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HIGH-ORDER EFFICIENCY IN THE ESTIMATION OF LINEAR
PROCESSES'

By Yuzo Hosoya
Tohoku University, Japan

Estimation as a reduction of data is usually accompanied by some loss of
information. This paper theoretically compares asymptotically efficient estima-
tion methods for parameters in Gaussian linear processes. By means of the
concept of “asymptotic information loss” suitably defined, estimates equivalent
to the order of N 7 are differentiated. This problem was studied by C. R. Rao
for multinomial distributions and by K. Takeuchi for the exponential family of
distributions. They showed that for the i.i.d. case the maximum likelihood
estimate is superior to other efficient estimates. This paper extends their results
to the Whittle-Walker model of Gaussian linear processes, demonstrating the
optimality of the maximum likelihood estimate for that model. In addition, the
paper contains a lemma of independent interest. The Craig-Aitken theorem is
concerned with the independence of two quadratic forms of a finite-dimen-
sional Gaussian random vector; the theorem is extended to infinite-dimensional
Gaussian random vectors.

0. Introduction. Suppose that observations are generated by the general linear
process X, = 2 pu(0)¢,_;, t =0, £1, £2,- - -, where the ¢ are independent
random variables which are identically normally distributed with mean 0, and the
coefficients p; depend on an unknown parameter §. The maximum-likelihood
estimate of @ is efficient in many cases of linear processes. However, except for Box
and Jenkins (1970), who advocate the likelihood principle, the usual practice so far
is not to calculate the maximum-likelihood estimate, but to search for other
efficient and computationally simpler estimates. This can be seen, for instance, in
Hannan’s inference for rational spectra (1970), Parzen’s method (1971) and
Anderson’s method of scoring (1975).

Though usual investigations seem to stop when an efficient estimate is dis-
covered for a particular model, the concept of efficiency still requires further
examination. An estimate 8* is ordinarily called efficient if the asymptotic distribu-
tion of N %(0* — 0% is normal with minimal variance. Accordingly, if the maxi-
mum-likelihood estimate § is known to be efficient, 8* is also efficient if N %(9* -
@) goes to 0 in probability. In other words, efficient estimates form an equivalence
class of probability order N ‘%; ie., for any two efficient estimates §Ff and 67,
0F — 63 converges to 0 in probability order of N -3, Then, as a next step, it is
natural to ask whether it is possible to differentiate this equivalence class by means
of a higher probability order, say of 1/N. This problem was originally investigated
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by Fisher (1922, 1925), who conjectured the superiority of the maximum-likelihood
estimate over other efficient estimates by comparing their amounts of information.
Later Rao (1962) and Takeuchi (1965) affirmed this fact for estimates from
independent observations of the multinomial and the exponential family of distrib-
utions respectively; i.e., by means of a measure which suitably expresses the
information loss suffered through the reduction of original data to an estimate, a
comparison becomes possible between the maximum-likelihood estimate and other
efficient estimates. Rao and Takeuchi concluded that in their models the informa-
tion loss suffered by 9, the maximum-likelihood estimate, is less than that of 6*,
another estimate, and that the difference in information losses between them is
proportional to the asymptotic variance of N(§ — 8*).

The objective of this paper is to extend these results to the Gaussian linear
process, and to establish the optimality of the maximum-likelihood estimate in that
situation. In a sense this is a defense of the likelihood principle from the sampling-
theoretic standpoint.

1. Asymptotic information loss. Estimation can be regarded as a reduction of
data (or reduction of evidence) as well as “point” estimation of parameters. From
the former point of view, any desirable estimation procedure must be such that
given data are reduced to an estimate without much loss of their information. The
~ amount of information contained in a statistic is usually measured by Fisher’s
information: namely, let P(6*|@) be the probability density of a statistic *, then
Fisher’s information is defined as E(d log P(6*|0)/d#)*. (We assume that § € R
throughout this paper for simplicity of exposition. The following arguments can be
easily extended to the vector valued 4 so long as 8 is finite-dimensional). Therefore
the information loss suffered by the reduction of data X = (X, X,, - - - , Xy) to an
estimate 8* can be expressed as '

