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DESIGN OF EXPERIMENTS FOR SELECTION FROM ORDERED
FAMILIES OF DISTRIBUTIONS'
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Given G € § a space of cumulative distribution functions and a weak
(reflexive and transitive) order relation < on §, the subclass of & given by
{F € §|F < G} is called an ordered family of distributions. Suppose
T, . . . , M Tepresent k populations with distributions only known to belong to
some specified ordered family. The general problem is to design an experiment
to select #;’s having large (small) a-quantities. A preferred population is defined
to be any population with a-quantile “near” the tth largest a-quantile and a
correct selection occurs if the subset of populations selected contains at least a
prespecified number, r, of preferred populations. The design problem is solved
for both fixed and random subset size selection procedures under star and tail
ordering. Tables of the sample sizes required to guarantee prespecified mini-
mum probabilities of correct selection are given for the case of selecting from
continuous IFRA populations. Comparisons are made with the optimal proce-
dure for selecting from exponential populations. Properties of the proposed
rules are discussed.

1. Imtroduction. Given a space & of cumulative distribution functions (cdf’s)
and a weak (reflexive and transitive) order relation, <, on &, a subclass of & is
called an ordered family of distributions (with respect to G € §) if it has the form
{F € §|F < G}. Two familiar examples of weak orderings are convex ordering
and star ordering which yield the increasing failure rate (IFR) and increasing
failure rate on the average (IFRA) families when G(x) =1 — e™*.

Weak orderings and the ordered family model assumption have proved to be of
considerable importance in the literature: (a) for providing characterizations of
skewness and kurtosis (Van Zwet (1964)) (b) in power studies of certain rank tests
(Doksum (1969)), (c) as models for the lifetimes of coherent systems (Birnbaum,
Esuary and Marshall (1966)) and (d) as models for the lifetimes of systems subject
to random shocks (Esuary, Marshall and Proschan (1973) and Barlow and Pro-
schan (1975)).

This paper studies the problem of designing a single stage experiment for the
selection of the distribution(s) with the largest a-quantile(s) where a € (0, 1) is
given and when the model assumptions are specified by an ordered family of
distributions. More precisely, suppose observations are to be taken from k popula-
tions labeled II,, - - - , II,. For each i in {1, - - - , k} (a) let F; denote the cdf of
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population IT;, (b) {X; : 1 </ < n} be a random sample from II,, () x,(F,) be the
a-quantile of F, (d) Fy; be the cdf with the ith smallest a-quantile, and (e) II,
denote the (unknown) population with cdf Fj;. Then x,(F;) < - - - < x(Fy) are
the ordered a-quantiles. Assume samples from different IT;’s are independent, there
is no prior knowledge of the pairing of II, and IL, the F;’s come from a specified
ordered family of distributions, and the experimenter is interested in selection of
41y * + » Oy, the ¢ populations with largest a-quantiles. We adopt the
preferred population formulation in which II; is called a preferred population if
x,(F) is “close” (in a sense made precise in Section 3) to x,(F_, ;) and consider

two classes of selection problems:
1. selection of a subset of prespecified size s(r < t,r <s <k — t + r) so as to

include at least r preferred populations; and

2. selection of a random size subset containing at most s(1 < s < k) populations

so as to include at least one (r = 1) preferred population.

The problem is to design the experiment so that (1) or (2) is guaranteed with at
least prespecified probability P* no matter what the true vector of cdf’s. This
approach combines aspects of Gupta’s subset selection formulation (1956, 1965)
and Bechhofer’s indifference zone formulation (1954) and will be shown to be a
strengthening of the latter.

Previous work on selection procedures for nonparametric problems can be
categorized according to (1) the parameter of interest for selection, (2) the formula-
tion of the design requirement and (3) the model assumptions. One group of papers
considers problems of selection for location parameters or more complicated linear
models usually under the assumption that the error distributions are continuous
and symmetric. They include: Lehmann (1963), Bartlett and Govindarajulu (1968),
Randles (1970), Bhapkar and Gore (1971), Puri and Sen (1972), Ghosh (1973) and
Gupta and Huang (1974). Related papers include Patel (1976) who considers the
problem of selecting the distribution with the largest scale parameter when the
common form of the distribution is assumed to be IFR and Gupta and McDonald
(1969) who consider selection in terms of an arbitrary parameter under which the
distributions form a stochastically increasing family of distributions. A second
group of papers are those which consider selection in terms of a-quantiles. Rizvi
and Sobel (1967), Rizvi, Sobel and Woodworth (1968) and Barlow and Gupta
(1969) study subset selection formulations of the problem while Sobel (1967) and
Desu and Sobel (1971) use an indifference zone formulation. For a complete review
of the literature see Lee and Dudewicz (1974).

In contrast, the present work does not assume the F.’s are stochastically ordered
by a location, scale or other parameter as do the papers in the first group nor does
it assume they are arbitrary continuous cdf’s as do many of the papers in the
second group. Rather the ordered family assumption falls between these two
extremes.

Section 2 studies weak orderings and the corresponding ordered families. Sec-
tions 3 and 4 formulate a fixed size subset selection problem and a random size
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subset selection problem respectively and give their solution for two classes of
distributions. Finally Section 5 describes some properties of the two classes of
procedures considered in Sections 3 and 4.

2. Weak orderings and ordered families of distributions. Given a finite or
infinite interval, /, of the real line, R, let %, denote the set of distributions F which
satisfy:

(1) F is absolutely continuous with respect to Lebesgue measure;

(2) S(F)={x € R|F(x + €) — F(x — ¢) > 0Ve > 0}, the support of F, is a

convex set;

3 S(F)clLI
In particular when 7 = R and [0, o), ¥, will be denoted as ¥ and %, respectively.
For F € 9, define F~'(y) on [0, 1] as F~!(y) = inf{x € R|F(x) > y} where the
infimum of the empty set is taken to be + co.

REMARK 2.1. For F, G € %, the following hold.
(1) S(F)is a closed interval of R; :

(ii) I(F) = {x € R|0 < F(x) < 1} is an open interval of R;

(iii) F is strictly increasing on the open interval I(F);

(iv) F~!(+) is continuous and strictly increasing on (0, 1);

(V) ¢(x) = G~ (F(x)) is the unique strictly increasing function on I(F) such
that if X has cdf F then ¢(X) has cdf G.

A weak ordering, <, on %, is a relation on %, which is reflexive and transitive.
Every weak ordering < on %, can be “extended” to a partial order by first defining
an equivalence relation ~ on %, by F~ G < F < G and G < F. The resulting set
of equivalence classes { E(F)|F € %,} is partially ordered by the relation < which
is well defined by E(F)< E(G)e F< G. We now define a. class of weak
orderings which is a modification of a class proposed by Panchapakesan (1969).

Let IC be a set of functions & : 12 — I satisfying

h(x;, x,) < max{x,, x,}V(x,, x,) € I*
DerFINITION 2.1. For F, G € 9,, F is said to be J-ordered w.r.t. G (written

F <4G) e G~ 'F(h(x;, x))) < k(G 'F(x;), G™'F(x))Vh € I and x,;, x, such
that x,, x, and A(x,, x,) € I(F).

LemMA 2.1. IC ordering is a weak ordering on %,.

PrOOF. Reflexivity is straightforward. To show transitivity suppose F <4G,
G <gJ and h € I and x,, x, satisfy x,, x, and h(x,, x,) € I(F). Then G ~'F(x,),
G ~'F(x,) and G ~'F(h(x,, x)) € I(G) and hence

2.1 G ~'Fh(x,, x;) < h(G~'F(x,), G~'F(x,))
< max{ G ~'F(x,), G ~'F(x,)}
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implies (G ~'F(x,), G ~'F(x,)) € I(G) by convexity. So
J 7F(h(x,, x,)) = J7'GG ~'F(h(x,, x,))
<J7'G(h(G~'F(x)), G"'F(x,))) by (2.1)
< h(J 7'F(x,),J "'F(x,))  since G <o

and the proof is completed.
The motivation for introducing JC-ordering is that it provides a convenient
framework for embedding several well-known orderings.

ExampLE 2.1. Let I = [0, o0) and I, consist of the single function

h(xy, x5) = x; — x, s X1 2> Xy3

=0 ,xl<x2.

