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LINEAR ESTIMATION OF THE PROBABILITY OF DISCOVERING
A NEW SPECIES!

BY NORMAN STARR
University of Michigan

A population consisting of an unknown number of distinct species is
searched by selecting one member at a time. No a priori information is available
concerning the probability that an object selected from this population will
represent a particular species. Based on the information available after an
n-stage search it is desired to predict the conditional probability that the next
selection will represent a species not represented in the n-stage sample. Proper-
ties of a class of predictors obtained by extending the search an additional m
stages beyond the initial search are exhibited. These predictors have expectation
equal to the unconditional probability of discovering a new species at stage
n + 1, but may be strongly negatively correlated with the conditional probabil-

ity.

1. Imtroduction. We consider a nonempty population # composed of (possibly
countably many) distinct species, which we imagine to be labelled with the integers
1,2, -+, in some arbitrary fashion. Let p; denote the probability that an object
chosen from 7 is a representative of species i; we suppose that there is no a priori
information available concerning either the number of species in the population or
the vector of search probabilities p = (p,, p, - - - ) except that p € S, where

S={(pppr-""):0<p <1Vi and IZp =1}

We may search the population by selecting one member of # at a time, noting
the species to which it belongs, and returning it to the population. (If p, > 0 Vi and
« is infinite, then an equivalent search may proceed nonsequentially—without
replacement). If » independent selections are made then we say the search has size
n (or is n-stage), let X" denote the random number of representatives of species i
that will be found in the search, i = 1,2,- - -, and say that species i has been
discovered if X" assumes a positive value.

The quantity of interest in this note is the realization of the unobservable
random variable

Un = ELPII[X," = 0]’

the sum of the unknown probabilities associated with species which will not be
discovered in a search of size n. U, may be regarded as the random conditional
probability that we will discover a new species at the last stage of an n + 1 stage
search; that is, given the values X" = x,i = 1,2, - - - resulting from a search of
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PROBABILITY OF A NEW SPECIES 645

size n the realization

u, = Z,pI[x" = 0]
of U, is the conditional probability that if the search were extended one more stage
we would discover a new species.

In this note we discuss the problem of estimating u,. Bear in mind that the
available data comprise only sample frequencies for those species which have been
discovered and that the labelling is that of the searcher. To put this in perspective,
suppose that at the conclusion of a search of size n a total of d species have been
discovered, and that their frequencies are X = x/,i=1,---,d, where the
indices are imposed by the searcher in some arbitrary manner; for example, the
order in which the species were discovered. Then our problem may be formulated
in the following way. '

Imagine that there are a total of d + 1 species in the population with search
probabilities (p,, * - - , ps» 4,) and with corresponding sample frequencies
(x], - - -, x», 0). How may we use this data set to estimate ,? Two observations
are immediate. If we view the data from this perspective (that is, conditionally),
then knowledge of the number of species in the population, say k, is irrelevant to
estimation, unless d = k in which case we know certainly that », = 0. Moreover, it
is apparent that standard procedures, such as maximum likelihood (which estimates
u, to be zero for every n), are inadequate.

However, an indirect method has surfaced in the literature, apparently suggested
by A. M. Turing (see [2]) and discussed in a variety of detail and perspective by
Good [2, 3], Good and Toulmin [4], Harris [5], Knott [6], Robbins [7], and their
bibliographies. Consider the quantity

0, = E(U,) = S.p,EI[ X! =0] = Z,p,q/,

where we have set ¢, = 1 — p,, Vi. 8, denotes the unconditional probability that at
the last stage of an n + 1 stage search we will discover a new species. To see this
directly let A be the event that a species will be discovered at stage n + 1, and let
A, denote the event that species i will be discovered at stage n + 1; then the 4, are
mutually exclusive with geometric probability p,g" for each i, and 4 = U;4;, so
that