E( dlog L(6|X) )2 _ E( d log P(0*|9) )2
d do

(the likelihood function of 4 given X is denoted as L(#|X)) which reduces to
E Var(d log L(0|X)/d6|6*) if dP(8*|0)/d8 is dominated by an integrable function
(the Var(-|-) is the conditional variance). However, if 8* is consistent, this
information loss E Var((d log L(6|X)/d8)|0*) is meaningless asymptotically. Thus,
in order to investigate the asymptotic behaviour of #*, it is more convenient to
consider the quantity /*(8°) =E Var((d log L(8°X)/d0)|N 3(0* — 0°)), where
the underlined expectation and conditional variance are understood to be taken
according to the joint asymptotic distribution of d log L(0°X)/d# and N %(0* -
6°). (This formulation of asymptotic information loss was given implicitly by Rao
(1962) and explicitly by Takeuchi (1965)). Let us call this quantity the asymptotic
information loss of 0*. '

REMARK. In the above definition, the conditional variance is taken with respect

1
to the asymptotic distribution of d log L(6|X)/df given N z(8* — §°). Namely, let
Ex(-|NZ(8* — 8°) be the conditional distribution of dlog L(8|X)/d given
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N2(* — 6°), and let N2(8* — 8°) converge to 7* in dlstnbutlon Then, if

Exn(-|N 3(0* — 0°) — £(- [n*) as N — oo, the notatlon Var(-|N 2(0* — 09) is used
to express the variance of £(-|n*). Thus Var(:|N 2(0* - 0°)) is a function of n*,
and the first expectation in the above definition is taken with respect to the
distribution of n*. Throughout this paper, the notations E, Var and Cov will be
used to signify respectively the expectation, variance and covariance of the asymp-
totic distribution of the argument statistics.

Now return to our model of the linear process X, = X2, u(0)e,_;. The theory of
second-order stationary processes says that the nondeterministic stationary process
X, is a process in which the X, can be expressed as X, = 22 u;¢,_; where ¢, is an
orthogonal process with mean 0 and { ;) satisfies £ op? < oo. In this case the
spectral density of X, is given by flw) = 0/27|Z%,me?|>. Now suppose further
that X, is a Gaussian process with mean zero and the auto-covariance y,. Let V), be
the matrix whose (¢, s) element is v,_,, (¢, s = 1,2, - -, N). Then the log-likeli-
hood function, given observations X,, X,, - - - , Xy, can be expressed as

N 1 1
(1) log Ly(VylXyp - - -, Xy) = — —2"108 27 - 51°g| Val = EQN(X’ Vy)

where X is the vector (X,, - - -, Xy) and Qu(X, Vy) = X'V, 'X. Whittle (1952)
showed that when X, is nondeterministic, Qy(X, V) can be approximated by
Uv(X, p) (= 1/Qu)* ™ |ZV_ X, >/ f(w)dw) in the sense that

((2 e S I IZ. ,Xe“"‘lz/f(w)dw) (X'Vy'X)>lae. as N - oo.

He also showed that if _ou Z* is analytic and nonzero on {Z : |Z| < 1 + 8}
for some § > 0, 1/N log|Vy| — log 6% as N — oo. Accordingly the above log-likeli-
hood function may be approximated by

) log L(plX) = — J1og 27 — Tlog o2 = 5 (X, )

equation (2) gives the function which is the basis of our study from now on. In the
following L(#|X) will be used to designate L}(#|X). This assumption will evidently
limit the generality of the following argument to a certain extent.

In order for any statistical investigation to have meaningful results, further
restriction of the model is required: as above, observations X, are generated by a
linear process X, = S ,u,(0)¢,_;, where, however, the ¢, are independent normal
random variables with E(¢?) = 0%, and the y, are functions solely of 8. Thus the
spectral density is a function of 4. Denoting by f(w|@) the function

o*|E () /27, assume
(A-1) 8°, the true value of 6, is in ©, a compact subset of R',
(A-2) f(w|8') cannot be equal to f(w|8?) a.e., for ' 6%
(A-3) h(w|0) = 1/f(w|#) and f(w|@) has continuous first derivatives in w for
lw| <=, 8 € 0.
(A-4) The second order and the third order derivatives of h(w|@) with respect to 8
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exist and are continuous in (w, #) for || < 7, and for § in N;(6°), a
neighborhood of 8°; namely N; (6°) = {6 : 10 — 0° < §,};
(A5) S0l H(0°) < .
Under conditions A-1 to A-5, it is known that for 4, the maximum-likelihood
estimate of §, N %(0A — #9) is asymptotically normal with mean 0 and with variance
{1/47[(dh(w]|0°)/d8/h)* dw}~" (cf. Whittle (1952), Walker (1964) and Hosoya
(1974)).
The asymptotic information loss defined above can be calculated for the maxi-
mum-likelihood estimate @ as follows.

