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SCREENING AND MONOTONIC DEPENDENCE FUNCTIONS IN
THE MULTIVARIATE CASE

By T. KowaALczyk, A. KOWALSKI, A. MATUSZEWSKI AND E.
PLESZCZYNSKA

Polish Academy of Sciences

An approach to simultaneous treatment of dependence and screening
problems is presented. New characterizations of dependence of a random
variable X on a random vector Y are obtained by functions vy y : (0, 1) >
[0, 1] and py y : (0, 1) >[—1, 1] called respectively screening and monotonic
dependence functions. These functions are shown to be appropriate measures of
the intensity of connection and concordance of X on Y, respectively. The
interrelations of » and p and their relations to the multiple correlation ratio and
the multiple correlation coefficient are demonstrated and illustrated by several
examples.

1. Imtroduction. Statistical literature concerning screening is wildly scattered
among many sources and even the terminology is unstable. For instance, Birnbaum
(1950a), (1950b) and Marshall and Olkin (1968) considered screening decision
schemes on a highly theoretical level as opposed to practical algorithms discussed
in statistical quality control textbooks or in psychological papers on occupational
and scholastic selection. Roughly speaking, theoretical literature is not very useful
for applications, since too much a priori information is needed; on the other hand,
applicational papers deal usually with particular examples only and suffer from
insufficient theoretical justification.

Surprisingly enough, relations between screening and measures of dependence
have not been formalized yet in a clear way. This paper is an attempt to provide
one possible formalization by using a general idea of screening to construct some
measures of dependence between a random variable X and a random vector Y. It is
convenient to keep in mind an interpretation of X as an unobservable “perfor-
mance” variable and an interpretation of Y as a set of observable “test” variables
supplying information about X. Screening is meant here as an operation under
which items of some considered population, characterized by values (x,y) of
(X, Y), are rejected or accepted on the basis of y’s in such a way that the
expectation of the performance variable in the population of accepted items should
possibly be increased. The fraction of rejected items is assumed to be equal to a
preassigned value p € (0, 1). It seems reasonable to characterize the intensity of
dependence of X on Y by means of a suitably normalized expectation of perfor-
mance variable under best possible screening procedures, for any p € (0, 1). This
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leads to a functional characterization of dependence called the screening depen-
dence function. On the other hand, the restriction of the set of screening proce-
dures to those assuming some monotonic dependence of X on Y leads to a
functional characterization of monotonic dependence called the monotonic depen-
dence function. The latter generalizes to the multivariate case the functional
measure of monotonic dependence of X on a random variable Y, first introduced
in Kowalczyk and Pleszczynska (1977) and Kowalczyk (1977).

The concepts introduced provide a new interpretation of traditional real-valued
measures of dependence, the multiple correlation ratio and the multiple correlation
coefficient, which is given for suitably chosen families of (X, Y) in terms of the
quality of the optimal screening. These facts imply that the functions introduced
have a potential significance for applications. Moreover, the functions y and » will
be useful in practice, since qualitative information available in real problems can
often by easily expressed in the form of assumptions concerning the shape of u and
v». In particular, nonlinear models in which » does not reduce to the multiple
correlation coefficient can be considered in various screening problems similarly as
it is done in the case of linear models (cf. e.g., Owen and Yueh-ling Hsiao Su
(1977)).

2. Definition of screening dependence function. In quality control schemes the
term screening is usually applied to finite populations of objects and means a
procedure of rejecting a fraction p of items in order to get a more desirable
truncated population. In many cases the fraction p is stated in advance as the rate
of items admitted to be lost at the price of improving the initial population or as
the rate of items for which no reservations are made in the truncated population
(admission to educational institutions, personal selection, etc.) Turning from finite
populations to probability distributions of random vectors (usually representing
selected features of objects in not necessarily finite populations) one has to deal
with a general notion of truncated distribution introduced below (cf. e.g., Birn-
baum (1950a)).