Now A(x,, x,) < max{x,, x,} for any x,, x, > 0 and so J(, is a weak ordering on
%,- Furthermore

F<4Ge G~ 'F(t — x) < G7'F(t) — G™'F(x) whenever x,t,t— x € I(F);

< G7'F  issuperadditive on I(F).
In particular F <4 G(x)=1—-e & F(t — x)F(x) > F(t) whenever x, t and
t — x € I(F) where F(y) = 1 — F(y) & F is an absolutely continuous NBU (new
better than used) distribution with convex support.

Before giving further examples recall the following definitions. For F, G € %y(1)
F is convex ordered w.r.t. G(F <_,G) means G ~'F(x) is convex on I(F) and (2) F is
star ordered w.r.t. G(F <.G) means G ~'F(x) is starshaped on I(F), i.e., G ~'F(\x)
< AG~'F(x) whenever x, Ax € I(F) and A €[0, 1]. Convex ordering was in-
troduced as an alternative to the standarized third moment inequality definition of
skewness. Namely F <.G is interpreted to mean “G is more skewed to the right
than F” (see Van Zwet (1964) page 9). Since the star-shaped property can be
thought of as a weakening of convexity (see Bruckner and Ostrow (1962)), F <.G
can also be interpreted as an ordering according to skewness. For F, G € ¥, F is
said to be tail ordered w.r.t. G(F <,G) iff G ~'F(x) — x is nondecreasing on I(F).
When F <,G then G is interpreted as having heavier tails than F (see Doksum
(1969)).

ExaMpLE 2.2. Take I = [0, o) and 3, = {h,|0 < A < 1} where hy(x,, x;) =
Ax; + (1 = AM)x, < max{x,, x,}VA € [0, 1]; hence J(, ordering is a weak ordering.
It is straightforward to check that F <3G G ~!F(-) is convex on I(F). So I(,
yields convex ordering.

ExampLE 2.3. Again let I = [0, c0) and define 3(; = {4,|0 < A < 1} where
h\(x1, X,) = Ax; < max{x,, x,}VO < A < 1 and so J(; defines a weak ordering. It
is straightforward to verify that J(; yields star ordering.
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ExampLE 2.4. Choose I = R and ¥, = {h|0 < 8 < oo} where Ay(x,, x,) =
x; — & < max{x,, x,}Vé € [0, o0); ¥}, ordering is a weak ordering which reduces
to tail ordering.

The remainder of this section is devoted to deriving some properties of star and
tail ordering which will be used in the later sections.

REMARK 2.2. It is straightforward to show that the set of distributions equiv-
alent to F € %; under star ordering (F € ¥ under tail ordering) is E.(F) =
{F(8x)|0 <8 < 0} (E(F)={F(x + B)|B € R}), the set of all scale changes
(location shifts) of F.

LEMMA 22. (a) For F, G € %, F<,G< G 'F(x)/x is nondecreasing on
R*(F) = {x > 0|F(x) < 1}.

(b) For F, G € ¥, F<,G& G~ 'F(x) — x is nondecreasing on R(F) = {x €
R|F(x) < 1).

ProoF. Write R *(F) as the disjoint union {x > 0|F(x) = 0} U I(F) and Vx
€ {x > 0|F(x) =0}, G 'F(x)/x =G~ '(0)/x = — o and the result follows
since G ~'F(x)/x is nondecreasing on I(F). The reverse implication is obvious and
the proof for <, is similar.

An important class of distributions preserving weak orderings are the distribu-
tions of the order statistics. If X,,(1 < ¢ < n) is the gth order statistic based on
Xy, - -+, X, 1dd. Fthen Pr[X, < x] = B(F(x); g, n) where

B(p; g, n) = = q):z!(q —y [Bx 9711 — x)" " %dx.

THEOREM 2.1. If F, G € %, and F <4G then B(F; g, n) <¢B(G; g, n) holds
Vli<g<n.

The proof is immediate from the definition of JC ordering since G ~'F(x) =
G ~'B~'BF(x) where B(-) and B ~!(-) denote B(x; q, n) and its inverse respec-
tively.

The final part of this section will describe stochastic bounds for several classes of
distributions. For G in %, with I(G) = (0, o) and 0 < § < oo define

22) F.(G) = {F € G|F <.G)
(23) F.(G, §) = (F € %(G)|x(F) = ).

REMARK 2.3. %.(G) = %.(G))VA > 0 where G,(x) = G(Ax) since VA > 0, G,
€ E(G)and F € 9.(G)& F<,Go F <,G, o F € 9.(G)).

ExAMPLE 2.5. Let G(x) =1— e * or 0 as x > 0 or x < 0 respectively. Then
G'(y)=-In(l —y)for0< y < 1and F € %.(G) « F is continuous on [0, o)
and —In(l1 — F(x))/x is nondecreasing on R*(F)< F is a continuous IFRA
distribution. In particular %.(G) = %.(G,)VA > 0 where Gy(x) =1 — e ™™, x > 0.

-
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Associate with %.(G) the families of distribution

(2.4) F. (x|§) = G(xG'(a)/%), x<§
=1, x>¢£
(2.5) F. (x|§) =0, x <é

= G(xG W (a)/f), x>¢
where 0 < £ < 0.
REMARK 2.4. G ~'F. (-|¢) and G~'F. (-|§) are starshaped on R™(F. (-|§)

and R*Y(F. /(-|§) respectively and x,(F. ,(-|§)) = x,(F. (-|§)) = §&. However,
neither F. (-|£) nor F. ,(-|¢) is in %, and consequently neither is in %.(G).

THEOREM 2.2. For all 0 < ¢ < o and F € %.(G, §),
F‘,s(' |€) <stF <stF‘, 1(' Ig)

PrROOF. If R*(F) = (0, M) then x < 0= F(x) = G(x) = F. (x|§) = F. (x[§

=0and VO<x<é{<y <M
G~'F(x)/x <G 'F(§)/¢ = G (a)/E <G 'F(y)/y
& F(x) < G(xG (@) /¢) < G(yG ~'(a)/§) < F(»).

If M = + co the proof is complete, while if M < + co then Vy > M, F(y)=1 >
G(¥G ~!(a)/$) and the result follows. See Figure 2.1.

Since both {F. ((-|§)|0 < £ < o0} and {F. ,(-|§)|0 < & < oo} are (stochastically

increasing) scale parameter families the result can be slightly strengthened as
follows.

COROLLARY 2.1. For0< ¢ < £ ¢
(a) F e ‘?f.(G, g) =>F <stF‘, l('lg)’ and
(b) F (S ga(G, £”) = F‘,s(.lg) <SIF'

REMARK 2.5. It can be shown that the bounds F. ((-|{) and F. ,(-|£) are tight in
the sense that they are the stochastically largest and smallest distributions respec-
tively satisfying Corollary 2.1.

The analagous results for tail ordered families are as follows. For G € % with
I(G) = R and £ € R define

%(G) = {F € 5|F<,G}
F(G, §) = {F € F(G)|x(F) = £}
F (x§) = G(x+ G (a) - ¢), x<¢
=1, x> ¢
F, (x[§) =0, x < ¢
=Gx+ G (a)-§), x>¢&
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EXAMPLE 2.6. When G(x) = 1/(1 + e™*), x € R then G~'(y) = — In((1 — y)
/y)on (0, 1)=

Fr+ x)/Ft+ %) ,vyy 50 and t € I(F)

F(1)/F(1) such that (¢ + x) € I(F)

%(G)= | F €9

where F(y) = 1 — F(y) is the reliability function of F. In other words %,(G) is the
set of all continuous distributions such that the ratio of the odds of surviving
beyond ¢ + x to the odds of surviving beyond ¢ is uniformly bounded above (in ?)
by e™*.

REMARK 2.6. G 'F, (x|§) — x and G~'F, (x]§) — x are nondecreasing on
{x € R|F, (x| < 1} and {x € R|F, (x|§) < 1} respectively and x,(F, ,(-[§) =
x,(F, /(-16) = £ but neither is in ¥ and hence not %,(G). Both {F, (-|§)|¢ € R}
and {F, /(-)9)|¢ € R} are (stochastically increasing) locations parameter families.

THEOREM 2.3. For all { € R and F € 5,(G, §), F, (-|§) <,F <,F, 18-
PrROOF. Similar to that of Theorem 2.3.