LeMMA 1. The asymptotic information loss [;(0°) of 8 at 8° is given by
2 2\2 2 -l
3) f(dhide ) dw{f(dhido) dw}

2 2 2 2 -2
_ {f( d h£d0 )( dh£d0) dw} {f(ih_}/ljg) dw} .
PrOOF. By the Taylor expansion of d log L(f|X)/d8 around 6°,
d*log L(8°X) d?log L(4|X)
dd? dg®
where § = § = 9°. Then the second term in the right-hand side above converges to
0 in probability; thus for large N,

d N | A
— —plog L(6°x) = (6 —6°) +5(0 —0°?

d?*log L(8°X)

4 1og L(99X) = — N*(d - 6°) ,
N2 df?

de
Now
1i(8°) = E Var(dlog L(0°X)/d9|N%(§ —6°))
= g[{N%(é ~89)” Var {d?log L(8°)X)/N? d§}|N3(d —6°)) ]
Suppose N7(d — 8°) and d? log L(#°Xx)/N 3 d9? are asymptotically jointly nor-
mally distributed (this fact will be established immediately below). Then, denoting
the asymptotic variance of N %(é — 0° by V(0°), and using the fact that generally

if U and V are jointly normally distributed, the conditional variance Var(U| V) is
equal to Var(U)(1 — (Cov(U, V)?/Var(U) Var(V))), we have

1 A ‘ 2 OX
{N?(0 _00)}2 Var { d_lc.)él_l_'_(__e_l_) }
N2 d§?

X 2 0 2 d?log L(0°|X
- cOv{N%(o—oO), 4% log L(97X) } /V(aO)Var{——————°g, (6%1X)
I Nz df? - Nz df?

@  L0)=E

X

Cov {N7(f —8°), a2 log L(8°/X)/N* db?} |".

= V(BO) Var { M }_[

N2 db?
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Now Ni(d — 6°) is asymptotically distributed as

dh(«|0°) /48 \* do (6
{ZI;I( E:(«lolt% ) dw} 202 2oz Buans 2o 2w e, - Be)

as was shown by Walker (1964), and also d? log L(°X)/N T d§? —
E(d?*log L(8°X)/ N df?) is distributed as

Ay dew)

202 THISNTL O g92
where C, = S MX, X, /N and a,(8) = o/47*(" e"“h(w|f) dw. Accordingly,
owing to thc fact that any finite set of N 2{C E(C,)} is asymptotically jointly
normal, Ni(§ — 6° and 42 log L(8%X)/N* d§? are jointly normal with
Var(N 2(8 — 6%) = [(1/4m)[(dh(w|0°)/d8 / h(w|8°) du] ™",

NH{(c, - E(C)),

2 0
Cov(N%(é -0°), 2‘lo—g-l{u){')‘)
— Nz df?
an(w]0°)/d8\* |- 1 d’(0°) da(0°)
—th—mEIJKNEI'KN{Mrf( h(«|6°) do l400 ‘;02 &

X E{N¥(C, ~ E(C))N¥(C, = E(C)))
=+ dhédﬂ)( dzhidez)dw] / [ (LL2y dw]

2 0|
Var ( d loglL(e 1X)
— Nz d§?

and
d%,(0°) d’a,(6°)
do? do?

. 1
) = limy_, 4—03 2|s|<N2|t|<N

x E{N3(C, - E(C))Ni(C, - E(C,)))

dzh/de2
= 4n ( h ) do.

