0 +)
= ay, a((kLk)'l —)=a.

Theorems 1 and 2 in their stated form do not follow from each other, but, of
course, there is an intersection between them. For example, in case of real-valued
identically distributed rv’s and symmetrical A{", - - - , A% functions the assertion
of Theorem 1 follows from that of Theorem 2. But this latter form could not cover
some interesting examples. On the other hand, Theorem 1 could have been so
formulated to contain Theorem 2. The only reason we did not do so was that it
would have been unwise to hide the special form of Theorem 2 which allows us to
fully describe the limits of the E-R laws. That the latter can be expressed in terms
of the K-L information is of special interest; a fact which would not have been
apparent in a more general form. Clearly then, the proof of the two statements is
the same. In the next section we prove Theorem 2, but, mutatis mutandis, this is a
proof of Theorem 1 as well. This proof, of course, follows the line of that of Erdds
and Rényi in general. The difference is that we must be careful here when handling
the remainder term of the large deviation.

The results of this exposition can play exactly the same role when best rates of
strong approximations for functionals, other than sums of the underlying rv’s, are
to be constructed, as that played by the classical E-R law for sums (Komlds, Major
and Tusnady (1974), (1975)). Since our E-R maximums can be viewed as strongly
consistent estimates for the inverse of exact Bahadur slopes of test statistics and
point estimators, these results might also be of some interest in statistics. Indeed,
the just mentioned possibility of line of thought was the main motivation of the
author to collect and work out most of the numerous corollaries of statistical
nature in Section 3. These corollaries are E-R laws for sums of vectors, sample
quantiles, the trimmed mean, classical test statistics like ¢, F, chi-square, likelihood
ratio, all standard rank statistics, for the most frequently used functionals of one-,
and two-sample empirical processes, and for maximum likelihood and other
consistent point estimators. While working out these corollaries an attempt was
also made to summarize the literature of large deviations for these just mentioned
statistics. The aim, however, was not to skin the cat too many times, but rather to
avoid the trap of proving so many E-R laws separately. The examples themselves
seem to be important from the point of view of information theoretical statistics.

2. Proof of Theorem 2. It will be convenient to write (1.5) in the following
form.

(2.1) P{IC(PD, - - -, P) > a} = exp{ —nkl,(a) + a, log n},

where a, is such a sequence that (a, logn)/n—0. Let ¢ >0 be such a small
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number that (2.1) holds for @ * ¢ in place of a, and also § = 8(¢) = k([ (a + €) —
I (a)) >0, ¢ = {(e) = (i(a) — Li(a — &)/ (a) > 0. Let b, = ay,, and for a
positive integer N and a positive number L > N define O(L, N) =

maxyg; <,y (UPGE N), - - -, UR(, N)). Then the left hand side of (1.6) is
O(n, I(n)), and we first show that
22) limsup,,_,., ©(n, /(n)) < a, as.
If Ly = exp{(N + 1)kI,(a)}, then we have, by (2.1), that
P{O(Ly, N) > a + ¢} <SJ"YP{IC(UDG, N), - - -, UN(, N)) > a + &)

= Sd=NNav exp{ — Nk (a + ¢€))

< CN%e 8N
where C = exp{ k[, (a)}. Now

—log(N*e™®) N (8 _aylogN

logN log N N

as N — oo, whence CSN%e %N < o by the first-order logarithm-criterion. This

means a.s. that only finitely many of the events {®(Ly, N) > a + &} occur. But, if

Ly_, <n <Ly then /(n) = N; hence {O(n, (n)) > a + e} C{O(Ly,N) >a +

e}, and, consequently, the same is true for the events {O(n, /(n)) > a + €}. (2.2)

then holds, since ¢ > 0 was arbitrarily small.