COROLLARY 2.2. For & < £ ¢
(@) F € 5,(G, §) = F <,F, (-1§);
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(b) F € (G, £)=>F ([ <uF.
Finally it should be noted that F, (-|£) and F, ,(-|{) are the stochastically largest
and smallest distributions respectively satisfying Corollary 2.2.

3. Fixed size subset selection procedures.

3.1. Preferred population formulation. When faced with the problem of select-
ing at least r of the ¢ best of k populations (1 < r < ¢ < k) an experimenter may
well be indifferent between the selection of one of the ¢ best populations and one of
the (k — f) worst populations when they are sufficiently close together. This is the
rationale of the indifference zone formulation (IZF) of selection problems in which
the procedure is only required to guarantee correct selection (CS) with prespecified
probability, P*, when the ¢th and (¢ + 1)st best populations are sufficiently “far”
apart (see Mahamunulu (1967)).

Alternatively, if the sth best and one of the (k — t) worst populations are
sufficiently “close” so that an experimenter would be satisfied with the selection of
either one, then one can define a preferred population as any population satisfying
this criterion and a correct selection as the selection of at least r preferred
populations. The preferred population formulation (PPF) requires the procedure
make a correct selection with at least probability P* no matter what the true vector
F of distributions.

Suppose x,(F;) € = where Z is a known interval of the real line. Then, following
Santner (1975), consider measures of closeness to 7 _, ., defined in terms of a
function p : = — R satisfying:

3.1 p(+) is continuous;

(32) p®) > y=inf(§ €T} VEE =

(33) p(+) is strictly increasingon =’ = {£ € E|p(§) > v};
3.4) p§) <¢EveEe .

DeriNiTION 3.1. 7, is a preferred population (relative to p(-)) iff x (F) >
P(x,(Fy_,41p)- Clearly at least 7 _,, ), * * + , Ty, are preferred populations and
the true population configuration will contain between ¢ and k preferred #,’s.

REMARK 3.1. The PPF yields a strengthening of the probability guarantee over
the IZF. Consider the problem of selecting the #(r = ¢) best =’s when the true
F € @ = G/} where & = {F € Q|x,(F_, > P(x(Fe—,+1))} and Q= Q\Q are
the mdlfference zone and preference zone respectively. The corresponding problem
based on the PPF is to select at least ¢ preferred populations (relative to p(-)). For
F € & the 1 best populations are the only preferred «,’s and both the IZF and PPF
guarantee their selection with probability P*. For F € &' the PPF still guarantees
the selection of at least ¢ preferred «;’s while the IZF guarantees nothing.

Two specific choices for p(-) are now derived. Recall that for F € %.(G) any
scale change of F(x), say F(x), is equivalent to F(x). Hence we require that 7; be
preferred relative to 7 _,, 1, independent of the selected measurement units. More
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precisely this means ; be close to 7y _,, ;) when F; € %.(G, §/8) and Fy, .} €
%.(G, £/8) independent of § > 0, i.e., p(-) must satisfy V§’, £ € (0, )
(3.5) §>p§)=£/6 >p¢/6)vs > 0.
It can be shown that the unique p(-) satisfying (3.1) — (3.5) is p(§) = c*§ where
0 <c* < 1. In the tail ordered case a similar argument based on the location
invariant classes E,(G) leads to the choice p(§) = § — d* where 0 < d* < oo.
Hence #; will be called preferred in the star (tail) ordered case iff x,(F;) >
C*xa(F[k—Hl]) (xa(ﬂk—t+l]) - d*)-

In the remainder of the paper G is a fixed distribution in %y(%) with I(G) =
(0, ) (R) in discussions of the star (tail) ordered model. Let

(3.6) Q. = {F =(F, -, F)|F € %(G)Vi}
and ‘
(3.7) Q= {F =(F,- -, F)F € GJT,(G)VI}

Given t(1 <t <k), r(1 <r <), s(r <s <k —t+r)and a(0 <a < 1) the goal
is to select a subset of size s containing at least r preferred populations (a correct
section). Note that for k — ¢ + r < s < k a correct selection must automatically
occur. Let N, = min{n > 1|1 < (n + 1)a < n} and for each n > N, define the
procedure.
R,(s, n): take independent random samples of size » from each population and
select m; & T; > Tj;_ 4y Where Ty < - - - < Ty, are the ordered
sample a-quantiles T}, - - -, T.

Design requirement: given P* € (Zri® ‘)(jt.)(]; :jt)/ (’;), 1) and 0 <c*< 1
(0 < d* < o) determine the smallest » > N, so that
(3.8) Pg[CS|R (s, n)] > P*VF € Q.(2,)
where the event [CS|R (s, n)] denotes a correct selection using R,(s, n).

3.2. Selection from star ordered families. For fixed a € (0, 1) it follows,

without loss of generality, from Remark 2.3, that G can be chosen so that
G ~'(a) = 1. Define the following subsets of £.. For 0 < § < co and 7 <i <k let

(3.9) Q.(i) = {F € Qu|x,(Fie—i) < *x(Fix—r+1)
< xa(F[k—iﬂ])}, t<i<k
= {F E Q.lc*xa(F[k_,.,.”) < xa(ﬁll)}, i = k,
(3.10) 9¢’£ = {F E Q:Ixa(ﬂk_t+|]) = g},
(3.11) ©.3i, &) = 2.0) N Q. .

It follows that Q. = U, o ; = U Ut (i, §) and, for example, 2.(7, §) is the
set of configurations for which there are exactly i preferred populations and the sth
largest a-quantile is &
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It is easy to see that for F € Q.(i) where r + k — s < i < k that Pg[CS|R,(s, n)]
= 1. Hence infy Pg[CS|R (s, n)] = min, < 4nfg , Pe[CS|R (s, n)] where § = {i|t <
<r+k—s}.ForF€EQandi €9 define

T;, = sample a-quantile from 7;;
W, = rth largest of { T(x—;4+1y,* - -, Txy}; and
A‘- = {pVI > atleast(r +k—s5— l)Of T(l)’ vy, T(k—i)}’

REMARK 3.2. It can be shown that the 4;’s form a nondecreasing sequence of
events and that x, (T), the characteristic function of 4,, is nonincreasing in any of
Tay - - 5 Tk—;) and .is nondecreasing in any of T,y - -+, Ty This latter
property and an application of Theorem 2.1 implies that Pg[4,] = Eglx,(T)] is
r}onincreasing in any of F,- -, Fy_; and is nondecreasing in any of
Fi_iv1p* * + » Fiy under stochastic ordering <, (see Mahumunulu (1967) or
Alam and Rizi (1966)).

LemMA 3.1.  infg , Pl[CS|R (s, n)] = infg; ,Pel4,] for i€ 9.

ProOF. Pick F € Q.(i, §) then Pg[CS|R(s, n)] = PglA4;] = Pe[W,/£ > at least
(r+k—s—iof Ty/& - -, Ty_y/€l Now T' = T/&x has the vector of cdf’s
F(x) = (F\({x), - - - , Fi(¢x)) which is in Q.(i, 1) by the equivalence of F; under
scale changes and the definition of preferred ;. So Pg[A4,] = Pp[A,] and the proof
is complete.

REMARK 3.3. An equivalent way of viewing the proof of Lemma 3.1 is as an
application of invariance. The problem is invariant under the group of all possible
common scale changes of the raw data. Hence the risk under a 0-1 loss structure
becomes the probability of incorrect selection and is constant over orbits—the
orbit of F consisting of all common scale changes of the components of F.

Next a lower bound for Pg[CS|R(s, n)] over F € Q. , is obtained. Given i € §
and F € Q.(j, 1) it follows from Corollary 2.1 that

(3.12) Fjy<uaFe (le*), 1<j<k-i
F',s(.ll) <stF‘[j]9 k -t + 1 <j < k
F. (-|c*) <.Fip for any other j

since x,(F;) <c* for 1 <j<k—i, 1<x,(F; for k—t+1<,j<k and
c* < x,(F; for all remaining ;’s. Let F(i) be any configuration having k — i, f and
i — t (if i > ) components of the types F. ,(-|c*), F. (-|1) and F. (-|c*) respec-
tively. Then '
Pg[CS|R (s, n)] = Pg[4,],
> Py 4] from (3.12) and Remark 3.2,
> PF(i)

[4,] since A, C A4;,
> PF(I)[AI],
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where the final inequality holds since when i > ¢ the jth(k — i+ 1 < j <k — 1)
ordered component of F(i) is F. ((-|c*) <, F. (-|c*), the jth ordered component
of F(z).