Therefore substituting these values to those in (4), the lemma is obtained. []

The asymptotic information loss of other estimates is very difficult to calculate
directly. But it is possible to derive a relation which compares the asymptotic
information loss of the maximum-likelihood estimate and other efficient estimates.
Takeuchi (1965) establishes the following relation for i.i.d. observations of the
exponential family of distributions: that is, denoting an efficient estimate by 8*,

(5) 1p(8°) = Var {N(4 —6*)}/V(8°)" + 1(8°),

where the variance is taken with respect to the asymptotic distribution of N -
8*) and ¥(6°) is the asymptotic variance of N2(§ — 8°).
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The purpose of the following sections is to show that the relation (5) holds also
for the observations from the Gaussian linear process satisfying the conditions A-1
through A-5. In order to prove this, however, certain limitation on the class of
efficient estimates is necessary. In the following discussion, the class of estimates of
0 is assumed to satisfy these conditions: if 5 is in this class, then

(B-1) 6% is a function of Cy y, Cy y,* - -, Cy_y, x Where C; y Efl, ,’)()(J+,/N;
(B-2) 6% is second-order differentiable with respect to C; y, i= 01,- -1
Let
oy
= ajy
0C, N |(Gon=v®)
0% .
Cow=v(8), i=01,---,N-1) "~ PN
aCi,NaC}»N {C},N-:j(o)’ j-O,l."',N—l} 4

where v,(0) = E(X;X...|0);

(B-3) Oy =0+ Zl-oa.n(C, v = Y(0) + Z.Z,B8(C, v — YOG n — Y(0)
+ Ry, where Ry = 0,(1/N) if the true parameter is 8, for @ in a neighbor-
hood of 8°. 8%(v,(9), 71(0), «++, Yy—1(8)) > 0 in a neighborhood of §° as
N — oo (a weak version of the Fisher consistency);

(B-4) there are o; and B; such that

va-ol ,-0| ;N - .Bijlij—’o’

as N — oo, and besides, these convergences are uniform in a certain
neighborhood of 9°;
(B-5) for the a in 4 a,bovc,

SN ok — ai—>0  and

l"OI N"‘al—‘)o as N - o0.

Among the above conditions, the conditions B-4 and B-5 are the strong ones.
The condition B-4 might be fairly reasonable if we take into consideration the fact
that, practically, an estimate should not depend on the high-order sampling
autocovariances, and it can be proved that in the rational spectrum model the
maximum-likelihood estimate satisfies this condition. The condition B-5 implies
that, for any two estimates 8% and 8%, with & < 1/2, N2*3@F — 63) >0 in
probability as N — oo (this is shown at end of Section 3).

To summarize, we assume that

(A) the X, is a Gaussian linear process, and the regularity conditions A-1
through A-5 hold;

(B) efficient estimates are those which satisfy the conditions B-1 through B-5.

Under A and B, the relation (5) will be proved. But the proof requires rather
complicated steps; therefore, for the purpose of comprehensive reading, we shall
give a rough heuristic sketch of the proof here and thus show the interrelation of
the following three sections that are necessary steps to complete the proof.

Let 6* be an efficient estimate of # and § be the maximum-likelihood estimate,



522 YUZO HOSOYA

then for sufficiently large N,
dlog L(9|X) . dlog L(°X) + d? log L(8°1X)

- - § _po
0=—"a% & 5 (=0

_dlog L(09X) , d*log L(0°1X) ,;

- ] + 7 (0 —0* + 6* — 0.

Accordingly,
0 2 0 2 0
dlog L(6°X) . < N(o* — 0 )d log L(0%X) N%(g*_go)d log L(69X)

do N df* N7 dp?

in which —d? log L(6°X)/N dd? can be replaced by (8% . Now, in view of the
definition of /,.(°),

1p+(8°)
e E{ dlog L(0°|X) | v - 00)}]
=E v {N(() —9%)/V(8° — N2(8* — 0°)MIN‘(0*-00)”
N7 df?
- E[v {N(8 —0%)|N3(8* - 89} |/ V(6%
+£ V;ar{N‘w* - )MI}V-(Q* - 00)}}
N7 d9?

2 0
@{N(é —6%)/ V(8°), N3 (6% — oO)Mlh-(m 00)”
Nz d§?

where the second term in the last expression is equal to /;(8°), since N %(0* - 0%is
asymptotically distributed in the same way as N %(0 —0°. If N(§* - ) and
N %(0* — 0% are asymptotically independent, the first term is equal to Var{ N(8*
— 6)}/V(8°?. Section 4 will show that the third term in the above is equal to 0
under the same condition. Thus it is necessary to prove the asymptotic indepen-
dence. In Section 3 an important property of efficient estimates will be shown:
namely if 8} and 05 are efficient, N 2(0* - 00) and N(0f — 05) are asymptotically
independent. That section will show that N 2(0"‘ 0°) and N(8F — 6%) are reduced
to a linear form and a quadratic form such as 3{20;T; and 3720252 o( B —
B,) T, T; respectively, and the asymptotic independence between them will be proved
by means of an extension of the Craig-Aitken theorem. Section 2 will construct this
extended version of the Craig-Aitken theorem.