On the other hand, leaving out the overlapping blocks, and then using the

independence of the samples and applying (2.1) again, we find that

) e,

P{O(n, I(n)) < a — &} < P{I(UD(rl(n), I(n)), - - -, UR(ri(n), I(n)))
<a-¢0<r<[n/l(n)] - 1}
< P11 = P{IC(UD(r(n), U(n)), - - -, UN(rl(n), (n))) > a — €})

- (1 - G({(klk(a)) log n} n -‘r))ﬁ,

where 7 = I,(a — &)/, (a) > 0. For j = 0,2 set c,(j) = (b, —
Nlog{(kI())"" log n}/log n. Now c,(0) -0, since c,(0) — Uyny, where Uy =
(ay log N)/((kI,(«))"'N) and we know that U, — 0 as N — 0. Therefore d, =
(¢,(0) — T)log n - — co0, which implies that {(kI,c(oz))‘l log n}>n~" = e% 0.
This means (with 1 — 7 = (J(a) — Ii(a — €))/ [ (a) = {) that

P{O(n, () <a —¢) <v, = exp{ O ({ (kL(a) ™ 1ogn}”"“nf)}.

Since c,(2) also converges to zero, we have that

{(kI(a)) ™" log n}b"_znf = exp{(c,(2) + {)log n} — oo,
and, consequently, —logv,/logn— . Hence ZP{O(n, l(n)) <a — e} < oo
again by the logarithm-criterion, and, again applying the Borel-Cantelli lemma, we



778 SANDOR CSORGO

get
(2.3) liminf, | ©O(n, I(n)) > a, as.
(2.2) and (2.3) together prove the theorem.

3. Examples. The general form of these examples is the following. Given

k(> 1) sequences X, X{, - - - ,j=1,---,k, of rv’s, for each i we construct
from X, -+, XPyuip j=1, -,k anew v T, ,, for which, in many
cases, we shall have

(3 1) max0<i<n—1(n, k) T;‘, n, k) a5

as n — oo, where I(n, k) = [(kI,(a))~" log n]. The function I,(«) is determined by
the distribution of the terms of the X-sequences and the mode of construction of 7.
In case of k = 1 the corresponding quantities will be denoted simply by {X,}, /(n)
and /(). All the references below refer to the corresponding large deviation result,
with the only exception in Examples (A) and (B).

EXAMPLE (A). Sums of vectors. Let X, X,, - - - be iid. d-dimensional ran-
dom vectors with common df F(x), x € ®¢, and moment-generating function
R(t) = [qq exp{<t, x)}dF(x), t € R?, {t, x> = 39_,t,x,, assumed to be finite in
some neighbourhood of the origin. Let {(x) = inf{exp{ —<¢, x)}R(¢) : t € R’} be
the d-variate Chernoff function, and for 4 c R¢ put {(4) = sup{{(x) : x € 4}.
Let h(x) be a d-variate continuous real function such that {(C,) > 0 if a > A(EX)),
where C, = {x : h(x) > a}. If

1
Tn = b Xy - + X)),

then we have (3.1) for T; ,,, with « > h(EX,) and I(a) = — log {(C,). This result is
a generalization of the original E-R law and is stated by Bartfai (1977) as a
consequence of his multidimensional generalization of Chernoff’s theorem. It is
worthwhile to remark here that the present /() also has a K-L information fg)rm,
since, by Lemma 2 of Hoeffding (1965), for every d-dimensional Borel set B we
have —log {(B) = I(AB), F) = inf(I(G, F) of (1.3) : G € Q(B)}, where Q(B) =
{G: [qixp, - -+, x)dG(x,, - - -, x,) € B}.

ExaMPLE (B). Sample quantiles. Given i.i.d. rv’s X, X,, - - - with continuous,
strictly increasing df F(x), let X ,(¢g) be the g-quantile of the subsequence
Xy Xigp le, if X (1) < - -+ <X, ,(n) are the corresponding order stat-

istics, then X; ,(¢) = X ,(gn), where y here stands for the smallest integer > y.
Denoting by G, the empirical df of n uniformly distributed rv’s on (0, 1), from the
elementary identity P{X, ,(q) >a} = P{F(X, (q9) > F(a)} = P{G,(1 — F(a))
— (1 — F(a)) > F(a) — q}, F(a) > gq, it follows via Chernoff’s theorem that
lim,_, n~"log P{X, ,(q) >a} = — I*(F(a) — g, 1 — F(a)), I*(-, -) being that
of (1.2), provided that 0 < g < F(a) < 1. Therefore (3.1) holds for T, =
X, im(q) with I(n) = [(I*(F(a) — g, 1 — F(@)))""log n]. This is the E-R law of
Book and Truax (1976) mentioned in the introduction.
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ExampLE (C). Trimmed mean. Let X, X,,- -+ be iid. rv’s with df F € D,
where D is the set of all one-dimensional df’s, and for each i, n let
X, ,(1),+ -+, X, ,(n) be the ordering of X, ,- - -, X;,,. For 0<a <3, the a-
trimmed mean of the latter sample is