To calculate the lower bound Pg,[4,] let

(3.13) H(y)=B(B(y);k—t—s+r,k—1)
J(y)=B(B(y);t—r+11)

where B(y) = B(y; g, n), ¢ = [(n + 1)a] and [-] denotes the greatest integer func-

tion. Hence H(F. ,(y|c*)) is the cdf of the (k — ¢ — s+ r)th smallest of

{Tay - - - > Te—y} and J(F. (y[1)) is the cdf of the (# — r + 1)th smallest of
{T—r+1y * * * » Ty} all under F(). Therefore

PF(’)[AI] = f(?H(F',I(Y|C*))W(F',s()’|1))
= [eH(G(y/c*)dI(G(»))
+H(G(1/c*)(1 = J(a))
= [&enH(G(G~'(y)/c*))dI (»)
+H(G(1/c*)(1 = J(a))
= FXr, t,s, k, a, c*)
or simply F}. Since F(z) & Q. (the component distributions are not in %.(G)) it is

not immediate that F} is the infimum of the PCS over .. The next result
establishes that this is the case.

THEOREM 3.1. info PE[CS|R (s, n)] = F*(r, 1, s, k, a, c*).

Proor. From Lemma 3.1 and the discussion above it suffices to exhibit
a sequence of configurations {F;} in Q. so that lim; Pg[CS|R,(s, n)] = F}.

J—>00

A sequence in 2. which approximates F(¢) is the obvious candidate. Let L =
[1/c¢*] + 1 and for j > L define

F(y)=0 y<c*—j!
=G[Jj(y = (c*=ji™")] c—jl<y<ec*
= G(y/c*) c*<y

F, (y) = G(y) y<l1
=G(1+j(y—-1) 1 <y.

Then F, ;(+) =, F. (-|c*) = H(F, ;(-)) >, H(F. (-|c*)) and F, () =, F. ,(:|])=
J(F, (*)) >, J(F. ((-|]1) where —, denotes weak convergence of distributions.
Furthermore F, ; € %.(G, c¢*) and F, ; € 9.(G, 1) and so F; with ¢ components F, ;
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and (k — ) components F; ; is in 2.(#). Therefore
Pg[4,] = [FH(F, ()@ (F, ()
= [e H(F, (»))dI(F. (y|1)) + [2H(F. (y|c*))dI(F, (»))
since  F, (y) = F. (y|c*) on [c* ) and
F,(y)=F. (1) on [0,1)

= [GH(F, ;(»))dI(F. (y|1)) + [CH(F. (y|c*))dI(F, (1))
since F. (y|c*)=0 on [0, c*)

-0+ [FPH(F. (y|c*)dI(F. (y|1)) = F}

where the first convergence follows from dominated convergence since H(F, ;(»))
— 0 a.e[J(F. ((-|1))] on [0, c*] and the second follows from the weak convergence
of J(F; ;(+)) to J(F. ,(-|1)) and the fact that H(F. ,(-|c*)) is bounded and continu-
ous a.e. [J(F. ,(-|1)] on [0, co). The proof is completed.

It can be shown that F¥ — 1 as n — oo and hence (3.8) can be guaranteed by a
finite n for any P* < 1.

ExampLE 3.1. Given a € (0, 1) choose |
G(x) =1— (-0 x>0;
=0, x < 0.
. is then all configurations of continuous IFRA distributions. Note that G(-) is

chosen so that G ~!(a) = 1. Suppose it is desired to select at least » = ¢ preferred
populations. In this case

Ef = tf‘;‘_(l_a)c-B(B(l -[1- x]l/”'); k—sk— t)dB(x)
+B(B(1 —[1-a]""); k- s,k — 1)(1 = B(a)".

For computational purposes it is desirable to remove the composition of incom-
plete beta functions from inside the integral. After an integration by parts and a
change of variables F} becomes

(3.14) (k )f,';ﬂ—a)'/"(l ~ B(1-[1-y]"))(1 = B())' ~'dB**(»)

-1
k—s
+(1-B(1— (1 - a)))B(B(a); k — s,k — 1).
Expression (3.14) was evaluated on Cornell University’s IBM 370/169 computer
using a procedure based on Simpson’s rule (see Shampine and Allen (1973)). Tables
1, 2 and 3 give the smallest odd sample sizes required to meet (3.8) for a =
25(.25).75, c* = .65, .70, P* = .75, 90, 95, k =2(1)9, t = 1(N[k/2), r=1t, s =
t(D[k/2].

One measure of the cost of using the nonparametric procedure R(s, n) is
obtained by comparing the sample size required by R,(s, n) to achieve a specified
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TABLE 3.1.
Sample sizes required by R (s, n)

when selecting from Q0. when G(x) =1 — e~

witha = 25 and c* = .65.

P#
k t s 75 90 95
2 1 1 39 87 131
3 1 1 55 115 163
4 1 1, 6 135 187
4 1 2 27 67 103
4 2 2 87 155 211
5 1 1 79 147 203
5 1 2 35 79 119
5 2 2 103 179 235
6 1 1 89 159 215
6 1 ) 43 91 131
6 1 3 23 59 95
6 2 2 119 195 255
6 2 3 59 115 155
6 3 3 127 207 267
7 1 1 97 169 191
7 1 2 47 | 9 143
7 1 3 27 67 103
7 2 2 127 211 271
7 2 3 71 127 171
7 3 3 143 227 287
8 1 1 103 177 235
8 1 2 53 107 151
8 1 3 31 75 111
8 1 4 23 59 87
8 2 2 139 219 283
8 2 3 79 139 183
8 2 4 55 99 139
8 3 3 155 239 299
8 3 4 91 151 195
8 4 4 163 247 307
9 1 1 109 183 243
9 1 2 59 115 163
9 1 3 35 83 123
9 1 4 23 63 95
9 2 2 147 231 291
9 2 3 87 151 195
9 2 4 59 111 147
9 3 3 167 251 313
9 3 4 99 163 211
9 4 4 175 263 325
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P* to that required by the best procedure for the parametric problem with
exponential populations. Suppose 7; has cdf F(x|8)=1— e */% x > 0 where
6; > 0 but unknown, then x,(F) = — In(1 — a) = x,(F(:|6)) > c*x,(Fx_,+1)
<0, > c*0y_ 41y Where 8}, is the ith ordered 6. In this case the optimal selection
procedure is the natural procedure based on sample means rather than sample
a--quantiles (Eaton (1967)). Denote this procedure as R, (s, n). It is easily seen that
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when selecting from Q. when G(x) =1 — e~
with a = .50 and c* = .65, .70.

TABLE 3.2.
Sample sizes required by R (s, n)

x

c* = .65 c*=.70
P* P*
k t s 5 .90 95 75 .90 95
2 1 1 19 45 67 27 65 97
3 1 1 29 59 85 43 85 123
4 1 1 37 69 97 53 101 141
4 1 2 13 33 51 19 47 73
4 2 2 43 79 109 63 117 157
5 1 1 43 77 105 61 113 153
5 1 2 17 39 59 25 57 85
5 2 2 53 91 121 77 133 177
6 1 1 47 83 111 69 121 163
6 1 2 21 45 67 31 67 97
6 1 3 11 29 47 17 43 67
6 2 2 61 101 131 87 147 191
6 2 3 31 57 79 43 83 115
6 3 3 65 107 137 95 155 199
7 1 1 51 87 117 75 129 171
7 1 2 25 51 73 37 73 105
7 1 3 13 35 51 19 49 75
7 2 2 67 107 139 97 155 203
7 2 3 35 65 87 51 95 127
7 3 3 73 115 147 107 169 215
8 1 1 53 91 121 79 135 179
8 1 2 27 51 79 41 81 113
8 1 3 17 39 57 23 55 83
8 1 4 11 29 45 15 41 63
8 2 2 71 113 145 103 165 211
8 2 3 41 71 95 59 103 137
8 2 4 27 51 69 37 73 101
8 3 3 79 123 155 117 179 225
8 3 4 47 77 101 67 111 145
8 4 4 83 127 159 121 185 231
9 1 1 57 95 125 83 139 185
9 1 2 31 59 83 45 87 121
9 1 3 19 43 61 27 61 89
9 1 4 11 31 49 17 45 69
9 2 2 75 119 149 109 173 219
9 2 3 45 71 101 65 111 145
9 2 4 29 55 75 43 81 109
9 3 3 85 129 161 125 189 235
9 3 4 51 83 107 75 121 155
9 4 4 89 135 167 131 193 243
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TABLE 3.3.