For practical applications of the relation (5), it is straightforward to evaluate
V(6°) and /;(8°) for a specific model by means of Lemma 1, whereas the evaluation
of the quantity V_ar(N(é — %)) will necessitate computer simulation since it is not
usually expressed by simple analytic formula.
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2. Extension of Craig-Aitken theorem. Craig (1943) showed that when X =
(X,, X5, - - -, Xy) is a vector of independent normal variates with unit variance,
the two quadratic forms X’4X and X’BX are independent if and only if 4B = 0.
Aitken (1950) extended this result to the case where X has a nonsingular variance-
covariance matrix = and proved that X’4X and X’BX are independent if and only
if BZA = 0.

The above Craig-Aitken results can be further extended to an infinite-dimen-
sional X.

Assume
B6) {X,:t=---,-1,0,1,---} is a real-valued Gaussian (but not neces-

sarily stationary) process with mean 0 and covariances «, ; = Cov(X,, X)),
t,s=--+,—1,0,1,---, which are harmonizable; i.e., E(X,X,) has the
representation

©) E(X,X,) = [T,/ e "™ dF(w, N),

" and F(w, A) is such that F(m, 7) < 0.
(B-7) {a;}i2 and { B;}{;-o are sequences such that §; = B, for all i and j, and
2| < o0 and 23| B;] < o0.
We then have

THEOREM 1. Under conditions B-6 and B-7, 232 oo, X; and 2.2,B,X,X; converge in
mean square, and are independent if and only if 3.3, Bk; w0y =0 for all i =
0,1,2,- -

PROOF. Let ay, =S¥ la X, M=1,2,--- Observe that {a),} forms a
Cauchy sequence in the L? space generated by linear combinations of the {X,, t =
0,1,---} Forif N> M,

E|dy — Ay < [ISNZhle| PdF(0, A) < K{ENZ}la,l}’,

with K = F(m, n). Thus by taking N, M large enough, E|A4, — A,,|* < ¢ for any
given ¢ > 0. Similar arguments hold also for the convergence of Z38;X,X. Let
A =Z20aX; and B =337 ,B;X,X;. In order to continue the proof, the
following lemma due to Loéve (1963, page 476) is necessary.

LEMMA 2. When the covariance function of a Gaussian process {X,} is harmoniz-
able, there exists a family of complex-valued random variables {Z(\)} indexed by
A € [— @, @) such that

(@) forany Ay,- -, A, E[—m 7); ZA), - -, Z(\,,) have a joint normal dis-
tribution;
(i) E(ZADZA,) = FQ\, Ay for any A\, A\, € [— 7, m); and
(i) X, = " ,e"“Z(dw) with probability 1.
(The integral in (iii) is defined as the L*limit(F) of =} ,e"Z(I) as M — co, where
the intervals L,j=1, 2, -+, M, are a partition of [— 7, 7) and w; € Ij.) To return
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to the proof, in view of (i) above, 4, = [ZMlae’Z(dw). Let flw) =
S _od,e™; then, since 22 qla;| < 00, [ f(w)Z(dw) is defined, and A, — [,
f(w)Z(dw) as M — oo in LY dF). The latter statement comes from the fact that for
any & > 0, by taking M large enough, E|4,, — [T f(w)Z(dw)* < K{Z52,la)? <

E.

Thus,
(7 A = [f(w)Z(dw).
In the same way,
(®) B = [[g(w, N)Z(dw)Z(dM)

where obviously [|f(w)|dw < oo and [| g(w, A)|dw dA < 0.

