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A CENTRAL LIMIT THEOREM FOR PARAMETER ESTIMATION
IN STATIONARY VECTOR TIME SERIES AND ITS APPLICATION
TO MODELS FOR A SIGNAL OBSERVED WITH NOISE

By W. DuNsMUIR
Massachusetts Institute of Technology

A general finite parameter model for stationary ergodic nondeterministic
vector time series is considered. A central limit theorem for parameter esti-
mates, obtained by maximising frequency domain approximations to the Gaus-
sian likelihood, is established. The treatment given extends the central limit
theorem of Dunsmuir and Hannan in that the innovations covariance matrix
and the linear transfer function need not be separately parameterised. Models
for a stationary vector signal observed with stationary vector noise are dis-
cussed in relation to the central limit theorem and the conditions imposed for
this result are related to this model. Finally, the special case of a scalar
autoregressive signal observed with noise is discussed. It is shown that this
model may be reparameterised so that the central limit theorem of Dunsmuir
and Hannan may be applied.

1. Introduction. Let z(n) be a vector time series with s components generated
by a parametric model of the form
(1.1) z(n) = 272,C(J; 0)e(n — J)
where e(n) is a vector sequence of white noise (i.e., Ee(m) =0, Ee(m)e(n) =
3,,,K(0) for all m and n, and §,,, is Kronecker’s delta). It will be assumed that
C(0; 0) = I, (the s-rowed identity) and that the s X s matrices C(j; ) satisfy
tr 2720C(; 9)K(0)C(; 0)* < oo. (4* will mean thelcomplex conjugate transpose
of 4, ||A]|| will be taken as the matrix norm (tr(44*))z, tr 4 is the trace of 4, det 4
is the determinant.) Then z(n) has zero mean and finite variance. It will also be
assumed that z(n) is strictly stationary and ergodic.

In (1.1) @ denotes a vector of U unknown parameters to be estimated using
observations z(1), z(2), - - + , z(N). The most common example of a parametric
model of the form (1.1) is the multiple autoregressive-moving average (ARMA)
model

12 2i_0B())2(n — j) = Zf_oA()e(n — )
where B(0) = A(0) = I, and det A({) # 0 for |§| < 1 where A($) = 29_,B()§?.
However, there are other examples—see Bloomfield [1] for instance.

The methods of estimation to be considered are all obtained by approximating
the likelihood of zj = (z(1),: - -, z(N)) derived on Gaussian assumptions
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although no such distributional assumptions will be required below. Specifically,
—(2/ N)log (likelihood) on this assumption is

(1.3) Ly(0) = N~ log det Ty(8) + N "'z, Tx(0) 'z

where I'y(0) = Ezyzy and has as its (m, n)th block of s X s elements the matrix
I'(n — m; 8) = E(z(m)z(n)’). As in Dunsmuir and Hannan [4], various frequency
domain approximations to (1.3) may be introduced. To define these it is useful to
define the periodogram at frequency w € [—, 7] as I(w) = W(w) W(w)* where

W(w) = (27N)~TSN_ 2(n)e™
is the discrete Fourier transform of the data. Also the spectral density matrix of

2(n) is

(1.4)
flw; 8) = El;r—k(e"“’; 0)K(9)k(e; 8)*  where k(e; 0) =Z2,C(j; 0)e’/ .

In terms of these quantities two approximations to l':N(0) may be introduced as
follows.

(1.5) £(8) = log det K(0) + N 'S, tr £~ Y(e;; )1(w)]
where w, = 27t /N, = N/2 <t < [N/2],

(1.6) Ly(6) = log det K(8) + 5 I, tr] f w3 0)1()] des

In practice LN will tend to be preferred to LN since for L the W(w,) may be
computed efficiently by using the fast Fourier transform. When LN(0) LN(0)
Ly(0) are minimised with respect to # (belonging to a suitable parameter space—
see [3] and [4] for some examples) the estimates so obtained will be referred to as
by, 8y, 8, respectively.

In [3] and [4] the strong law of large numbers (i.e., éN —, .00, the true value) for
these estimates is established under quite general conditions. In particular, this
property for the estimates of the parameters in (1.2) is discussed at some length.
Also in [4] the central limit theorem (CLT) for éN, etc., was established under the
assumption that 4 is partitionable into two subvectors §’ = (7/, u’) where 7 specifies
the C(j; 7) (and thus k(e™; 7) in (1.4)) and p specifies K(p) with 7 and p
independently varying. Then N /%, — 7,) converges in distribution to the multi-
variate normal under mild conditions (condition C2.3(a) and (b) of Section 2 to
follow) on the distributional properties of e(m) in (1.1). The corresponding result of
[4] for N'/%(jiy — po) requires fourth moments to exist for the elements of
e(m)—see condition C2.3. In this article the condition that k& and K be separately
parameterised, in the CLT for 67N and 0~N, will be removed (see Theorem 2.1 and
Corollary 2.2).