T,,=(n— 2[an])_12',§;{2:',}+1X,.’”(k).
By Theorem 5.3 of Groeneboom et al. (1976) we have (3.1) for T, ,, with
—o <a< o and I(a) =inf{I(G, F) of (1.3): G € @3}, where Q2 = {G €
D : [,7%G ~(u)du > (1 — 2a)a}. In the case when F is continuous Groeneboom et
al. (1976) gave a more explicit formula for this I(a). Applying Theorems 5.1 and 5.2

of these authors, the present E-R law holds not only for the trimmed mean but for
more general linear combinations of order statistics (L-estimators).

ExampLE (D). ¢- and F-test statistics. Let XU, X, - - - be iid. rv’s with
common normal — N(m;, ¢?) distribution, j = 1, - - -, k. Set
_ 1 . _
Xin = 5Tl XeD, J=1L-k,

and let 7, , be (kn — k)_% times the statistic in Student’s k-sample ¢-test

1
T = (S(X2 - m)) / {£2hzina(xe - X},
and construct

B = (St (x0 - X0))/ (Sitn,(x® - X2))
of Fisher’s F-test. Also, with a fixed r > 2, form
B = (S5 (x® - X0P) / (B2 (x9 - X)),
Then (3.1) holds for this T; ,, 4, with 0 < a < co and I(a, k) = (1/(2k))log(1 +
a?) (Bahadur (1971, page 13)). We also formulate, but only in the present situation,

the equivalent statement (in all the other examples the analogous remark holds
throughout): for all ¢ > 0 we have, as n — oo,

2 H
(32) MaXog;<n—c log n1 T, [c log n] ﬁa's.(exp{;} B 1) '

For 1'5, I, 2y (3-1) is also valid with 1 < a < oo and I(a, 2) = (%)log((~1 + a)/ (Za%))
by Klotz (1967) or Killeen, Hettmansperger and Sievers (1972). For F, 4, , we have
(3.1) with 0 < a < 0 and I(a, k) = ((k — 1)/(2k))log(1 + a). Naturally, all the
above examples could have been formulated in nonstatistical language, i.e., writing
simply appropriate chi-square variables instead of the figuring sample variances.

ExampLE (E). Chi-square test statistics. Let X, X,, - - - be ii.d. discrete rv’s
with possible values aj,---,a, d >2, and P{X, =a}=p, where p =
(pys - - - ’pd)E®={v=(Dl" T, 0t vj>0’j= L---,d 27:10i= 1}. For
eachnandj=1,---,dlet ) = the number of indices m with i + 1 <m <i
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+ nand X,, = a,. For v, g € O set

(33) 8(v, q) = Z_1(v, - ¢)*/ g
With v, , = (%), - - -, 5) construct
(34) T,, =80, ,p)

of the chi-square test. Then (3.1) holds for T, iy With 0 < a < max{ pj“ —-1:1«
J <d} and I(a) = inf{I(v,p) : v € Q,}, where

(35) 1(v, p) = ZJ_ v log(v;/p))

is the discrete K-L information, and Q,={v:v€EAUvp) > a}, where A is the
closure of ® (see Bahadur (1971, page 31)).

Now let X¥, X¥, - - - be iid. rv’s with absolutely continuous df F(x). Assume
that F'(x) = f(x) exists for all x, and f(x) > 0 for a < x < b and zero otherwise
for —c0 < a < b < 0. Let an integer d and constants 0 = H<g<: - <g=
1 be given. For F(b) = g,j=1,-- - ,d — 1,b, = a, b, = b, denote by nv) now
the number of those indices m for which i + 1 < m < i + n and Xn € (b_y, b
Then, redefining 7, , by (3.4) in terms of the new Vi and p = (p, - - - ,py),
Ppi=¢—¢q_,,Jj=1---,d we have, of course, the same result. But, in the
setting of the present paragraph, there is another interesting chi-square test pro-
posed by Witting (see Sievers (1975), page 904)), when the cell boundaries are
determined by order statistics.