The relation 3,5, B;x; o, = 0, for all i, can be written as
9) /fg(v, w) f(N) dF(w,\) =0  forall ».
In general, a symmetric L?-function A(w, A) has the representation A(w, A) = 32,
wo(w)p,(A) in terms of an orthonormal system {¢; : i =0, 1,2, - - - }, where the
limit of the right-hand side in the above equation is in the sense of L? (cf. Tricomi
(1957)). Thus g(v, w) may be written as
(10) g(v, w) = T3 g (v);(w).
Therefore, from (9), Z,m¢,(»)/f ¢:(w)f(A) dF(w, \) = 0 for all ». But this is possible
if and only if f/¢;(w)f(A) dF(w, A) = O for all i such that n; # 0. Now in view of
(10), B = =,n,|/¢:(w) Z(dw)|*. However, by (9)

E{[¢(w)Z(dw)- [ fNZ(dN) } = [[$:(w) FA) dF(w,\) = 0.

Since [¢;(w)Z(dw) and [f(A\)Z(dA) are normal, they are independent. Accordingly,

|/$1(w)Z (dw)|* and [f(A)Z(dM) are independent. Thus, in view of (7), 4 and B are
independent. []

COROLLARY 1. Assume a Gaussian process {X,} has the same properties as in
Lemma 2, and {a;}7;-o and {b;} ;- are symmetric and 2,2 |a;| < co and Z,5|b;|
< 0. Then 22a;X;X; and ZZb; X, X; are independent if and only if
(11) 2.3 4byy =0 forall i and I

PROOF. As in Lemma 1, g; and b; have corresponding symmetrical L?kernels
Sflw, A) and g(w, A) which are respectively represented as

(12) f (w’ >‘) = Epi(bi(w)(l’i(}‘) .
g(w, A) = Zpyg () (D)
Also (11) implies that

(13) Jf¢i(w) ¢;(A) dF(w, A) = 0 for all i and j such that »; 0, ; # 0. ~

Then the result is straightforward from (12) and (13). ]

3. Asymptotic independence between N %(0;" — 6% and N(6F — 6%). By use of
the extended Craig-Aitken theorem of the previous section, the asymptotic inde-
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pendence between N %(0;" — 6% and N(8% — 8}) is proved in this section. This is a
crucial property for the proof of Theorem 2 given in the next section.

Let T; be such that N %(C,. ~ — ¥ — T, in distribution. Then,

Lemma 3. SYak N3G,y — 1) and 33,85 N3 (C, y — Y)NH(C, y — ) are
asymptotically distributed as Zo; T, and EE,B T T; respectively, where the o; and the
By are such limits that o}y — o; and ,Bij, as N — o0.

Proor. First, take M large enough so that, for a given ¢ > 0, |2 ,ia;| <&,
and IE Ma2| < e. This follows from condition (B-4). For this M fixed, obviously
SML e N Z(C, ~ — Y, converges in distribution to S 'a,T, as N — oo. Next
consider the remaining terms.

2
E{S)5INa(Cy — 1))
= EjzkajNakNN{E(C_'f,NCk, N) - Yj(ECk, N) - Yk(ECj, N) + Y,'Yk}
=3 2k NakNN{EN_J ;I:(Y/Yk + Yn—mYn—m+j—k + Yn—m+an—m—k)/N2

N-k N
TN Y%~ va,vk+mk}

where
O Sy N{Z,2,7/N* — (N = k/N)yye — (N = j/N)yve + 1)
= 2.3 jkajafyy v/ N <n, for any given n > 0, by taking N large enough,
since, with K such that |y| <K,j=0,1,2,- - -, |EZjkafafyyv/N| <
K 212,1 le/ N;

.. 1
(ll) (14) Ejzkaﬁva]:]vﬁEnszn—mYn—m+j—k

= 152,k O AA(l9)fN°) doo d

where f(w]@°) is the spectral density of X,, and is bounded by (A-1) and (A-3).
Let L be the essential supremum of f(w|§°). We have

Za¥ —Zef <n'/2  and [Sjar? — Zja?| <v’'/2

by taking N large enough. Therefore the right-hand side of (14) is less than or
equal to ‘

i ffIE 2o e @V do g\ = 2 LN — j) <26+ 7';
(iii) in the same way as in (ii), for any " > O,
1 ”
Nzjzk%y\’althnszn—m+an—m—k <2+ n,

by taking N large enough. Therefore, we conclude that, for sufficiently large
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N and M,
{Eﬁ, I N2 2a}%/(C, v yj)}2 <4c+n+7n+17".
Therefore = aJNN 2(C - ) converges to 3%2a;7; in dlstnbutlon
The proof of the convergence of Z.Z.B%5N 2(C, N y,) X N 2( — ) to

3,B; T, T; is computationally a little more complicated, but a similar argument as
above holds. 0

Condition (B-3) says that 8%(v(8), Y,(8), - - - , Yx—1(8)) — 8 in a neighborhood
of @ = @° On the other hand, d8¥(ye - * - » Yn—1)/d0 = Zay dy(0)/d8 which
converges uniformly to Sa, dy,/df in a certain neighborhood of §° by condition
(B-4). Thus,

(15) Sa; dy;/df = 1.