Sample sizes required by R (s, n)
when selecting from Q. when G(x) =1 — e™*
with o = .75 and c* = .65, .70.

c* = .65 =
P* P*
k t s 5 90 95 a5 .90 95
2 1 1 15 33 51 21 47 73
3 1 1 21 45 63 33 65 93
4 1 1 29 53 73 41 77 105
4 1 2 11 27 39 15 35 55
4 2 2 33 59 81 47 87 119
5 1 1 33 57 79 45 85 115
5 1 2 13 31 43 19 43 63
5 2 2 41 69 91 59 101 133
6 1 1 37 -63 85 53 91 123
6 1 2 17 35 51 23 51 71
6 1 3 11 23 35 11 31 51
6 2 2 45 75 99 67 111 143
6 2 3 23 43 59 35 63 85
6 3 3 49 79 103 71 115 149
7 1 1 37 67 89 57 97 129
7 1 2 19 39 55 27 55 79
7 1 3 11 27 39 15 35 55
7 2 2 49 81 105 73 119 151
7 2 3 27 49 65 39 71 95
7 3 3 55 87 111 81 127 161
8 1 1 41 69 93 61 101 135
8 1 2 21 41 59 29 61 85
8 1 3 13 29 43 19 41 61
8 1 4 7 23 31 11 31 47
8 2 2 53 85 109 79 125 159
8 2 3 31 53 71 43 77 103
8 2 4 19 39 51 27 55 75
8 3 3 61 93 117 87 135 169
8 3 4 35 57 75 51 83 107
8 4 4 63 95 119 91 139 173
9 1 1 45 73 95 65 105 139
9 1 2 23 45 63 33 65 91
9 1 3 15 31 47 21 45 67
9 1 4 11 23 35 15 35 51
9 2 2 57 89 113 83 129 165
9 2 3 33 57 75 49 83 109
9 2 4 23 43 57 31 59 81
9 3 3 65 97 121 93 141 177
9 3 4 39 63 79 55 91 115
9 4 4 67 101 125 99 147 181
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for @ = (0, )¢
infgPy{CS|Ry (s, n)} = [FH(T(y|c*, n))dJ(T(y|1, n))
e—w/0wn—1
where T'(y|0, n) = f{,’—(—';—_m—n- aw.

When r = ¢ this integral reduces, after a change of variables, to

(3.15) (k- s)(’s‘: t’)f:,{l — D(e*T [ x|, n]|1, n)}'x*~5= (1 — x)" " dx.
Expression (3.15) was evaluated using an algorithm based on Simpson’s rule.

Table 4 contains the smallest odd sample signs required to satisfy

(3.16) info Py CS|Ry,(s, n)] > P*

for ¢* = .65 .70, P*=.75 .90, 95 k=21)9, r=1t=1(1)k/2] and s =
t(1)[k/2]. These calculations show that the exponential procedure requires roughly
half as many observations as the nonparametric IFRA procedure.

3.3. Selection from tail ordered families. Fix G’ € % satisfying I(G’) = R and
a € (0, 1). Choose G € E(G’) so that G ~'(a) = 0 and, for d* € (0, o0), define

(3.17) 9, ={FeJ*F<,GVl<i<k},
(3.18) Q.= {F € Qr|x¢u(F[k—t+1]) = 5}, £ ER,
(1) = {F € Q|x,(Fi-i) < %(Fle—r4+1) — a*
(3.19) <X (Fix-iv)} t <i<k
= {F € Q/|x,(Fk-r+1) — a* <x,(Fp)},i =k,
(3.20) 26,8)=0(0)NnQ, .

It follows that @, = U,;czQ ; = U;er Uk, Q,(, . By using locatipn invariance

arguments similar to the scale invariance arguments of Lemma 3.1 it can be shown
that

Lemma 3.2. infg P[CS|R, (s, n)] = min,cqinfg ; o Pe[4;] where A; and 9 are
defined as in subsection 3.2.

From the stochastic bounds developed in Corollary 2.2 for F € %,(G) and
arguments similar to those preceding Theorem 3.1 a tight lower bound, F), can be
constructed for infy P[CS|R (s, n)].

THEOREM 3.2. infg P[CS|R (s, n)] = Pgyl4,] = F, = Fi(r, t, s, k, a, d*%)
where F(t) is any configuration with t components F, (-|0) and (k — t) components
F, (| - d*) and
(3.21) F) = [§-amH(G(GT'(y) + d*))dI(y)

+H(G(@"))[1 - J(a)].
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when selecting from exponential populations

TABLE 3.4.
Sample sizes required by Ry,(s, n)

with a arbitrary and c* = .65, .70.

c* = .65 c*=.70
P* P*
k t s 75 90 95 75 90 95
2 1 1 7 19 31 9 27 43
3 1 1 11 27 41 17 39 59
4 1 1 15 33 47 23 47 67
4 1 2 5 15 23 7 21 33
4 2 2 21 39 53 29 57 77
5 1 1 19 37 51 27 53 73
5 1 2 7 19 29 11 27 41
5 2 2 25 45 59 37 65 85
6 1 1 21 39 55 31 57 79
6 1 2 9 23 33 13 33 47
6 1 3 5 13 21 7 19 31
6 2 2 29 49 63 43 71 93
6 2 3 15 29 39 21 39 55
6 3 3 33 53 67 47 75 97
7 1 1 23 43 57. 33 61 83
7 1 2 11 25 35 17 37 51
7 1 3 7 17 25 9 23 35
7 2 2 33 53 67 47 77 97
7 2 3 17 33 43 25 45 61
7 3 3 37 57 71 53 81 103
8 1 1 25 45 59 35 65 85
8 1 2 13 27 39 19 39 55
8 1 3 7 19 29 11 27 41
8 1 4 5 13 21 5 19 29
8 2 2 35 55 71 51 81 103
8 2 3 21 35 47 29 51 67
8 2 4 13 25 33 17 35 49
8 3 3 39 61 75 57 87 109
8 3 4 23 © 37 49 33 55 71
8 4 4 41 61 77 59 89 111
9 1 1 25 47 61 37 67 89
9 1 2 15 29 41 21 43 59
9 1 3 9 21 31 13 29 43
9 1 4 5 15 23 7 21 33
9 2 2 37 57 73 53 83 105
9 2 3 23 37 49 31 55 71
9 2 4 15 27 37 21 39 53
9 3 3 41 63 79 61 91 113
9 3 4 25 41 53 37 59 75
9 4 4 45 65 81 63 95 117
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REMARK 3.4. The proof of Theorem 3.2 consists in constructing a sequence of
configurations in €, such that the corresponding sequence of probabilities of
correct selection converge to F'. It can also be shown that F; — 1 as n— co and
hence (3.8) can be guaranteed for any P* < 1.

4. Randem size subset selection procedures.

4.1. Preferred population formulation. When the goal of an experiment is to
screen a large number of populations to obtain a more manageable subset contain-
ing at least r preferred populations then the procedure R,(s, n) has the undesirable
characteristic of always selecting a subset of size s. This section studies the random
size restricted subset selection procedures introduced by Gupta and Santner (1973)
and Santner (1975). These rules are characterized by the properties: (1) the
experimenter specifies an upper bound, say s, on the size of the selected subset and
(2) the procedure is able to capitalize on configurations favorable to the experi-
menter by selecting fewer than the maximum number of s,’s.

Following Santner (1975), restricted subset selection procedures will be defined
in terms of a sequence of functions ¥ = {y,}i_,, ¥, : = — Z satisfying:

4.1 VEeZ and. Vn, y,(§) > &
4.2 Vn, ¥, is continuous and strictly increasing; and
(4.3) VieE ¢ () >¢ as n—oo.

ExAMPLE 4.1. For Z = (0, c0) take y,,(§) = £0°® where p € (1, o) and {e(n)}
is any sequence of positive numbers converging to zero as n — oo.