Let Y, ,(1) < - - - < Y, ,(n) be the order statistics of XY, X%, Foralln
let m=[ngl+1 and ZY) =Y, (n), j=1,---,d— 1, further zZ, =
(Z9,Z8), - - -, 24D, @), where Z0=0a,Z& =b.Forz=(z0, - -,z let
8(2) = (81(2), - - - , 8(2)) with g(2) = F(z) — F(z;_,), j= 1, - - , d, and p® =

(P, - - -, p{") with p®™ = =n_)/(n+1),j=1,---,dn=0n=n+
1. Define the statistic

Y, = 8(8(Z, ), p™).
Then (3.1) holds for T n) with a as before and I(a) = inf{I(p, v) of 3.4): v €
2,}. Note that I(p, v) # I(v, p), in general.

More generally, let 4 be a real function on R4~! such that for the set A, ={x€e
RI™1 2 h(x) > a) we have ¢ % 4, C closure (interior(4,)). Let
Tow=h(Z{y- -, 2E),
and p and g(z) as in the preceeding paragraph. Then, by Sievers (1975, page 904),
we have (3.1) for 7, ,,, with a in that interval where i(a) = inf{1(p, g(2)) of (3.5):
Z0=a,2;=0b,(z,, -+, 24_,) € A,} is strictly increasing.

EXAMPLE (F). Likelihood ratio statistic. Let % be a finite-dimensional
Euclidean space, % be the field of its Borel sets, and ¥ be a given set of
probability measures on % . It is assumed that & is a dominated set, i.e., there exist
a o-finite p, and a family {f, : P € 9} of B -measurable functions, 0 < Jp < o0,
such that, for each P € 9, dP/dp = f, on . Fix one single measure Pyin & and
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let P, = P — (P,y}. Let X}, X,, - - - beiid. rv’s with values in X and distributed
according to Py. For each P € @, i and n let L, (P) = II't7,, Jp(X;) and put

L (2P) =sup{L, (P): P € P}. For any Q € P, denote I(Q, Py =

Jox log(fy/. fp,) 4Q, which equals the I-divergence of (1.3) (g = Q, pr = Py).
Form the likelihood ratio statistic of Neyman and Pearson

T, » = (1/mlog(L,; ,(¥1)/ L;, ,(Py))-
Suppose Assumptions 10.3 and 10.4 (10.1 and 10.2 are vacuous here) of Bahadur
(1971, page 38) to hold. Then, by his Theorem 10.1, we have (3.1) again in every a
in the interior of the set K = {I(Q, Py) of (1.3) : Q € ?,} with I(a) = a, that is

max{ T} [o-11ogn : 0 <i <n —[a"'logn]} —,,a

In the special case when all the measures of % are concentrated on the set
{a,,- - -, a;} (ie., the setting of the first paragraph of Example (E)), P, with
weights p;, - - -, p,, then K = (0, max{log(1/p) : 1 < j < d}).

ExaMpPLE (G). Rank statistics. Given, for each i and n, independent rv’s
Xy, X, ,denoteby R, |, - - -, R, , their ranks, and define the linear rank
statistic

T, = (1/mZil a,(R/ (n + 1),j/ (n + 1)),

where a,(-, -) is a function on the unit square such that for each n, a, is constant
on rectangles {(i — 1)/n<u <i/n, (j—1)/n<v<j/n}, 1<i, j<n, and
there exists a function a(-, -) such that sup{|fyfo(a, — a)w|: w € W} -0, as
n— o, where W= {w(-, -):w >0, [iw(u,v)du =1= [iw(u, v) dv} is the set
of all bivariate densities on the unit square with uniform marginals (Property A of
Woodworth (1970)). Assume that for all i and n the vector of ranks is equally likely
to be any of the n! permutations of (1, - - - , n). Then, by Theorem 1 of Wood-
worth (1970), (3.1) holds for T; 4, with a; = [§foa < a < sup{fyfsaw : w € W}
= a, and I(a) = inf{fyfow log w : [ifsaw > a, w € W}, provided this I(a) is
strictly increasing. Under a further mild condition Woodworth gives an explicit
formula for I(«) in terms of integral equations.