P(A) = 2,;P(4,) = 0,

Suppose now that we can develop an estimator ¥ of 8, for which E(V) = §,. Then,
since E(U,) = 6, there is some reason to hope that realizations of both ¥ and U,
will be close to 6, with high frequency, and hence close to one another, so that a
given realization of ¥ may represent a useful estimate of u,. Thus, common to the
papers cited above is the attempt to develop and study estimators of §,. Unfor-
tunately, the problem of judging the goodness of such estimators when they are
utilized to predict U, appears to have received only modest attention, and that
from a single perspective.
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Of special interest to us here are estimators of the type proposed by Herbert
Robbins [7]. Suppose that an initial search of size n is completed, at which time the
random variable U, assumes the unobservable value u,. Assume, however, that
with the objective of improving our chances of accurately predicting U,, we extend
the search one additional stage, and let

G(n + 1) = [ X! = k]

denote the number of species with exactly k representatives in the extended search
of total size n + 1. Robbins proposed as a predictor (he regards it as an “estima-
tor”) of U, the random variable

V. = g(n+ 1)
1~ ’
n+1
the proportion of species with exactly one representative in the extended search. V;
represents a good predictor of U, in the sense that

m E(V) = E(U) =6, and E(V,- U <53

for every p € S. (See [7]).

Indeed, we shall prove that ¥V, is the unique linear combination of g,(n + 1), g,(n
+1),- -+, q,.,(n + 1) with expectation 8,. However, V| does not follow U, in a
sense that might reasonably be demanded of a predictor; viz., that realizations u,
of U, larger than 6, be accompanied with high frequency by realizations v, of V;
larger than 6,, and vice versa. In particular, we shall prove that if the search
probabilities p; are equal and if the size of the search is of the same order as the
number of species, then ¥, and U, are strongly negatively correlated. We conclude
that although ¥V, will be close to U, in the average sense of (1), that this is largely a
result of the fact that the random variables have a common mean and modest
variances, rather than a consequence of their being positively related or associated
in any commonly understood sense of predictive inference. On the other hand, we
hasten to observe that we do not yet know how to do better (and perhaps cannot).

In the next section we shall consider a class of predictors of U, obtained by
extending an initial search of size n by an additional m stages, and call it the class
of Robbins-type predictors (Robbins studied the case m = 1). One of the referees
has envisioned the following kind of conversation that could result at the conclu-
sion of an n-stage search from the use of Robbins-type prediction. Paraphrased it
goes:

Searcher: “I am considering making one more search. If I do so, am I likely to
discover a new species?”

Statistician: “Make the search and then I will tell you.”
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The reference becomes less awkward if the problem is developed in a design
context; for example:

Searcher: “I am contemplating extending my initial search an additional large
number M of stages, and will so do if the expected number M - u, of individuals I
will select in the second search who do not represent species discovered in my
initial search is large. What do you recommend?”

Statistician: “Make one more search and then I will tell you.”

2. Results. In this section we shall suppose that an initial search of size n has
been extended an additional m stages, m = 1,2, - - - and let

qk(n + m) == 2,‘1[&""‘”‘ = k]

denote the number of species for which there will be exactly k representatives in
the search of total size n + m. Our immediate objective is to use the values

@+ m),k=12---,n+ m, to estimate the parametric function
0, = Z.p.q".
THEOREM 1. Let ay, @y, - * * , @, ,, be constants and define
W, = ag + ZitTa,q(n + m).
Then E(W,,) = 0, identically inp € S if and only if ay =@, .1 = """ = 0y,
=0 and
)
ak=—rlf+;;ln—— for k=1,--+,m.
("%")

That is, the estimator defined by

(7=1)

V,= zm_l—mqk(n + m)
("%")
is the unique linear form in {q(n + m), k = 1,- - - , n + m} with expectation 0,.
PrOOF. Observe that the random variables {g(n + m),k=1,---,n+ m}
are constrained by the condition
2) Sitmkg (n + m)=n+ m.