ExaMmpLE 4.2. For = = R take y,(§) = £ + e(n) where e(n) is as in the previous
example.
For specified a € (0, 1), and each s in {1, - - - , k}, ¥ satisfying (4.1)—(4.3) and
n > N, define the procedure
R,(s, ¥, n): take independent random samples of size n from each population
and select 7, & T; > max{Ty_ 41 ¥ W(Typ} where Ty,
< -+ < Ty, are the ordered values of the sample a-quantiles
T, -, T,
Design requirement: given P* € (t/k,1), 1 <t <k,1<s<k—t+1,¥and
0 < c* < 1(0 < d* < ) determine the smallest n > N, so that
(4.4) Pg[CS|Ry(s, ¥, n)] > p*VF € Q,(Q))

where the event [CS|Ry(s, ¥, n)] occurs iff at least one preferred =; is selected.

ReMArRk 4.1. In this formulation a; is preferred < x,(F) >
* Xo(Fige— 14 1)(%a(Fl—+1) — @*) in the star (tail) ordered model. However, only
the goal corresponding to r =1 of Section 3 is discussed. The monotonicity
arguments used below in establishing the infimum of the PCS are invalid when
r > 1. When Ry(s, ¥, n) selects k — ¢ + 1 populations a correct selection automati-
cally occurs and when s = 1 the rule reduces to R,(1, n). The results in subsections
42and43arevalidforl <t <kandl1 <s<k—t+ 1. Thecases=k —t+1
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can be easily analysed by straightforward arguments similar to those developed
below.

4.2 Selection from star ordered families. Given a € (0, 1) choose G as in
Section 3.2 and for 1 < ¢ < k define ,, 24()), @4 ; and Q,(, §) by (3.6), (3.9),
(3.10) and (3.11) respectively. Clearly Pg[CS|Ry(s, ¥, n)] = IVF € Q,. Let § =
{t,---,k—1}and fori €  and F € 2,9 ,(i) define W, = max{T_;,1)" * *» T}
and
(4.5) B,={W,>atleast(k —s+ 1—i)of Tay, - * * , Ty

Wipe™ > max{T |l <j<k—i}} <i<k-s
= {Wipe™ > max{T|1 <j<k=-i}} k—s<i<k-1
where as before, T, is the sample a-quantile with cdf Fj;. Then Vi € 9 and
F € Q,(), P[CS|Ry(s, ¥, n)] = Pg[B;]. Furthermore, the events { B;} form a non-
decreasing sequence and Pg[B;] = Eg[xz(T)] is nonincreasing in any of
Fyp - -+ 5 Fy_; and nondecreasing in any of Fi,_;,p, * * -, Fyy under <.

Lemma 4.1.  infg, Pe[CS|Ry(s, ¥, n)] = min,¢4infy ;, |\ P[B)].

PROOF. It suffices to show infg , PeB;] = infg ; ,PelB;]. When k — s + 1 < i
<k —1and F € Q,(, § then

Pg[ B;] = Pg[max{T;p°™/¢lk — i +1<j <k}

> max{T;,/é1 <j <k—i}]
= Pe[B] where F(x)=(F(xf), - -,F(x)) isin QG 1)
as noted in the proof of Lemma 3.1. The proof for the case t < i < k — s is similar.

Now the events {4,} and {B;} possess similar monotonicity properties and so the

argument previously used in the construction of the lower bound F} remains valid
and yields

(4.6) infy Pg[CS|Ry(s, ¥, n)] > Pgy[ B,] =R} (1,5, k, a, c*) = RY,  say,
where F(¢) is defined in Section 3.2.

The lower bound will now be evaluated. Let Tj, be the gth ordered sample
a-quantile, ) ={(k—t+1,---,k},D={1,---,k—1}, for g >t let

{S;,’ 1 <»r< ( I; : ;)} be the collection of all subsets of size (¢ — ¢) from & and

letS¢ = & — S¢. Then
Ry = 22-k—s+lPF(t)[ W, = T[qﬁ Bx]
= ket 12k 1 Proo[ W = Ty = Tigy T(pp*®

> max{ Tl <m <k —t}]
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k—t

— Tk
_2q=k—s+|2 =k— t+12v-l PF(t)

Tuy < TVl € 87U D\ {j)
T < Tay < Tp“™Vl € §¢

= Sk 2 )s(B(E, )}
{D.(F, (1e)) T a(B(F, D))

g(c.){B(G(G‘l(y)/c*))}q_’{B( ( l()’)pe(n) ))\
=3k, ”.(z: ;) —B(G(—G-#))} “a(B(»)’
-+ (Ao ) o)) -

where D,(F(y)) = B(F(yp*™)) — B(F(y)). As in the case of R,(s, n) this lower
bound is tight. .

THEOREM 4.1. infg Pg[CS|Ry(s, Y, n)] = R}.

The computation of lim; ,,, Pg /[CS|R2(s, ¥, n)] for the sequence {F;} displayed in
the proof of Theorem 3.1 yields the result. Furthermore, R} — 1 as n — 0 and
(4.4) can be guaranteed by finite n for any P* < 1.

ExaMPLE 4.3. When Q* is the class of all continuous IFRA distributions
(G(x) = 1 — *"1-9) then R*(l, s, k, a, c*) becomes

4.7 i -
fi—a-ar{ B = (1= )"} (B - (1 - 0"
I -8 = (1= 9

dB(x) + {B(1 = (1 = )} {1 - B(e)}
x {B(1— (1 - ™) - B(1 - (1 - )"/")}*"

Tables of the smallest odd sample sizes required to satisfy (4.4) were computed
from (4.7) based on p = 4 and e(n) = n- for a =.25,.50,.75, c* = .65, .70, P*
=.75, .90, .95, k = 3(1)9 and s = 2(1)min{4, k — 1}.

4.3  Selection from tail ordered families. This section studies the design problem
for Ry(s, ¥, n) when F € @, and ¥,(§) = £ — e(n) where {e(n)} is a sequence of
positive numbers decreasing to zero. The developments follow from modifications
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TABLE 4.1.
Sample sizes required by Ry(s, ¥, n)
when selecting from Q. when G(x) =1 — e™*

with p = 4, e(n) = n~iand a = 25.

c* = 65 =.70
P+ P+
k s a5 .90 95 5 .90 .95
3 2 27 71 107 43 103 155
4 3 31 75 115 47 111 167
4 2 35 83 127 55 123 183
5 4 35 83 127 51 123 183
5 3 39 87 127 55 123 187
5 2 43 95 139 65 139 203
6 4 39 91 135 59 131 195
6 3 43 95 139 63 135 199
6 2 51 107 151 75 155 223
7 4 43 29 143 67 143 207
7 3 47 103 147 69 147 211
7 2 57 115 163 85 167 235
8 4 47 103 151 71 151 219
8 3 51 107 155 75 159 223
8 2 63 123 171 93 179 251
9 4 51 107 155 77 159 227
9 3 55 115 163 83 167 235
9 2 67 131 179 29 191 263
TABLE 4.2.
Sample sizes required by Ry(s, ¥, n)
when selecting from Q8. when G(x) =1 — e™*
with p = 4, e(n) = n=%and a = .50.
c* = .65 =.70
P* P#
k s 75 .90 95 5 .90 95
3 2 11 31 49 17 45 71
4 3 11 31 49 17 47 73
4 2 15 39 59 23 55 83
5 4 13 33 53 19 49 77
5 3 13 35 55 21 53 79
5 2 19 45 65 29 65 95
6 4 15 37 57 21 55 83
6 3 17 39 61 25 59 87
6 2 23 51 73 35 73 105
7 4 17 39 61 25 59 89
7 3 19 43 65 29 63 95
7 2 27 55 79 39 81 113
8 4 19 43 63 27 63 93
8 3 21 47 69 31 69 101
8 2 31 59 83 45 87 121
9 4 19 45 67 29 67 97
9 3 23 51 73 35 75 107
9 2 33 63 87 49 91 127

635
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TABLE 4.3.
Sample sizes required by Ry(s, ¥, n)
Jrom Q. when G(x) =1 — e™*

withp = 4, e(n) = n~3 and a = .75.

c* = .65 c*=.70
pP* P*
k K] 75 90 95 75 90 95
3 2 7 23 35 11 31 51
4 3 7 23 35 11 31 51
4 2 11 27 43 17 39 59
5 4 7 23 35 11 35 51
5 3 11 27 39 15 35 55
5 2 15 33 47 21 47 69
6 4 11 27 39 15 35 55
6 3 11 27 43 17 41 63
6 2 17 37 53 25 53 77
7 4 11 27 43 15 39 59
7 3 13 31 47 19 45 67
7 2 21 41 57 29 59 83
8 4 13 31 43 19 43 63
8 3 15 33 49 21 49 71
8 2 21 43 61 33 63 89
9 4 13 31 47 21 47 67
9 3 17 37 53 25 53 75
9 2 25 47 65 37 67 93

of the arguments of Section 4.2 along the lines of Section 3.3 and hence only the
final results will be stated.