The main example which will be introduced to motivate the need for the removal
of this separate parameterisation condition is the model for a signal observed with
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noise. In this, z(n) = y(n) + x(n) is observed where the signal y(n) and the noise
x(n) are processes of the type (1.1). In Section 3 this model is discussed and the
CLT of Section 2 is related to it. For the case where x(n) is white noise some
prediction theory for the prediction of y(n) in terms of the history of z(n) is given
in order to motivate one of the conditions needed in the CLT (see C2.3(a)). In
Section 4 the very special case of a scalar (s = 1) autoregressive (p = 0,4 > 1)
signal plus white noise is considered. A discussion of how the CLT of Section 2
may be applied to this case is given. It is then shown that this model may be
reparameterised, in a fairly natural way, so that the CLT of [4] applies to the new
parameter set.

2. The central limit theorem. In this section z(n) will be taken to be a
stationary, ergodic time series generated by a finite parameter model of the type
(1.1) wherein the e(m) satisfy C2.3 below. Since it is our intention to only discuss
the CLT for the estimates 8y, fy it will be assumed that 8, — .8, and ) —,0,
where 8, is unique. Sufficient conditions to ensure that 8y, 8, —, , 8, for the general
model (1.1) and for the ARMA model (1.2) are given in [3] and [4]. The true
parameter vector 8, is assumed to belong to a twice differentiable manifold 9N of
dimension U. It will be assumed throughout that f(w, #) >0 for w € [—m, 7],
0 € 9. It is also necessary to introduce the following conditions:

C2.1. f(w, @) has elements which are twice continuously differentiable functions
of € 9. The second derivatives of these elements are continuous in
we|[—n, 7.

C2.2. f(w, #) has elements belonging to A,, the Lipschitz class of degree a,
where 1/2 < a < 1. For the definition of A, see Zygmund [12].

C23. Foralll <a,b,c,d<sand —o0 <n < oo,

(@) E(g,(m)|%,-,) =0as,;

(b) E(e,(n)ey(n)|F,_;) = K(8o) as.;
© Ele(m)es(me(n]F,1) = By as.;
(d) E(e(mey(ne(n)en) < o,

where K, (0,), B, are constants and %, is the sub ¢-algebra generated by the
elements of e(m) for m < n. We will call the fourth cumulant between ¢,(m), &,(m),
e.(m), e,(m), K., Condition C2.1 is analogous to Cl of [4], C2.2 is a stronger
smoothness condition on f(w; #) than C2 of [4] but this condition is satisfied for
rational spectral density matrices corresponding to ARMA models, while C2.3
(which is like independence up to third moments) is stronger than C3 of [4] in that
C2.3(c) and C2.3(d) are additionally imposed. C2.3 ensures that the covariance
matrix in the CLT below is of reasonably neat form (see also Hannan [6]). The
relevance of C2.3(a) to linear models of the type (1.1) was pointed out in Hannan
and Heyde [7]. Its relevance to models for a signal plus noise will be stressed in the
next section.
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The CLT for fy will be given first. Corollary 2.1 contains the corresponding
result for fy. In what follows it is convenient to let k,(e') denote the (u, c)th
element of k(e™, §,) and fy(w), fp(w)/ 00; etc., denote f(w; ), of(w; 8)/06,, etc.,
evaluated at § = §,. The notation ¢, )(w) will be used for the (p, ¢g)th element of
o, '(w)/ 26,

THEOREM 2.1. Under conditions C2 the vector N'/*(,, — 8,) has an asymptotic
normal distribution with zero mean vector and covariance matrix

@1 Q-'(22 + Q!
where
= —f tr[f0 Yw )af"("")fo (o )afo(w) ]
and
L= 37 *1.0) | " .

PROOF. Since 6, minimises LN(B) and eventually enters an arbitrary neighbor-
hood of 6, we consider (as in the proof of Theorem 5, [4])
8 9 -
0= N5 Ly(8y) = N'25 Ly(8) + LN(BN)] 1/2(Gy — 8,)

where ||6y — 6| < ||y — 8,]| and by (3/ 60)LN(00) for instance, is meant the
vector of derivatives evaluated at 0. Thus the central limit theorem for N''/%(8, —
6,) reduces to that for N'/2[(92/80%) Ly(6y)]'[(3/90)Lxy(6,)). Now the (j, k)th
element of (92/80%)Ly(6y) converges in probability to Q. In fact, letting g(w; 8)
= (0%~ (w; 6)/36,26,),

(22) 2 aL,,Na(,f”) - L (gl 6)) do

1 f(w; by) of ~'(w; Oy) N
— .2;f tr{ %, %, + f(w; 0N)g(w, 0N) dw.
Since 6y —,0, and the derivatives of f and f ~! appearing in this expression are

continuous the second integral in (2.2) converges in probability to
1 fp(w
A { ¥) y00) + fwgtos oo)} dos