(The above statement follows from the fact that if f, € Clla,b,n=12,-"-
and f, converges at least at x, € [a, b], and if df,/dx converges uniformly to g on
[a, b], then £, converges uniformly to f, and df/dx = g. The uniform convergence
of Say, dy,(0)/db to =a; dy,(8)/d is obvious because of condition (B-4), since the
dv;/ d0 are bounded.)

For #* to be efficient, the asymptotic variance of N 2(0* — #° must be minimal
under the restriction (15); let o; = Cov(T}, T)), then the asymptotic variance of
N 2(0* — 9% is equal to Z,3aa0;. Then a must be such that it attains
min, 23 ¢;a;0; under Za; dy;/df = 1. Using the Lagrange multiplier A, put ¢ =
II,00; — M2oydy; /dd — 1). Differentiate ¢ with respect to a;, then

(16) a0 — )\i%(;_) =0, from which
(0
23,050, — Aoy dycli(0 ) =0;
thus A = 2Za;a;0; = V(8). Therefore it follows from (15) and (16) that
(17) Y% — dY( )9 j=0,1:29"

LEMMA 4. The {«a;} which satisfies (17) is unique.

PROOF. o, has the representation a,,, = 27[{e"®~™ + £'@*m™}(f(«|9))* dw.
This is immediately derived by the Fourier transformation of covariances o,
where f(w]@) is the spectral density of the process X, (see Walker (1964), pages
374-5). Then (17) can be written as

(19) 2efs@)e- (IO do = VO LA j=012,-
where g(w) = 23;q; cos jw. But dy(0)/do = fe”“’(df(w|0)/d0) dw, j
=..-,-1,0,1,---, and df(w|#)/dd € L, and also g(w)(f(w|#)) is in L,.

Then, by the uniqueness of the Fourier coefficients of L,-functions, (c.f., for
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example, Hewitt and Stromberg (1965)), 27g(w)(f(w]8))* = V(6)(df(w|0))/df a.e.
where f(w|@) is bounded away from 0, so that g(w) is unique; thus a is unique. []
Now we can prove

LEMMA 5. Let 0} , and 03  be two efficient estimates, then N 21(0;“, ~ — 0% and
N(Of y — 03 y) are asymptotically independent.

PrOOF. Let 6f y and 63 , have expansions such that
1
6’i"N =0+ Zx-OalN((:x N Y;) + 2; ,so,ByN(Cz N Yi)(C},N - Yj) + op(ﬁ)

1
02 = 8+ oG, — 1) + S0 B n(Con = 1(Gow = ) + 0 )

Let ay > o; and o} —> o and let B, y and B}, converge to B; and
respectively. )

The derivative of ayy satisfies dayy/df = =8,y dvi(0)/d0, k =0, 1,2,- - -,
where the right-hand side uniformly converges to 2;8,; dv;(6)/df in a neighbor-
hood of #° by (B-4). Therefore day/df exists and doy,/df = Z;8,; dy}(6)/db. In
view of Lemma 4, o, = o, so that

&y (0) &y (0)
(19) 2By . 3,85 — -
From (17), dvy,(6)/ 48 in the above can be replaced by (1/V(8))2,e0,; hence

Now it follows from Lemma 3 that N 2(01, N~ 00) is asymptotically distributed as
o, T;. As for N(8f y — 05 y), it can be shown, as follows, that the first term in its
asymptotic expansion converges in probability to 0. There exists a positive constant
M such that for all N

1

1 1 272
EINZ (o = an)(Cion = 1| < Ny — el E{N3(Cw = )]’