THEOREM 4.2. infg P[CS|Ry(s, ¥, n)] = Pgy[B] = R, where F(?) is as in
Theorem 3.2 and R} = R!(t, s, k, a, d*) is given by

k—t
22-k—s+l( q-— t)

Se—an{B(G[G~'[x] + a*])}* {B(G[ G ~'[x] + e(n) + a*])
~B(G[ G '[x] + a*])}* @ {B(x))*
+ {B(G[d*])}* { B(G[ e(n) + d*]) — B(G[d*])}* *(1 — B*(a)}

Furthermore R} — 1 as n — oo and so (4.4) can be guaranteed for any P* < 1.

ExampLE 4.4. If Q, consists of all configurations with continuous components
having “lighter” tails than the logistic distribution then G(x) = [1 + exp(—(x —
In[(1 — a)/a]))]". The lower bound R; on the probability of correctly selecting at
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least one 7; having a-quantile within @* of the largest a — quantile (¢ = 1) is

k—1
2q-k s+l(q_ 1)

-

x X
:; a —-a a B B
) /(a+(1-a)e ){ (x + (l _ x)e—d‘ } x + (1 _ x)e—[d‘+e(n)])

_B( x+(1- x)e'd'

+ [B(a T f a)e"")} {1- B(a)}

% {B(a +(1- ;e_[""""(”)]) - B(a + (1 f a)e_d')}k_q

S. Properties of R,(s, n) and Ry(s, ¥, n) . The purpose of this section is to
describe some small sample performance characteristics of R,(s, n) and R,(s, ¥, n)
including (1) the effect of skewness and kurtosis of R,(s, n), (2) their monotonicity
properties, (3) their performance as ¢* — 1 and some large sample properties
including (a) a study of the number of populations selected by R,(s, ¥, n) and (b) a
proposal for choosing the sequence V.

The first set of results show that the more skewed or the heavier the tails of the
component F;’s the smaller the probability of correct selection using R,(s, 7). The
analysis follows Doksum (1969) who used weak orderings to study the effects of
skewness and kurtosis on the power of monotone rank tests. It has previously been
established in Remark 3.2 that the “closer together” the preferred and nonpreferred
populations are stochastically, the smaller the PCS. In studying the effects of
skewness and kurtosis it is necessary to eliminate this stochastic effect by restricting
attention to configurations of distributions differing only in scale or location. In
this set up the resulting scale or location parameters are measures of “stochastic
distance.” For 1 <t<k and i€ § =(ilt<i<r+k—s} let D, ={(A =

o
} dB(x)

(81, DY 8k)|00 > 81 > 82 > ¢t > 8k—i = 1 >8k—i+l > ¢t > 8]( > 0 a.nd
c*>8_,41 >c*8_;,,) and for F € G, and A, € 9, let FQ) =
(F5, Fs, - - -, Fy) where Fy(x) = F(§;x).

REMARK 5.1. If F € %, has F(§) = a then Xa(F3) = §/8;. Hence F(A)) contains
exactly i/ preferred populations and F|; = Fy.

TueorReM 5.1. If F, H € %, satisfy F<_H and either H(x) < 1¥x € R or
F(x) < IVx €E Rthen Vi € § and A, € 9,

Py CSIR (s, n)] > Pyqa)y[ CS|R (s, n)].
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PrROOF. Suppose T, has cdf B(F3), 1 <j <k, and define

G- T'yy =[B(H)]"'B(F(T)) = H™'F(T,)
and
(52) Ty =[B(Hy)] " B(Fy(Ty) = HT'F(3T()/8.

It follows that 7}, has cdf B(H,) for1 <j<kand Ty_, = T;_, has cdf B(H)
since §, _; = 1.

Since §; € (0, 1) for k — i + 1 < j < k it follows from Lemma 2.2 that
(53) T’y = H™'F(Ty)) > H'F(§T;)/8 = T" )
provided T and §;T;, € R*(F). Now 8,7, has dist. B(F) hence §,T ;) € R*(F)
as. (Fy). If F(x) < 1Vx < oo then T, € R*(F) = (0, 0) while if H(x) < 1Vx
< oo then T ;) € R*(F)= F(T) = 1= T(;, = H (1) = o0. In either case (5.3)
holds a.s. (Es, ). Since 1 < §; for 1 < j < k — i it also follows from 0 < T, < 5T,
that

(54) T’y = H™'F(T ;) <H 'F(§T;)/8 =T

holds a.s. (F3)-
Because x ,(-) depends only on the ranks of the T;’s and H ~IF() is strictly
increasing on J/(F) and nondecreasing on (0, o) it can be seen that

(5.5) XA,(T(I)’ ot T(k)) = XA,.(T'(l), e, T’(k))
hence
(5-6) Xa{Tay s Twy) > xa(T"ap "> T" )

holds a.s. (F(A,)) from (5.3), (5.4) and (5.5). Taking expectations of both sides of
(5.6) w.r.t. F(A,) and recalling that 7}, has cdf B(Hsj ) completes the proof.

REMARK 52. If R*(F) = (0, by) and R*(H) = (0, by) where max(b, by) <
oo then (5.3) need not hold for §; € (0, 1) and hence the proof is not valid in this
case.

The results describing the effects of kurtosis on Pg[CS|R,(s, n)] will now be
stated. For F, H € ¥ recall that F <,H means that H has heavier tails than F.
For # ER and F € F let Fy(x) = F(x + @) and for i € § define ¥, = (O, =
@, - ,0)0>60,>60,> - >6,_,=0>0_,,,> -+ >26,> — o0
-d*>6,_,,y >0,y —d*} and for FEY and O, € %, let FO) =
(Fp, + + + , Fg). The configuration F(0,) contains exactly i preferred populations.
The following theorem shows the heavier the tails of the population distributions
the smaller the probability of a correct selection.

THEOREM 5.2. If F,H € ¥ satisfy F<,H and either F(x) < 1Vx €ER or
H(x)<1Vx €E RthenVi €Y and O, € F,

Pre)[CSIR,(s, n)] > Py, [ CS|R,(s, n)].
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REMARK 5.3. The proofs of Theorems 5.1 and 5.2 are not valid for the
procedure Ry(s, ¥, n) because the characteristic functions of the events B; do not
depend only on the ranks of the 7' ;’s.

The monotonicity properties of R,(s, n) and R,(s, ¥, n) will next be investigated.
Fix any r,1 < r < min{¢, s} when referring to R,(s, n) and r = 1 when referring to
R,(s, ¥, n). Given an arbitrary selection procedure ¥ and any integer i satisfying
r<i<klet

(5.7) Pe[ S|P ] = P[P selects atleast r of m;y, + - -, Ly

forany S, = {j,, - - - ,j;} C{l,- - -, k} of size i. For a given §; let jj;; < - - - <
Juiy denote the ordered components of S;.

DEFINITION 5.1. % is monotone w.r.t. Q iff Vi, r <i < k and F € Q Pg[S;|?]<
Pe[S/|?] whenever ji; < ji VI, 1 <1 <.

Recall that for a given set of configurations 2, p(-) satisfying (3.1) — (3.4) and
t < k that Q(i), t < i < k, is the subset of & containing exactly i/ preferred popula-
tions.

DEFINITION 5.2. 9 is weakly monotone w.rt. Q iff Vi,t <i <k and F €
Qi), PelS|P] < Pe[S/|P] whenever S, — (S, N S)) {1, - -,k — i} and §/ —
SinS)c{k—i+1,---,k} where — denotes set subtraction.