Consider the first term in (2.2). Since g(w; ) is uniformly continuous in (w, §) €
[—m, 7] X 9y, where I, is any closed neighborhood of 6, then

h(0) = sup,,c(—r, « 8(w; 8) — g(w; 6,)|
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is continuous at # = 6. Then h(fy) —,h(6p) = 0. But

l—zl;r-f tr(l(w)g(w; 0N)) dw — 2—le tr(Z(w)g(w; 6y)) dw)

; 1
< h(oN)tr{ 57 /1(«) dw}
, = h(fy)tr G(0) —,0
since, by ergodicity, tr G(0) —,, tr I'(0; 6p) < o0 where G(I) = N -1
SN-tz2(m)z(m + 1y is the /th sample autocovariance matrix. Approximating

g(w; 6p) by the Cesaro sum, g,,(w; 8,), to M terms of its Fourier series we may, for
any ¢ > 0, choose M sufficiently large so that

Supw”g(“); 00) — gM(w; 00)” <e.
Now
@3 2_177f tr{I(w)g(w; 8)} dew = —;;f tr{ 1(w)[ g(w; 8p) — garlw; 8]} doo
* %f tr{1(w)gp(w; bp) } do.

The first integral in the right-hand side of (2.3) has modulus bounded by
¢/2m tr G(0) -, /2w tr T'(0; 8;) so that this first term may be made arbitrarily
small by choosing M large. The second integral in (2.3) is of the form

wf st (1 - L )etss 0960y )/ @ap.

But G(I) -, I'(l, 8,) for each |I| < M and g(/; 8,), the /th Fourier coefficient of
g(w; 8,), have norms which are uniformly bounded. Hence the last displayed
expression converges a.s. to

trf34,(1 - B )oi s 807}/ 2™
In turn this expression is arbitrarily close to —2—1; Jtr{ fo(w)g(w; Bp)} dw as required.
Hence

aZEN(éN) 1 fo(w) afo—l(“’) _
—aojaak -—>p _ﬂf tr ——aoj ——aok dw—ﬂjk.

Hence the CLT for N'/%(f, — 8;) reduces to that for N'/%3Ly(8,)/36) the jth
element of which can be written as

1/2 Ly (6,) _N
0, 2

Writing f,, () for the Nth order Cesaro sum of the Fourier series for fy(w) we have,

(2.4) N

:zf tr[ [1(w) = fo(w) ]$P(w) | deo.



TIME SERIES CENTRAL LIMIT THEOREM 495
since fy(w) = EI(),

1/2 ; 1/2 ;
1 [ E1) = @) ]60@)] do = T ] [ (@) = fo)]6e) ] ds

= Q(N/2~) '
by Theorem 3.15 of [12]. Hence f,(w) may be replaced by EI(w) in (2.4) to arrive at

, 1/2 y
(2.5) Ay(6) = A;W J te{[1(w) - EI(w)]¢¢ o)} do, 1<j<U.
To see that $“)(w) may be replaced by its Cesaro sum to a finite number of terms,
M, consider Ay(8) where 8(w) = ¢(w) — Ppy(w), sup,||8(w)|| < ¢ and ¢,, is the
Cesaro sum corresponding to ¢“. Then
(2.6)

Nl/2
AN(S) = zi-lzi-lTﬂ_f[Iuo(w) - EIuv(w)] 8014(“)) duw

= 2uzv{lv_l/2zzlrvn,n-l[zu(rn)zv(n) - 'Yuo(n - m)] sou(m - n)}/ (2'”)2,
where 8,,(m — n) = ™ 8,,(w)e ™ " dw. Calling the summand in braces D,, we
need to consider, in evaluating the variance of Ay(8) (see Hannan [5), pages
209-211])

2.7
E[DrtDuo] = N_lzzzzx,n,p,q-l{[%-u(p - m)Yto(q - ’l) + Ym(q - m)Ytu(p - n)
+3Z3TY ¢ 4 em1850ae2 1 Cp(1) Co(l + 1 — m)Cy(l + p — m)C (I + g — m)]
X 8tr(m = n) 89,4(]7 - q)}
where C,(/) denotes the (r, b)th element of C(/, 6,)) and v, (p — m) =
E(z,(m)z,(p)). First consider
IN_lzmznzpqum(q - m)Ytu(p - n) atr(m - n) 8vu(p - Q)l
= IN"YJ(ZnZ, 8,(m — n)e™rnaf ()
X (szq 80“(}7 - q)ei(qk+pw)fm(w)) dw dxl
< (27B)*- BY/*B)/?,
where
N~! ‘
B, = ___jfflzmzn 8tr(m - n)e_l(mx-”w)lz dw dA
(27)
and each typical element, f, (w), of fy(w) has modulus bounded by B because fy(w)
is continuous. Now, by simplifying the integrals it is easily shown that
1
N
Hence the contribution to ED, D, from the second term under the braces in (2.7)