By direct computation
EW, = ay + E’L’;TakE,.E{I[X,-"*’” = k]}

m

+ m _
ag + ,’,‘,;,;,ak(n k )Eipik‘IiHm g

n+m n+m _ ik =1\ ptm—rk+j
= qp + k‘;,ak( k )zipizj;(} _.1)1( i )‘Ii+ k+j,
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Interchanging the order of summation and making use of symmetry in the
arguments of the binomial coefficients yield

(3)
+ j — .
EW, = ay+ ZpSiirEite~(=1) ak+1(’;c +’j”)(k+i l)qu'"_’.
To see that EV,, = 8, setay = o,y =+ = a,,,, = 0and
iy
_\k—1 _ .
“k-prr?n—)’ k=l-ee,m
k
in (3). Then
m—j -1 k+j—=1\ nem-
EVm = zl-pl j-lz =O(_1) (k +J — 1)( ;c )ql e
= n m—lsm—j( _ 1\k m—1 k+j—1\ pim—j
2.pq" + Eipizj=l ZE(-1) (k +j— 1)( k q; ’

=2Zpq" + Eipiz;‘n;]l( rjn: 11 )qi"+m_j2'1?;6 - l)k( m;]) =9,

where the last equality follows from the Binomial theorem.
To prove uniqueness, set

ntm- n+m\(k+j—1
aj: + 1(—1) ak"'](k"‘j)( J )

k
foreachj=1,---,n+ m — 1. Then from (3) we have for everyp € S
(4) E(W ) = aO ®ytm Ejzin_lajEipiqin*‘m_j'

Thus, setting b, = g; for j * m and b,, = (a,, — 1), it is easily seen that E(W,,) = 6,
identically in p € S only if

(%) o0t Cpip + I BEpig" " =0
identically in p € S. Clearly, (5) can hold only if « = — ay Where a4 is

n+m

arbitrary. Let b denote the column vector whose jth component is b;, and for given
p € S let d(p) denote the column vector with jth component 3 p;g"*™~/,j =

l,--+,n+ m— 1. Thus from (5) we have that E(W,,) = 6, identically in p € S
only if

6) b'd(p) =0 forevery p€E S.

In the sequel we shall show that

(7 span{d(p), p € S} has dimension n + m — 1

so that (6) holds only if b is the null vector; that is, only if
a=0,j=1---,n+mj#*m and a, = 1.
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To summarize, EW,, = 8, identically in p € S only if

+ i —
ntm=j(—1) ak+j(r;c+7)(k +i 1)=0,j= Le--,n+m—1,7%m,

n+m —
0( 1) ak+m(k+m)(k+’l:l 1)_1 YGim = Qo

and a is arbitrary. Thus, if EW,, = 6,, any choice of a, uniquely determines the
other coefficients a;, a,, * * * , a,,,. But for an arbitrary choice of a constant a it
follows from (2) that

v, = (1 — a)v, + av,
)
| k—1 +a —=
")

25'-1,#14,(n+m)]}

=ay+ E’I'c:’?aqu(n + m),

=(1-a)37

where ay = a(n + m)=S7_ ,(m — 1 /k n+ m) is arbitrary (since a is) and

ap, - - - ,a,,, are uniquely clicetermmed by the choice of ay Thus, W,, = V,, if
EwW, =4,
are umquely determined by the choice of ao Thus, W,, =V, if EW,, = §,.

It remains to verify (7). For eachj =1,- - -, n + m — 1, consider the column
vector ¢; whose kth component, k = 1,- - - ,n + m — 1, is the kth component of
d(p), where p is the k + 1 component vector p = (1/(k + 1), 1/(k +
1),- -+, 1/(k + 1)), so that p € S. Form the (n + m — 1) X (n + m — 1) matrix

C with jth column ¢;, so that

(%)n+m—1 (%)n+m—2 ..... (%
eyt ()

1. n+m—1 1. n+m-—2 . 1
k(lv_n+m) (1—n+m) (1_n+m)‘

Then the determinant of C is easily seen to be proportional to the Vandermonde
determinant which is nonzero, establishing (7), and completing the proof.