The present general E-R law for linear rank statistics covers numerous concrete
examples which could also be deduced from earlier, parallel and later large
deviation statements. In the one-sample situation the statistic of Klotz (1965) (see
also in Bahadur (1971, page 14)) is a good 'example, which is a common generaliza-
tion of the sign- , Wilcoxon- , and normal scores-test statistics. The two-sample
case covers all standard equal sample size Chernoff-Savage statistics (see Theorem
2 of Woodworth (1970), which, in turn, was augmented by Remark 1 of Hijek
(1974)). In particular, the appropriate large deviation base for the E-R law for the
two-sample Wilcoxon-Mann-Whitney statistic can be found in Hoadley (1967),
Stone (1967), Sievers (1969) and Woodworth (1970), for the Fisher-Yates-Terry-
Hoeffding normal scores statistic in Stone (1968), Woodworth (1970) and (together
with absolute and quadratic scores statistics) in Hwang and Klotz (1975), for
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Mood’s median test statistic in Woodworth (1970) and (together with Mathisen’s
median test statistics) in Killeen, Hettmansperger and Sievers (1972). Several other
concrete examples of E-R laws for linear rank statistics can be immediately written
down utilizing other large deviation results in the cited papers.

There can also be mentioned E-R laws for nonlinear rank statistics. Such is the
law for Kendall’s tau statistic, based on its large deviation by Sievers (1969) and
Woodworth (1970), and the laws for Hodges’ and Blumen’s bivariate sign test
statistics, based on Killeen and Hettmansperger (1972), together with their own
Wilcoxon-type signed rank statistic and the nonrank competitor of the latter three
(for testing the location of a bivariate normal density), Hotelling’s 72

ExaMpLE (H). Functionals of the empirical process. Let X,, X,, - -+ be iid.
d-dimensional random vectors with common df F(x), x € ®“. Let F, ,(x) be the
empirical df of X, |, - - -, X, ,, and consider the Kolmogorov-Smirnov and Kuiper
statistics D,%, = sup{=(F, ,(x) — F(x)¥(F(x)) : x € !4}, D,, =
max{D,’,, D;",}, K, , = D;}, + D,

If () = 1 and T, 4, is any of D; ., D, imy Dy Ki, 1ny then for 0 <a < 1 we
have (3.1) with I(a) = inf{I*(a, F(x)) : x € R?}, where I*(a, ) is defined under
(1.2). The corresponding first three large deviation results are due to Sethuraman
(1964) (for d = 1 and continuous F see all four also in Bahadur (1971, page 15-17);
the fourth was first derived by Abrahamson (1967)). But combining the methods of
Sethuraman (1964, page 1311) and Bahadur (1971, page 17) we get the general
result for Kuiper’s statistic as well.

Now let d = 1 and assume F to be continuous. Let () be finite, positive and
continuous function in (0, 1) such that #)(f) >0 as¢—0 + and (1 — H)Yy(r) >0 as
t - 1 — . By Abrahamson (1967), if T, ,,, is any of D; . D, % D,y then (3.1)
holds true for 0 < a < 1 and I(a) = inf{I*(a/y(2), ) : 0 <t < 1}, where I*(-, -)
is again that of (1.2). Note that the most interesting weight-function (#) =
(t(1 — t))‘% is included here.

Consider also the Cramér-von Mises statistic

wt%n = fo—ooo(E,n(x) - F(x))2 dF(x)'
By Hoadley’s theorem we have (3.1) for w} iy With 0 < & <3andincaseof d = 1,
F continuous, the corresponding I(«) (of (1.5)) was computed by Mogul’skii (1977).
I(e) = [iv(Hlog v(¥) dt, where the density function o(f) is zero outside [0, 1] and
otherwise is the solution of the equation [%Q(2(1 + w))”'A1 + ¢ —u —
log u))‘% du = t, where the constants are such that A > 0, ¢ > 0, v(1) < 1 < v(0),
0(0) — log v(0) = v(1) — log v(1) = 1 + ¢, and [} log v(¢) dt = aX + c. The solu-
tion is unique. Mogul’skii also proved that I(a) = (7%/2)a + (7*/24)a® + 0(a?)
as @ — 0. The E-R law also holds of course, for other integral-type statistics like
those of Anderson-Darling and Watson, for instance. In these cases the explicit

form of the I-divergences are not known, only their local behaviour (a — 0) as
determined by Nikitin (1976).