B, = S (1 - ), (P < 20118, (@) do < (2me)?
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may be made arbitrarily small. Similarly for the first term. Finally consider the
term arising from the fourth cumulant in (2.7)

2,220 g { N 7'2,2,2,2 2, Co(NC, (1 + n = m)C (I + p — m)
Coel + g —m)8,(m—n)8,(p—q)}
The modulus of the factor in braces can be written

1
N 27 I 2n > m2n O, (n — m)e'"T e minep (eM)k, (e V) dA

3 I5,5, Bu(q — P aPem ke (MY (¢4 ) d.d]
-1 1/2
B(A;—ﬂf%;ﬂZmZ,, 8, (n — m)ein=mAg—ine2 g) dw)

N : . X 1/2
( 2 f2 flz 2 v(q —p)e‘(‘l—P))\e—tquZ d\ dw)

where [|k,,(e™)|* dw < B < oo, for each r and b, since C2.2 implies that f(w; ;) is
square integrable which in turn implies that |k,,(e™)[* is 1ntegrab1e—scc [6], page
398. As before, the square of the first factor is equal to B,, < (27¢)>. Therefore the
contribution to (2.7) from the fourth cumulant term may be made arbitrarily small.
Hence the CLT for 4,(¢Y) in (2.5) may be established by considering the CLT for
the U quantities

An(o?) = 2,231 = S Jor w2 g0 - 22y 1)) Gy,

where g,,(/) is the (r, )th element of G(/). Now, as in [6], 45(¢$/) is asymptotically
equivalent to

C8)  B(ep) =323 (1 - ey ey

where

(1) = N7V2Z0 _(z(m)z,(m + 1) = v,(1)).

In [6] it is proved that when C2.3 is satisfied the necessary and sufficient condition
that any finite set of the 7,,(/) by asymptotically jointly normal is that the diagonal
elements of fy(w) be square integrable. (In [6] C2.3(d) is replaced by the stronger
condition that the conditional fourth moment is a.s. constant. This is not needed in
[6] nor here.) The condition C2.2 certainly ensures this so that the theorem of [6]
may be applied to By(¢) in (2.5) since M is finite. All that remains is to evaluate
the asymptotic covariance between By () and By(s(?). Now,

E{By(#3)Bn(4/)}

= 3,5 2.2.3% e (1 - ) (1 = E)o (1o @m EL 2 (5 (m)]/ 2"
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which, by using the asymptotic formula ([6], equation (3)) for E[7 ,(n)7,.(m)],
converges to
1 .
2 tr{ priiation) dw}
1 1
(@2n) (2n)’

as N — co. By taking M large this last line is easily seen to be arbitrarily close to
2Q, + IL,. This completes the proof. []

+2,,2,,202dx,,,,c,,[ [k*oDk dw} l [l*eDk dw}
ab

cd

The result for §, may be used to prove the same result for 6, when C2.2 is
strengthened (in the same way that the conditions of [4], Corollary 2, are
strengthened).

COROLLARY 2.2. If, in addition to the conditions of Theorem 2.1 it is assumed
that, for each 1 < j < U,

C24. of(w; 0)/90; has elements belonging to A, for a > 1/2,
then the conclusion of Theorem 2.1 holds for N/, — 0,).

PrOOF. By a similar argument to that used in the proo~f of Theorem 2.1 it
follows that 3°Ly(8y)/96,30, — Q... Then the CLT for N '/%(§,, — 8,) follows from
that for the U quantities

AL, (8 ~
Nl/2% - N‘/z{ %f tr fo(w)P(w) ] doo

— NS, ] )¢9 (w)] }
29) = N 5 ] )] do

- NI, ] ()90 |

—NVANIZ, tr[ I(0) — fu(w)]$(w,) }
where fy(w) is as before. To establish the CLT for the N/ 28£N(00)/ 96, we will
show that the first term in the right-hand side of (2.9) converges to zero and the
second term is arbitrarily close to (2.5) in probability. Now the first term can be
rewritten as

(2.10) N'/Z[ 51; [ tr h(w) do — N13, tr h(w,)}

+N2NTIE, ] (fw) — Sn@))eP(@)])
where h(w) = fy(w)pY(w). The first term in (2.10) is dominated by
NV2. 2. sup, suplw_w’|<27ﬂ|tr[h(w) - h(“’t)]l = O(NI/Z—a)

where a > 1/2 since h(w) € A,, « > 1/2. Hence this term in (2.10) converges to
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zero as N — oo. The second term in (2.10) converges to zero by a similar argument
as used to replace fy(w) by El(w) in the proof of Theorem 2.1. Hence, the first term
in (2.9) converges to zero. Consider the second term in (2.9). Define

jN(s) = 22iv=lN—l/2Et[Iuv(wt) - EIuo(wt)] 6vu(“’t)
where 8(w) is as in the proof of Theorem 2.1. Then, letting
3G (1) = N7'Z, 8, (w)e™
Ay(8) may be rewritten as in (2.6) with 8, (m — n) replaced by §X(m — n).
Making this replacement throughout the argument (given in the proof of Theorem
2.1) used to show that E[D, D,,] in (2.7) can be made arbitrarily small by choosing