Let C, be the class of random vectors (X, Y = (Y,, - - - , ¥,)) such that E(X) is
finite, the distribution of X is nondegenerate and there exists the generalized
density f of the distribution P of (X, Y). Let T be any measurable function from
R"*! into R and ¢, a pth quantile of T(X, Y) for any p € (0, 1). Moreover, let
@r : R"*!' >0, 1] be given by the formula

or(x,y) =0 if T(x,y) <t,
=7 if T(x,y)= L

=1 if T(x,y)>4¢,
where ‘

y=(1-p—-P(T(X,Y)>1))/P(T(X,Y)=1¢) if P(T(X,Y)=1)>0,

=0 otherwise.
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It follows from the above definition that for any given p the functions ¢,
corresponding to different pth quantiles of T(X, Y) differ on a set of P measure
zero. The pair (x, y) is said to be rejected if T(x, y) <t t, and accepted if T(x y) >
1, while acceptance is randomized with probability y when T(x,y) = ¢t,. This
means that acceptance corresponds to large values of T(X, Y). The dlstnbutlon
with the generalized density given by f(x, y)ey(x,»)/(1 — p) is referred to as
truncated according to T. Obviously, the rejection rate 1 — E(¢,(X, Y)) is equal to
p- The expectation of the first component in the truncated distribution exists for
any (X, Y) € C, and it will be convenient to denote it by E(X,, 1, vy

We concentrate on the situation when one is interested in gettmg E(X, 1x, v) as
large as possible. Obviously, the largest value is obtained for T given by T (x,y) =
x for any (x, y). Note that the largest value denoted by E(X,, x) is equal to the
expectation of X under the condition that X > x, for any pth quantile x, of X
whenever the distribution function of X is contmuous in x,.

If X is an unobservable performance variable, then the optimal screening based
directly on x’s is not admissible and should be replaced by optimal screening based
on y’s only. In view of the generalized Neyman-Pearson lemma this is realized by T
defined by T(x, y) = h(y), where h is the regression function of X on Y.

Consequently for any n > 1 and any (X, Y) € C, it is natural to introduce the
expression

(2.1) Vx, y(p) = (E(Xp, h(Y)) - E(X))/ (E(Xp X) - E(X))

as a measure of goodness of optimal screening based on y’s under the rejection rate
p. Obviously, for any p € (0, 1)y, ,(p) is nonnegative since screening based on the
regression function is at least as good as screening according to any constant
function T while in the latter case ¢ (x,y) =1 — p and E(X, » T, 1)) = E(X).

Given n > 1 and (X, Y) € C,, the function »y , defined on (0, 1) by (2.1) will
be called the screening dependence function of X on Y.

In view of (2.1), the expectation of the performance variable under optimal
screening based on y’s when the rejection rate is p is a convex linear combination,
with the coefficients vy y(p) and 1 — vy y(p), of the expectation under optimal
screening based on x’s and of the expectation when no screening is performed. This
expresses the meaning of the screening dependence function in screening problems.

3. Properties of screening dependence function. We shall recall first the defini-
tion of the bivariate monotonic dependence function px,y : (0, ) >[—1, 1] given
in Kowalczyk and Pleszczynska (1977) and Kowalczyk (1977): for any (X, Y) €
Ciandp e (0, 1)

(3.1 tx, v(P) = g p(p) i uf (D) >pty (p)
= —uXx y(p)  otherwise,
where

(32 I‘}: y(p) = (E(X;,, Y) E(X))/ (E( x) - E(X))
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This function was shown to indicate the type of monotonic (i.e., positive or
negative) dependence of X on Y and to measure its strength. The following
theorem establishes the connection between the screening dependence function in
the multivariate case and some bivariate monotonic dependence function.

THEOREM 1. Forany (X,Y)E C,(n=12,---)
Px,vy = Mx, n(yy
where h is the regression function of X on Y.

PrOOF. By (2.1) and (3.2) vy, y = py uy) Then in view of (3.1) the proof is
completed by noting that vy , is nonnegative.