ERDOS-RENYI LAWS 783

ExampLE (I). Functionals of two empirical df’s. Let X, X9, - -+, j=1,2,
be two independent sequences of i.i.d. d-dimensional random vectors with common
df F(x), x € R4. With the appropriate empirical df’s (as in the former example), let
M, (%) = |EQ() — FAM)|, MZ5(x) = = (FO(x) — FA(x)), and consider the
(equal size) two-sample Kolmogorov-Smirnov, Kuiper and Littell statistics

M2 =sup{M75(x) : x ER'}, M, , =
max( i, n’ i,_n)’ I/i, = M+ + Ml n (]‘ n = mm(M,*;,, Mi,—n)'
Then the original E-R law says that if 7} ,, ,, is any of M5, »(x), M; i) (x), then
at each fixed x € R¢ we have (3.1) with 0 < a < 1 and I(a, 2, x) = ( )I(a F(x)),
where (for 0 < ¢ < 1)

I(a, ) = a log K(a, 1) — log{1 + («(1 — )(K(a, t) — 1)*/K(a, 1))},

K(a, 1) = B()a/ (1 - a) + {(B(a/ (1 — @)} + (1 + @)/ (1 — )}?,
B()=(1/@(1~-1) -1,

computed by Chernoff’s theorem. Suppose that F is continuous. Extending Abra-
hamson (1967) (she treated the case d = 1, and her expression is rather more
complicated, since she dealt with unequal sample sizes) we find that the large
deviation index of M, ,, My ,, Mg, V,, and U, , is (again) the infimum of
I(a, £),0 < t < 1. I(a, 1) takes its minimum at ¢ = . The corresponding result even
more simply follows in case of d = 1 from the known exact distribution of My ,.
This was noted by Klotz (1967), and for U, , by Littell (1972). Hence (3.1) is true
for any of M;%,, 2 M, 4. 20 M; i, 29 Vi, ttn, 29 Ui sn, 2y With 0 < < 1 and I(a, 2) =
(A + olog(l + a) + (1 — a)log(l — a)} = I*(a/2, 1), where I*(-, -) is that
of (1.2). Note that in the alternative formulation ¢ can only be in (1 /log 4, ).

By Hoadley’s theorem (3.1) also holds for the appropriate equal size two-sample
Cramér-von Mises statistic, but the explicit form of the corresponding I(a, 2) (of
(1.5)) is not known (at least to the author).

ExampLE (J). A test on the circle. Let X, X,, - - - be independent uniformly
distributed rv’s on the circumference of a unit circle, and denote by N, , the
maximal number of points from X, ,, - - -, X;,, that can be covered by a sultably
chosen semicircle. Set N}, = (2N, ,/n) — 1. Here nZN({,, is Ajne’s statistic for
testing uniformity on the circle. By Rao (1972), for N¥,, we have (3.1) with
0 <a < 1and I(a) = I*(a/2, 3), i.e., the same as in the previous example.

ExampLE (K). Consistent point estimators. Let (X, B, P;) be an arbitrary
probability space for each # in an open interval ® of the real line. Assume that for
each # € ©, P, admits a density function f(x, #) with respect to a given o-finite
measure. Let s = (x, x,, - - + ) be a sequence of i.i.d. observations of %, which is
then distributed according to P, = P{* on (X*, ®>) when 0 obtains. Set u(x,, 8)
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= (3/90)log f(x,, ), and let o(t, 0, @) = E, exp{tu(x,, 8 + a)} and I, =
Ey(u(x,, 9))* be the corresponding moment generating function and Fisher infor-
mation. Introduce also §(6, @) = inf{q(t, 6, @) : ¢t > 0}, and $00, o) =
inf{g(z,0, —a): 1 < 0}. Let §,,, =6, () =6, (x;yp, - - ,x,,) be the usual
maximum likelihood estimator (MLE) of # based on x,,,, - - -, x,,,. Under the
regularity conditions of Fu (1973) or those of Bahadur (see Remark 2 in Fu (1973),
and Proposition 6 in Bahadur (1967)), if ¢ is a sufficiently large positive number
and T; , = |0Ai,,, — 6|, then