REMARKS.
1. It follows from (5) that for m < 0, there is no choice of ay, - - - , &, ,,, for
which E(W,,) = 0, identically in p € S; that is, no linear form in {g,(n +
m),k=1,---,n+ m} obtained from a search of size less than n + 1 has

expectation 6§, for every p € S. This contradicts the assertion (2.09) of Knott
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[6] that
. (=D'g(n)

o)

is an unbiased estimate of §,. In particular, the estimator

n
® ‘ v, =280
of Good [2] has bias E(V, — 8,) = Ei(%)p,.q,.”.
To verify the remark, take p to be the k' component vector (1/k, - - -, 1/k);
then from (5) for m <0 E(W,,) = 6, identically in p € S only if in particular
1 n+m: j 1\
9) 0+ o, + 2;:;"-'@.(1 - ;) - (1 - %)
for every k = 2, 3,- - - Clearly there is no set of n + m + 1 coefficients for

which (9) holds identically in k, proving the remark.
2. We suspect (but have not yet proved) that ¥, is the uniformly minimum
variance unbiased estimator of 6, based on a search of size n + m.

Next, we shall turn our attention specifically to ¥, the predictor of U, based on
a search of total size n + 1. The difficulty with ¥, referred to in the introduction is
exhibited as

THEOREM 2. Suppose that there are k species, that p, = - - - = p,, and that n and
k become large in such a way that
(10) %—)0{, 0<a< .

Then, under the limiting operation defined by (10)

a2

[(ae* —a® — a)(e* — a® + a — 1)]'/2

(11) p(Vy, U) - f(a) = —

where p denotes correlation.
Proor. Foranyp € S
EU,=EV,=3pgq'
EU?=3SpXq" + zzi;Ejpiqj(l - D — Pj)n

EVY = [Spia” + n22,pp/(1 - b, -2)""]

1 » "
EUV, = ——[Sp4’ + 22,001 — P, — p)

+ nzzi;&jpiqui(l - P~ Pj)n_l]'
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Setting p, = 1/k,i =1, - - -, k and (carefully) taking the limit defined by (10) as n
and k tend to infinity yield
(n + 1DCov(¥V), U,) - fi(a) = —a%e ™
(n + D)Var(U,) > f(a) = ae™® — a%e ™2 — qe™2*
(n+ D)Var(V) > f(a) = e *— a% > — e™2 + ae™ 2.
The result is immediate. |

REMARKS.
1. The limit f,(a) of the correlation functions is increasing in a, tends to —1 as
a —0and to 0 as @ — co. The values of f, are given in Table 1 for various a.

TABLE 1
Values of f,(a), defined by (11),
as a function of a.

a 0.1 02 03 04 0.5
So(@) -09954 . —0.9900 —0.9835 —-0.9759 —0.9671
a 0.6 0.7 0.8 09 1.0
(@) —-0.9569 —0.9452 -0.9319 —-09169 —0.9001
a 1.5 2.0 3.0 5.0 10.0
So(a@) —0.7896 —0.6444 —0.3582 —0.0830 —0.0014

2. The limit f, of the variance of U, is maximized at the a value which solves
e*(1 — a) =1 — 242 and the limit f, of the variance of ¥, at the a value
which solves 3 — 4a + 2a® = e®. Thus, the maximum values of f, and f,
achieved at about a = 1.97 and 0.46 respectively, are approximately 0.16 and
0.33; f, and f, tend to zero as a — zero or infinity.

3. From (12) it follows that

(n+ 1DE(v, — u))’ > e (1 + a) — e,

agreeing with [7]. The limiting quantity has a maximum value of about 0.61.

4. We do not know whether Robbins-type predictors of U, may be positively
correlated with U, for some choice of m > 2. However, for m =
2, lim p (V,, U,) = lim p (V;, U,) and lim Var (V) = lim Var (V).

5. Concerning the predictor V,, of U, defined by (8), we have also that
lim p (Vy, U,) = lim p (V,U,) and lim Var (¥,) = lim Var (V). (See [1] for
details.) :

6. After completing the paper, we discovered that our expression (12) could have
been deduced from expression (14) of reference [8]. Our method is more
direct.
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