In view of Theorem 1 some further properties of screening dependence functions
could be derived from properties of the bivariate monotonic dependence functions.

Throughout this paper we fix the notation 4 for the regression function of X on
Y and G, for the set of all measurable functions from R” to R.

THEOREM 2. Forany (X,Y)E C/(n=1,2,---)
@ M, €0,1) 0<wyp) <L
@) vy y(p) =0 iff (Y)=EX as.
(i) vy y(p) =1 iff X = g(Y) as. for some g € G,;
(iv) if a, b € R, a # 0 and f is one-to-one function R" — R" then

Vax+b,q0)(P) = vy y(p) if a>0,
=v y(1-p) if a<O.

Proor. (i) The statement follows immediately from (2.1) and the considera-
tions in Section 2 following (2.1).

(ii) It follows from Theorem 1 above and Theorem 2.1 (v) in Kowalczyk (1977),
since, obviously, the conditional expectation of X given A(Y) is equal to A(Y).

(i) vy, y(p) = 1 py vy = 1. In view of Theorem 2.1 (v) in Kowalczyk (1977)
Px, wr)(P) = 1 is equivalent to the existence of a nondecreasing function f : R — R
such that X = fo h(Y) a.s. Then there exists a function g : R” — R such that
X = g(Y) a.s. It remains to show the reverse implication. Let X = g(Y) a.s., then
g = h and, consequently, piy ,y, = 1, which completes the proof.

(iv) In view of (2.1) the thesis is true for f(Y) = Y. To prove that », , is
invariant under one-to-one transformations of Y, in view of Theorem 1 it is enough
to notice that the conditional expectation of X given f(Y) is equal to A(Y) a.s.

The next theorem describes the conditions under which screening dependence
functions are constant and reduce to the multiple correlation coefficient py , and
the multiple correlation ratio 7y, , defined as the correlation coefficient py 4y,

THEOREM 3. Suppose that (X, Y) € C, and there exists an increasing f : R - R
such that X and f o h(Y) have the same distributions. Then

) @p €0, 1) vy y(p) = p) iff f is linear.
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(i) If nx, y and py y exist then

vx v(P) =0y vy iff f is linear,
=px, v iff f is linear and h is linear in each component.

Proor. (i) Since the conditional expection of X given A(Y) is equal to A(Y) a.s.
then the proof follows immediately from Theorem 1 above and Theorem 2.2 in
Kowalczyk (1977).

(i) The first equivalence follows from (i) and the second part of Theorem 2.2 in
Kowalczyk (1977). For the proof of the second equivalence it is enough to recall
that, for py y > 0, py y = 7y, y iff 4 is linear in each coordinate.

4. Multivariate monotonic dependence function. Up to now a monotonic de-
pendence function was defined for two random variables, while a screening
dependence function was defined for a random variable and a random vector. We
shall consider now a straightforward generalization of uy y for (X, Y) € C,, n >
1. Let G,* be the set of all measurable functions from R” to R which increase in
each coordinate. We define for any (X, Y) € C,(n > 1) and p € (0, 1)

(41)  pt p(p) = (suPgegrE(X,, 4v)) — E(X))/ (E(X,, x) — E(X)).

Obviously, the right-hand side of (4.1) reduces for n = 1 to p; y(p) given by (3.2)
and therefore the same symbol is used in (4.1) and (3.2). Then for (X, Y) € C,
(n > Dpy, y given by (3.1) with ug , defined by (4.1) will be called the monotonic
dependence function in the multivariate case. It will serve as a measure of

“concordance” while »y , is a measure of “connection”, the notions of concor-
dance and connection being meant here as in Kruskal (1958).