M large in ¢P(w), the correspondmg conclusion will follow here provided
M lna = (I/N) 8™(D|? < Be?, B < 0. But

B / N-1 -1 il 2
11V=_1N+‘(1 _ u)|8(N)(1)|2 < 2NN TIE, 8(w)e™
<2 N—llN Iz s(wt)ellw,lz
=2N"'3,|8(w)? < 2e.
Hence Ay(¢Y) may be replaced by A4,(¢,,). But

Avu) = Anen) = St (1 = SD)on £ )

where E(I) = N7'3N_,_,.\[z(n + I — N)z(n) — y(N — D]for! > 0and E(—1/)
= E(l)y. But the Fourier coefficients, ¢(/), of ¢“)(w) have elements which are
uniformly bounded for |/| < M and each element of N!/2E(/) is of the form

~12(7.(1)zy(N — k) — (N — k — 1)} which converge in probability to zero
for |7], |k| < M. Hence the CLT for the quantities N '/23Ly(6,)/d6; is the same as
that for the N''/23Ly(8,)/96; and the proof is complete. []

REMARK 1. If log det K(8) = 1/2# log det 27f(w; 8) dw in the definition of
L,(8) is replaced by N ~ I3, log det 27f(w,; @) (as in Davies [2], for example) then,
provided the strong law holds, §, minimising the modified expression satisfies the
above CLT without requiring C2.4 but only C2.1-C2.3. That this is so follows from
the fact that in the expression corresponding to (2.9) the first term will be null. The
remaining arguments in the proof of Corollory 2.2 only require C2.1-C2.3.

REMARK 2. We have not investigated the CLT for N'/%(, — 6,) for reasons of
space. It is very likely true that the result for this case holds with C2.2 strengthened
along similar lines to the extra conditions needed to prove Corollary 3 of [4].

REMARK 3. When k(e’, ) and K(@) are differentiable functions of # the II

term in the covariance matrix (2.1) simplifies to

oK. 1 0K,
I, = 22235, 4 .. d—lKabcd(KO ago Ko l) (KO 80? Ky )
ab d

since (27) ™' [ kydko/36; dw is null for example.
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REMARK 4. It is important, from a practical point of view, to consider the
circumstances under which the fourth cumulant term (i.e., II), in the limiting
covariance matrix (2.1), vanishes. If «,, , is zero for all subscript values (as would
occur if the e(m) were Gaussian) then IT is null so that the asymptotic covariance is
2Q~!. When @’ partitions as (7, u')—the case discussed in [4]—the matrix (2.1)
reduces to

2007 0
0 Q@7 (20@ + I®)Q@™'

where, for example, 2 has the dimensions of . In [4] the CLT for 7y, etc., was
established without assuming the existence of moments higher than the second
order for &(m) with asymptotic covariance 22~ which ‘does not depend upon the
Kaeq- In general, for IT to be the null matrix it is necessary and sufficient (given the
conditions of Remark 3) that K; '(3K,/96)K, ' be the null matrix for all j.
(Compare Whittle [11], pages 13-14).

3. Applications to models for a signal observed with noise. Consider the follow-
ing model for a stationary signal observed with noise
(3.1) z(n) = y(n) + x(n)
where the “signal” y(n) and the “noise” x(n) are incoherent (i.e., Ey(m)x(n) =0
all m, n) and are each of the type (1.1). That is
(32) y(n) = 2326G,(j; 6,)e,(n — j)

x(n) = 2;.;0Cx(j’ 0x)ex(n —j)

where ¢,(n) and ¢,(n) are at least white noise with covariance matrices K (4,) and
K. (8,) respectively. The spectral density matrix of z(n) is

(3.3) f(0,0) = £(w, 8,) + fi(w; 0,)

where f, = (1/2m)k, K k}, f, = (1/27)k K k¥ and 8, = (6}, 6;) or is an equivalent
reparametrisation of the problem. Since z(n) is also zero mean, stationary and
purely nondeterministic it has Wold decomposition

(34) z(n) = 2320C,(J, 0.)e.(n = J)
in which ,(n) is white noise with covariance matrix K,(6,). Here we have implicitly
assumed that the C,(j; 8,) and K,(6,) are matrix functions of the parameter 6,. This

will be the case in many examples. The spectral density matrix of z(n) in (3.3) may
now also be written as

(2.11)