REMARK 5.4. The standard definitions of monotonicity used in parametric
problems differ from those given here. In particular, Definition 4.1 of monotonicity
in Santner (1975) is a special case (i = r = 1) of the present definition. Also note
that monotonicity implies weak monotonicity.

LEMMA 5.1. Any procedure ¥ in {R(s, n)ln > N,} or in {Ry(s, ¥, n)ln > N,}
must satisfy Pg[S|P] < P[S|PWVi,r <i <k and F,F € UF) = F* such that
F < FNjES; and F <,F;Vj € S, = (1, -, k} — S, The result is im-
mediate since [S;|Ry(s, n)] = [Ry(s, n) selects at least r of m,j € S;] and
[S)|Ry(s, ¥, n)] = [Ry(s, ¥, n) selects at least one of 7 ;, J € S are nondecreasing in
any of T;,j € S; and nonincreasing in any of T;,j € S;.

Some additional notation will now be introduced. Let

Q, = {F € AP\ Fy <o Fa <o+ <uFm)
() = {F € UD)|x(Fiie-i) < POo(Flie—r41)) < XolFia—isen));
min{ Fj(»)|1 <! <k — i} > max{F(»)lk — i <I<k}Vy € R}
fort <i<k-1,
={F € UP)| p(xa(Fir-e+17) <*(Fpp)} fori = k,
and Q = U*_,2(i). Note that Q, C Q.

THEOREM 5.3. The classes of procedures { R(s, n)|n > N,} and {Ry(s, ¥, n)|n >

N,} are all monotone w.r.t. any @, C Q,, and weakly monotone w.r.t. any Q, C Qp.
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Proor. To show monotonicity it suffices to consider the following case. Fix
FEQ,r<i<k S, c{l,---,k},jE S;and m >j with m € S and let S/ =
S; U {m} — {j}. Lemma 5.1 implies

(5-8) PF[SiIR](S’ ")] = P(Fm S| Ry(s, ”)]

»'"»ﬁj]""’ﬂm]»""ﬁkl)[

< P(Fm,~ < Fmp s Fimpy - ’Flkl)[silRl(s’ n)]
= P(p"],. < Fimp s Fpmpy e v ’F[k])[SilRl(s’ n)]
< Pg[ S/|Ry(s, n)].

Since R,(s, ¥, n) satisfies Lemma 5.1 the same proof also shows that it is monotone
w.r.t. ;. The proofs that R,(s, n) and R,(s, ¥, n) are weakly monotone w.r.t. 2, are
similar.

REMARK 5.5. In most parametric selection problems where the scalar of inter-
est, say A, is estimated by 7; having cdf F(-|A) the following holds: A; < A; =
F(-|N\) < F(-|\;) and hence the stronger property of monotonicity holds. However
x(F) < x,(F) > F; <,F, and hence the property of weak monotonicity is in-
troduced here. An example will be given later to show that neither R,(s, n) nor
Ry(s, ¢, n) is even weakly monotone w.r.t. 2, or £,.

REMARK 5.6. Since ¥, C ¥ for any internal I C R, Theorem 5.3 holds if €,
and Q, are defined as the appropriate subsets of F% rather than F*.

The next result, obtainable from straightforward computations, describes the
behavior of the infimum of P[CS|R,(s, n)] over L, as c* increases to 1.

Lemma 52. lim

\._,_infg P[CS|R,(s, n)] = B[Blal; k —t — s + r, k — 1]
X(1—B[Ba)t—r+LM)<(k—t—s+r—1)

k - t t t _ _ . k
(52l L Jrm ==, L5 )

When r = ¢ the right hand side reduces to (’: B ! ) / ( ’; ) which is the probabil-
ity of making a correct selection by randomly selecting s populations when exactly
t are preferred. So for any fixed sample size n > N, there exists c¢* sufficiently close
to 1 and an F € Qx(¢) for which Pg[CS|R(s, n)] < Pg[CS| choose s populations at
random]. To gain an intuitive feel for this result choose an arbitrary F € Q«(¢, 1).
Then Vx € [c¢*, 1]

(5.9 Fij(x) > Fy(x)V1 < j <k —1t and k—t+1<i<k.

However (5.9) need not hold for x & [c*, 1]. In fact given & > 0 there exists
F = F(e) € Q«(¢, 1) such that for all x & [¢c* — ¢, 1 + ¢]

(5.10) Fy(x) <Fy(x)VI<j<k—-t and k—t+1<i<k.
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In such a case unless n is sufficiently large to detect the situation in [c*, 1] the
procedure R,(s, n) will tend to reflect (5.10) and choose populations in
{Tay =+ s Ta—p)-

The preceding argument can be used to show that R(¢, n) is not weakly
monotone w.r.t. Q+. For fixed n arid c* sufficiently close to 1 choose F € Qx(¢)
such that

(5.11) Pe[CS|R,(t, n)] = Pe[k|R,(t, n)] < 1/(’;)
where k, = {k —¢t+1,- - -, k}. Let {j())]1 <! < (I:)} be the collection of all
sets of size ¢ from {1, - - -, k}. Then

() B iOIR 1 m)] =

and (5.11) = there exists a j*(/) such that

PP IR )] > 1/ (%) > PelkR,(2, m)]

and hence R,(?, n) is not weakly monotone. Similar examples exist when Q+ and
R(s, n) are replaced by &, and R,(s, ¥, n) respectively.

Some results will now be developed for the number of populations selected by
Ry(s, ¥, n). Let E(i, n) = [T, > max{Ty_ 41 ¥n '(Trp}] be the event that =(i) is
selected, P(i, n) = E{E(i, n)] and S(n) = Z%_,xz; ,(T) the number of popula-
tions selected by R,(s, ¥, n). It is straightforward to obtain an expression for
ES(n)] for arbitrary F based on this representation for S(n).

For all F € ¥ and a € (0, 1) it is well known that T, , —,x,(F) where T, ,
has cdf B[F(y); g, n](n > N,). The following results are a direct consequence of
this fact and the proof of Theorem 5.2 and Corollaries 5.1 and 5.2 of Santner
(1975).

THEOREM 5.4. For any F € SU%) such that x,(Fy > Xo(Fix—1)

1 ,l=k
(1) P(i, n)—->0 ,1<l_<kasn—>oo

,i=k

(2) Zi(n) "’”0 1 <i<k

(3) S(n) — ;21 and Eg[S(n)] — 1 as n — oo where — . denotes convergence in the
L? norm.

The final topic of this section is a proposal for choosing the constant p € (1, )
when the sequence ¥,(£) = £°™ is used to determine the rule Ry(s, ¥, n). The
discussion is limited to the star ordered case but similar results hold for the tail
ordered case.

Let [NPS|Ry(s, ¥, n)] = [Ry(s, ¥, n) selects at least one nonpreferred popula-
tion] and for p € (1, o) let n(p) be the smallest n > N, satisfying both

(5.12) infy, Pp[ CS|Ry(s, ¥, n)] > P*

asn—oo and
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and
(5.13) supn‘PF[NPS[Rz(s, ¥, n)] <e*

for specified ¢* € (0, 1) and P* € (1/k, 1). The optimal choice of p minimizes
n(p). Arguments similar to those of Section 4.2 show the supremum of (5.13) occurs
at F(1, 1). Calculation gives

Pea, o [NPSIR (s, ¥, )] = 1 = [2{ B(F. (y/0°™|c*))}* " dB(E. (¥I))
1= L, [ B(G(y/e%om )] aB(G ()
~[B(6(1/e% )] 1 - B@). e 51

1 ,c*p" <.

(5.14)

Nl

ReMARK 5.7. For fixed p € (1, o) the righthand side of (5.14) converges to zero
as n — oo and hence Ve* € (0, 1) there exists n > N, satisfying (5.13).

For each p € (1, ) let n,(p) be the smallest n > N, satisfying (5.12) and let
ny(p) be the smallest n > N, satisfying (5.13). Since both supg, P{{NPS|Ry(s, ¥, n)]
and infg P CS|R,(s, ¥, n)] are nondecreasing in p it follows that n,(p) is nonin-
creasing in p and n,(p) is nondecreasing in p. An optimal choice of p is p* such that

(5.15) max{ n(p*), nz(P*)} = min1<p<oomax{”1(P)’ ”2(P)}-

The solution of (5.15) can be obtained via the same techniques employed in the
construction of Tables 4.1-4.3 (see Hooper (1977)).
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