THEOREM 4. For any (X, Y) € C,
@D —v_x,y < px,y <?y

(i) if h is increasing in each coordinate then vy y = py y;

(iii) py, y(P) = 0 if H(Y) = E(X) as.;

(iv) if there exists g € G, such that py y = Py gy, then py y(p) = 1(—1) iff
there exists a nondecreasing (nonincreasing) f: R — R such that X =
fog(Y);

(V) ifa,b€E R,a+#0and f, - - -, f, are one-to-one functions from R to R then
for any p € (0, 1)

Fax+6, (%), - - S0 (P)
= (sgn @)y, y(p) it s - - - . f, are increasing,
= (—sgna)py y(1 — p)if fy, - - -, f, are decreasing.
PrROOF. (i)—(iv) follow immediately from the definitions of u and », Theorem 2
above and Theorems 2.1 and 2.2 in Kowalczyk (1977).
(v) By the definition of p, y(p) the statement is true for f(Y;) =Y, i=
1,- - -, n. So it is enough to present the proof for a = 1 and b = 0. In case of the
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first equality, it suffices to notice that for increasing f’s

Vg € G, Ag* € Gy = (yp, - -+, »,) 8(Y) = g*(fiy1)s - - -, £i(Ww))-
The second equality follows from the first one.

5. Examples.

ExampLE 1. Let (X, Y) € C, be multinormally distributed. Then by Theorem 3
(i) and Theorem 2 (ii) »y y(p) = px, y- Moreover, if the regression coefficients of X
on Y are positive then by Theorem 4 (ii) uy, y(p) = py, y. For instance, if n =2
and ry y, = ry,y, = Iy, vy, = 0.5 then vy y(p) = py, y(p) = 0.58.

ExAMPLE 2. Let us consider a multivariate ¢-Student distribution with location
vector m, precision matrix T and k degrees of freedom, as introduced in De Groot
(1970). If we assume that k > 1, we have (X, Y) € C,. It follows that 4 is linear
and there exist a« > 0 and 8 such that a#(Y) + B and X have identical distribu-
tions. Then by Theorem 3 »y y is constant and for k > 2 it is identically equal to
px, y; for k = 2 the constant value of »y , could be treated as a generalization of
nonexisting py y. It is easily seen that if T = =~ !'and (X', Y’) € C, is normally
distributed with any mean vector and with covariance matrix 2 then

vx, ¥(P) = px, v = vy, y(P)-

ExampLE 3. Let (X, Y) € C, be log-normal, derived from normally-distributed
(X', Y’) by putting X = exp X', ¥, = exp Y/, i = 1, 2. We assume that X7, Y| and
Y; have zero means and unit variances. The graph in Figure 1 shows the shape of
vy, y derived for the case:

(5.1) rxr, Y; = rxr’ Y} = ry{, Y} = 0.5.

The exact formula for vy y is given in Nalbach-Leniewska (1977). Therein it was
proved that A(Y) = y- exp(h’(Y’)), where y is a positive constant and A4’ is the
regression function of X’ on Y’ and hence under (5.1) A(Y) is increasing in Y, and
Y,; consequently, vy y = py y-

Screening and monotonic dependence functions of X on Y are compared in
Figure 1 with those of X on Y, provided that (5.1) holds. The formula for uy, y, was
given in Kowalczyk (1977) while the equality vy y, = py, y, under (5.1) follows
from Theorem 4 (ii). It may also be of interest to compare vy y and vy y Wwith
traditional real-valued concepts of dependence. Under (5.1) we have ry .y, = 0.48,
px,y = 046, ry , v, = 0.41 and ry y, = 0.38, h, being the regression function of X
onY,.

ExaMpLE 4. Let (X, Y) € C, be such that the distribution of Y is symmetric
with respect to some @ € R and X = f(Y) a.s., where f is continuous, symmetric
with respect to @ and decreasing for y < a. Then vy y(p) = 1; iy, v(P) = — Iy, ¥
(1 = p) for p € (0, 1) and py, y(p) is negative for p € (0, 3); ¥y, x(P) = py, x(P) =
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FIG. 1. Screening dependence functions »y, y and vy, y, in the case of bilognormal distribution with
correlation coefficients all equal to 0.5 (cf. Example 3).

Nx, vy = Px, y = 0. Note that the shape of uy , provides a good description of the
lack of concordance of X on Y expressed by the change of sign of uy .
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