(35) fz(w; 01) = él_ﬂ.'kl(e.iw; 0:)&(0z)k(eiw; 02)*'
Using the minimisation criteria Ly, L, Ly 6, may be estimated using observa-
tions z(1), - - -, z2(N). We will be concerned with relating the CLT of Section 2 to

the above signal plus noise model and will assume that, e.g., #, 5 converges a.s. to
the unique limit 8,,. In particular, if z(n) is ergodic, if z(n) can be represented in the
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form (3.4), and if conditions B of [4] hold for the parameter space to which 6,
belongs and for k, and K, as functions of w and 4,, then the strong consistency of
67:’ ~» €tc., holds. Moreover, it is not required that k, and K, be separately
parameterised for this result. In signal plus noise models of the above type it is not
always true that K. and k, may be separately parameterised because of the
complicated way in which the factorisation of f, in (3.5) is arrived at commencing
from the original parameters 6, and 8,. Thus the CLT of [4] may not always apply
to such models (see Section 4, however, for an example where the model can be
reparameterised so that the CLT just cited applies). However, when the ¢,(m)
satisfy all of C2.3 then the CLT of Theorem 2.1 (and Corollary 2.2) may be
applied. On the other hand the condition that (at least) ¢(m) be martingale
differences with respect to their past may not be appropriate since it is not always
the prediction of z(n) on its past which is of interest but rather the prediction of
y(n) on the past of z(n). Recall that when the prediction of z(n) is of interest
C2.3(a) can be given a natural interpretation in terms of linear modelling—see [7].

A corresponding discussion of the relevance of condition C2.3(a) will now be
given in the context of signal plus noise models where x(n) is now taken to be at
least white noise with covariance K,. The signal y(n) will be taken to be a
stationary nondeterministic process with one sided representation

(3.6) y(n) =22:G(e(n=J),  C(0) =1

in which the ¢,(n) form a white noise sequence with covariance matrix K,. If x(n)
and y(n) are incoherent then (see (3.3))

(3.7) fw) = 2m) "k (™)K K (e™)* + K, }

which may also be written in the following form (see (3.5))

(38) f;(w) = (2W)_lkz(eiw)szz(em)*‘

Reference to 6., 6,, 6, has been suppressed in the above because these parameters
play no part in the following discussion.

Since only z(n) is observed in (3.1) then prediction of the signal y(n) must be
based on z(m), m < n — 1. Once the C,(j) corresponding to k, in (3.8) are known
the optimal linear filter for predicting y(n) in terms of z(m), m < n — 1, may be
constructed 'using only these C,(;) (see the proof of the theorem to follow). It is
therefore relevant, if the above model for z(n) (with y(n) as in (3.6)) is correct, to
impose the condition that the best linear predictor of y(n) is the best predictor of
y(n) (both based on z(m), m < n — 1 and both “best” in the least squares sense).
To discuss this the following notation is convenient. Let

3.9 Y(n) = the best predictor of y(n) given z(m), m < n — 1;
y(n) = the best linear predictor of y(n) given z(m), m < n — 1;
Z(n) = the best predictor of z(n) given z(m), m < n — 1;

Z(n) = the best linear predictor of z(n) given z(m),m < n — 1.
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Let %,(n) be the o-algebra generated by the elements of z(m) (equivalently by the
elements of ¢,(m) given in (3.4)) for m < n and let ¥, (n), %,(n) be similarly defined
for x(m), y(m), respectively. Then y(n) = E(y(n)|¥,(n — 1)) and Z(n) =
E(z(n)|F,(n — 1)).

THEOREM 3.1. If x(n), y(n) and z(n) = y(n) + x(n) are as described above and if

C3.1. E(x(m)|F,(m — 1)) = 0 as. all m,
then Z(n) = Z(n) if and only if y(n) = y(n).

ProOOF. The result will be established in two steps. The first shows that
y(n) = Z(n), the second that y(n) = Z(n).

(i) y(n) = z(n). By [5], Theorem 10', page 173, the response function of the
optimal linear filter for y(n) given z(m), m < n — 1is

h(eiw) = eiw[e—iwfy(eiw)k:(eiw)“l]+ Ig—lkz(eiw)“l

where [ g(e™)], denotes that only nonnegative powers of e are to be taken in the
(matrix) series expansion of the (matrix) function g(e’). Using (2.2) f, may be
replaced in [e"f,(e™)k*(e™) "], to reach

h(eiw) = eiw[e—iwkz(eiw) — e—inxk:(eiw)_le—l]+ kz(eiw)—l.