MZIZ)N illaifv — o),

since E{N %(C,-, ~ — ¥)}> < M? uniformly in i and N for a certain constant M
(assumption (A-5) guarantees this fact). In view of assumption (B-5), it follows that
E|NZ(ajy — ayXC, y — v;)| converges to 0. Then the Chebyshev inequality con-
cerning first-order absolute moment implies that NZY)'(a% — ax)(C; ¥ — 7))
converges in probability to 0. Consequently, N(6f y — 65 ,) is asymptotically
distributed as 22( 8; — B})T;T,. Thus, in view of Theorem 1 in Section 2, N %(0;"’ N
— 0% and N (0} y — 05 y) are asymptotically independent. [}

4. Main theorem. By making use of the results obtained in the previous
section, we can prove the following.

THEOREM 2. If the observations are generated by a Gaussian linear process
satisfying the conditions (A-1) through (A-5), and further, if the maximum-likelihood
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estimate § and any ej:ficient 0* satisfy the conditions (B-1) through (B-5), then
(8% =Var(N(6* — 6)}/ V(8°) + ;(0°).

Proor. It follows from the definition of f,
1) (6°)

0
=§E[i‘ﬂ%_5§;‘ﬂ|mw*_00)}

- E Var {N(H 8%)/V(8°) — N+(8* — )M(—:ﬂX—)IN (0% — 00)}
N2 2
E Var {N(§ - 0%)| Nz (6* — 8%}
V(8°):

. 2 0
+E Var {Ni(o* _ )MX—)IN‘(‘)* _ ,,o)}
- Nz df?
. o ol d*log L(6°X) |, 1
—2E Cov{N(0—6%)/V(8°, N2(6* — )————— N2 (0* - 0% 4.
2 df?

The first term in the last express1on is equal to Var({ N - 6*)}/ V(8°)? since, by
Lemma 5, N(§ — 6*) and N 2(0* — 6°) are asymptotically independent. The sec-
ond is nothing but /;(#°), the information loss of the maximum-likelihood estimate
f, because |[N7(8* — 6°) — N2( — 9°)| = |[N2(6* — )] -0 in probability and
$0

E Var {Ni'(o* - )————“'2 log L(6°X) IN'(B* - 00)}
- N7 dh?

2 0
d*log L(0°X) I N

N7 dp?

=E Var {N2(0 6°) 2(0 —00)} = 1;(6°).

Lastly the remaining problem is to show that the covariance above converges to 0.
This can be proved as follows. (In the following, L(#°X) is denoted as L.)

£ . 2
E| Cov { N(§ —6%), N2(8* — 0°)d—,1i11|1v7‘(0* - 00)}
- : Nz dp?

= E| N3(6* — 0°)§{(N(0‘ —6%) — EN( —6%))

2 2
><(d llogL (d logLIN (0*—00)))|N2(0*—0°)
Nz d62 N2 d§?
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1 a 2
= E| Ni(o* - 00)1_5[(1\'(0 —6%) — EN(6 — 0*))( dlogL _ (—d 11°gL)
7 dh> N2 df?

2
— N3(8* — 6°) Cov {Qg—é, N7(6* - 00)}
— | N2 d§?

/ Var (N¥(e* - 00)})|N3'(0* - 00)”

E|N>(6* — 0O){N(d —0*) — EN(6 — 0*)}{‘2:0595 (‘j\zrlofaf)}

2
— Cov {%, Nz (9% — 00)}/ Var { N2(6* — 6°))
N7 df? -

xg{(zvs'(o* — 8%9)*(N(6 —6*) — EN(§ —0*))}

where the second term in the last expression vanishes because of the asymptotic
independence between N %(0* — 9% and N(f — 6*). In order to consider the first
term, let Cov{d” log L/N? d8% T;} = \,. Then

n 2
E| N¥(6* — 6°){N(f —6%) — EN(6 — o*)}{ dlogL (——d }°gL)}
N? dp? N? do?

' d?*lo L d*log L
=FE (Eiai*]-})(zjzk(ﬁjk )TTk){ £ ( 1 £ )}
N2 df? N2 df*

- (Ejzk(ﬁjk - _/k) k)(z

= 2:iz:jz:kai’.‘( :Bjk _[k){ol j}\k + 0; k}\ + k>\1}

- (EjEk( By — Bk ojk)(ziai*xi)
=333, By — BE){oi M + 0N}
= 2k)‘k(zizj"‘i*"i,j( Bk — Bre) + ZA(EZeato; (B x — ,Bfk)) =0
by (20). Then, from (21),

I;+(8°) = Var N(8* — 8)/V(6°) + [;(6°).
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