(36) Po{maxl<x<n—[c log n]Ti, [c log n] - a(c, 0)} = 1’

where a(c, #) is such that max{{,(0, a(c, 9)), £,(8, a(c, 8))} = exp{—1/c}. Ex-
actly the same result holds for 7; |, 1o, . = 167 logn] — 0s where 8%  is the “maxi-
mum probability estimator with respect to a prior density” (a concept that
generalizes MLE) of Fu (1973) under his regularity conditions. In both cases
Oﬁ(c’ 0) ~ (2/(c10))% as ¢ —» 0. If g(#) is a sufficiently smooth function on ® and

A

T,, = g,,) is the MLE of g, then (3.6) also holds for 7, tctognl = | Titcrogm —
g(9)|, provided that the conditions above are in force again. The limit now is
asymptotically (2(dg(8)/d8)/(cl,))? as ¢ — oo.

In the case of not necessarily maximum likelihood-like consistent estimators two
other results can be mentioned based on Fu (1975). Let Lin = b a(Xies 0 X0 )
be an estimator of § based on x;,,, - - -, x,,,, having a density function f,(z, 9).
Firstly, suppose that in each § € © r(s, §) = lim,_,_n"" log f.(2, @) is such that
0<I(a,d) =min(—r(t + a, §), —r(t — a, §)) is continuous and strictly increas-
ing in (0, @,), where 0 < a, can be oo. If the additional regularity conditions of
Theorem 2.1 of Fu (1975) are satisfied, then (3.6) is true for T tcrogm = |8 c1ogm) —
6| with ¢ > (I(a; — , 8))™", and the limit a(c, §) is such that I(a(c, 8), 0)=1/c.

Secondly, for the consistent estimator #, , suppose that the log-likelihood ratio
L,(1,0,8) = (1/n)log(£,(, 0")/£,(¢, 8)) is monotonic and, for every 6,8’ € ©
there exists a positive constant R(#’, #) such that L,(t, ,, 0, 0)—> R(8’, 9) a.s. mod
Py If I*(a, ) = infy.{R(0",8) : |§’ — 6| > a} is positive and strictly increasing in
a, then for all ¢ >0 we have (3.6) for the corresponding T, (c1ogn With
I*(a(c, 8), 8) = 1/c. Note that if I(P,., P,) is the K-L information number of (1.3),
then I*(a, 0) < infy {I(Py, Py) : |0’ — | > a).

4. Appendix on the original E-R law. Let Y, Y, - - - be a sequence of i.i.d.
nondegenerate real rv’s, and let Z, = 0,Z, = Y, + - - - +Y,, R(f) = E exp{tY,},
A_ =inf{t: R(t) < 0}, A, = sup{t: R(f) < o}, Y(¥) = (d/dr)log R(t). For x
€ (EY,, lim, , 4, (7)) let {, (x) = inf{exp{—tx}R(#) : 0 <t <A4.}, and for x €
(lim, 4 Y(?), EY)) let {_(x) = inf{exp{—tx}R(f) : A_ <t < 0} (the two pieces
of Chernoff’s function). Let us make the conventions: —log 0 = o0, 1/00 = 0. Set
Ig(x) = —log {g(x), ®= +, —, and let Ig () be the function inverse to Ig().
Finally, let m(n, c) be a sequence of positive integers such that m(n, c¢)/log n — c,
as n — co. The result cited in the first paragraph of the introduction is already a
slight generalization of the original statement of Erdés and Rényi, and is due to P.
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Bartfai. Using Chernoff’s theorem and a closer analysis of the Chernoff function
(the latter can be based on Borovkov (1964, page 255)), the following full form of
the E-R theorem results from essentially the same proof as in Section 2.

THEOREM. If 0 < A, then for all ¢ >0

MaXogi<n—m(n, c) ZH:;(" ni) c; = =504 (0);
where
a.(c) = sup{x 11, (x) < %} =17'(1/c), for ¢ >1/—logP{Y, =esssup Y},
= esssup Y, for ¢<1/—log P{Y, =esssup Y,}.
If A_ <O, then for all c > 0
MiNo ;¢ m(n, c)ﬁm—c;Zi —,5.a_(0),
where
a_(c) = inf{x (I (x) < %} =1-Y1/c), for ¢ >1/—logP{Y, = essinf Y,},
= essinf Y, for ¢ <1/—log P{Y, = essinf Y }.
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