But the second term in [ ], of this expression has only negative powers of ™ so
that it makes no contribution to A(e*). Thus

h(e™) = e(252,C.())eV ™)k (e™) !
=1 - k,(e*)~ .
On the other hand, the transfer function giving Z(n) is easily obtained (see Theorem
1, page 129 and Theorem 1”, page 163 of [5]) as k(e’). Thus Z(n) = y(n).
(i) y(n) = Z(n). Now
(n) = E(z(n)|%,(n — 1))

= E(y(n)|F.(n — 1)) + E(x(n)|F.(n — 1))

= y(n) as.,
since, by assumption C3.1, the second term in the previous expression is null. []

Note that y(n) = z(n) even when C3.1 does not hold. Insofar as the requirement
y(n) = y(n) is natural (for linear modelling to be appropriate) then the additional
condition C3.1 ensures that Z(n) = Z(n). But Z(n) = Z(n) if and only if

(3.10) E(e,(n)|%,(n — 1)) =0 as.allm,

[7]. This means that part (a) of C2.3 is satisfied for ¢,(m). It would be of interest to
determine the minimal conditions under which the remainder of C2.3 hold for
¢,(m) but we have not done this. Some conditions on y(n) and x(n) which ensure
C3.1 are as follows:
(a) If the x(n) are serially independent and independent of y(n) then C3.1
holds.
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(b) If &n)y = (g(n), x(ny) and F,(n) is the o-algebra generated by &(m),
m < n, then, provided E(§(m)|%,(m — 1)) = 0 a.s. all m, the condition C3.1
holds.

Other conditions are no doubt available to ensure C3.1.

The result of Theorem 3.1 is useful not only in justifying (part of) the condition
C2.3 imposed in Theorem 2.1, (in which 8 could parameterise both k and K) but
also in relation to the discussion of the model considered in Section 4. There it is
shown that, after suitable reparameterisation, the treatment given in [4] may be
applied to that model. For the CLT of [4] to apply to the parameters (r defined by
(4.6)) specifying the linear predictors discussed above, C2.3(a) and (b) are only
required for the ¢,(m).

If the imposition of C2.3 cannot be justified for the general model (3.1) then we
may proceed as follows. Let y(n) and x(n) be of the form (3.2), let n(n) =
(g,(n), &.(n)) and define ¥, (n) as the o-algebra generated by n(m), m < n. We will
assume that n(n) satisfies C2.3 but will now refer to the constants in this as K,
B and k{,, respectively. However, it need not be true that the ¢,(m) in the
representation (3.4) satisfy C2.3 in this case. An alternative representation of z(n) is
@Gy z(n) = Z32oD(j; 6.)n(n — j)
where D(Jj; 6,) = [C,(J; Q,)ECX( Jj; 8)]. If now C2.1 and C2.2 are assumed for
f.(w; 8,) and C2.3 is assumed for n(n) then Theorem 2.1 continues to hold. To see
that this is plausible consider the following. The proof of Theorem 2.1 up to
equation (2.6) is not changed by this new specification since only C2.1 and C2.2 are
required in the argument to this point. Now the fourth cumulant term in (2.6)
needs to be modified by increasing the upper limit of summation to 2s, replacing
Koeqe DY K$1, and using c,,(/) to denote the (r, b)th element of the s X 2s matrix
D(!) given above. This replacement does not effect the validity of the steps in the
proof that Ay(8) has negligible variance. Thus the proof up to (2.8) is valid here
also. By examining the proof of the theorem in [6] the same replacements as
described above may be made and that theorem still applies. (That is, the proof of
the theorem in [6] does not require that D(j) be square.) Thus the CLT for 0: N
holds for this case. The asymptotic covariance matrix (2.1) may be obtained (see, in
particular, IT;) in the form stated but with the elements of k(e*) replaced by those
of the s X 2s matrix S3D(j)e?, the range of summation increased to 2s and K,
replaced by «{,,.

When k, and K, are separately parameterised by 7, and p, but C2.3 only holds
for n(n) and not ¢,(n) then the discussion just given still applies. Furthermore the
asymptotic covariance matrix of Theorem 2.1 reduces to (2.11) and, as discussed in
Remark 4 above, this means that the asymptotic covariance for 7, does not depend
on fourth moments (i.e., does not depend on «{,). It may be true that in this case
the CLT for N/ %7, v — T, 0) can be established along similar lines to that given in
[4] without the assumption that moments higher than the second exist. Finally, if
the ¢,(n) and g,(n) are Gaussian and independent the fourth cumulant term II
vanishes from the asymptotic covariance (2.1). Also in this Gaussian case, the ¢,(n)
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satisfy C2.3 directly so there is no need for the modification to the proof of
Theorem 2.1 mentioned above.

4. The model for an autoregressive signal observed with noise. Recently
Pagano [10] has considered the model (3.1), for s = 1, in which y(n) satisfies the
autoregression

(4.1) 25’ oﬁ(j)y(n —J) = &(n), B(0) = 1, Eg,(m)e,(n) = 6,07,

where A($) = 39_,B(j)¢’ has all zeros outs1de the unit circle (i.e., for |{| > 1) and
x(n) is whlte n01se with Ex(m)x(n) = 8,02 In the above, x(n) and y(n) are taken
to be at least incoherent. Pagano [10] considers the estimation of the parameters
B, - - -, B(g), oyz, o2 and establishes the consistency and asymptotic efficiency of
the estimators when it is assumed that x(n) and y(un) are independent one to
another and are Gaussian. These estimators are obtained by a nonlinear least
squares regression method using consistent estimators of (1), - - -, B(q) and of
the covariances, at lags / =0,- - -, g + 1, of z(n) In the followmg we will take a
different approach and base estimation on LN, LN, L It will be convenient to
define the vector of parameters

(4.2) 8 = {BQ), - - -, B(g). &2, o2}
The vector # will be taken to belong to the set
(43) ©={0€RID p()#0,]5|<1; ,B(q) #0; 02 >0, 67 > 0}.

(The assumption that B(q) # 0 presupposes that the true degree, g, of the autore-
gression is known. This is an identification requirement for the above autoregres-

sive signal plus noise model.)
In the model just described the spectral density of z(n) (given in (3.3)) becomes

02
(4.4) flw; 8) = { —_— 03}.
IZ§B()e"
As is well known (see [10], for example), this may be rewritten in the form (3.5) as
o [Zfa(i)e”™f

45

) o) = 3 B
where 62 and a(1), - - -, a(q) depend on 6. In (4.5) it is always possible to choose
the a()) so that g({) = ,Oa(j)g‘f has all zeros outside the unit circle.

The procedure Ly(0) (whlch will be the only one discussed below since the
discussion for Ly and Ly is similar) may be used to obtain the estimator of @
defined in (4.2) as 8. Since it is our intention to discuss only the CLT for 8, below
and not the SLLN we will assume that 0— —, 0o (If, for example, 8, belongs to
that subset of ® for which 0 < ¢ < d?, o, 2 < b < oo then the conditions for the
strong law of [4] will apply.) For the parameterisation of the problem chosen (i.e., 8
in (4.2)) the CLT of [4] will not apply since both o? and k(e™) =
4 BU)e?)(Zda(j)e?) depend on the same vector of parameters #. (That this
joint dependence on § is not vacuous may be seen in the simplest example of the
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above type, i.e., when g = 1, as discussed on page 171 of [5].) However, the CLT of
Section 2 may be applied in this case to N /%y — 8,) as follows. In the first place,
conditions C2.1 and C2.2 may be shown to hold on the parameter space ® defined
in (4.3)—see also the discussion below. Secondly, when the x(n) are taken as
serially independent and independent of y(n), Theorem 3.1 applies so that part (a)
of C2.3 is not an unnatural requirement here. If, further, the remainder of C2.3 is
assumed then the conditions of Theorem 2.1 hold so that N'/%(@, — 6,) has the
asymptotic distribution of that theorem.

However, as will now be discussed, there is a different parameterisation of the
above model which has certain advantages. We propose to take as parameters

(4.6) T ={B(1),- -, B9 a(q)}
and o?. The appropriate space to consider for r and 62is T X R*, where R * is the
positive real line and

(47)  T={reR™": k() #0,[¢| < 1;0<a(q)/B(g) < I; B(g) # 0}.

To relate the different parameterisations, § and (7, 62), and the corresponding
spaces, ® and T X R*, we proceed as follows. Equating (4.4) and (4.5), multiply-
ing through by |=§ 8(j)e’*|* and taking Fourier coefficients gives

(48) o221z la(j)a(j + 1) = 8- 02 + 2ZIZ{BHBG + 1), 0<I<gq.

Now, given any § € ©, there exists a unique set of a(l),- - -, a(q), 6> with
g($) = Za(/)$’ having all zeros outside the unit circle. (That this is a unique set
follows from the fact that there is only one such factorisation of the spectral
density o7 + ¢Z|2§ B(j)e?*|* which corresponds to a moving average with all zeros
outside the unit circle.) However, if a(q) and B(1), - - - , B(g) are uniquely speci-
fied then a(1), - - - , a(¢ — 1) may be obtained by solving

49) S3zla(j)a(j + 1) —Z—%E}:&ﬁ(j)ﬁ(j+ D=0 1</<g-L

(These are just (4.8), for 1 </ < g — 1, with 6?a(q)/B(q) = o2, from the equation
(4.8) for / = g, substituted.) The solution to (4.9) for a(l), - - - , (g — 1) may be

shown to be unique as follows. Call each left-hand side in (4.9) ®,(B8(1), - - - , B(9),
a(l),- - - ,a(g — 1)) for 1 </ < g — 1. Then, by the implicit function theorem,
there is a unique solution (a(1), - - - , a(g — 1)) in terms of (B(1), - - -, B(q), a(q))

to (4.9) provided the (¢ — 1) X (¢ — 1) matrix with (/, k)th element 3®,/da(k), for
1 <k, 1 < g — 1, has full rank. This is just the condition that the matrix

1. [ a2) alg—1) afq) ]
a(l). : .‘. ‘.,.
(4.10) L0 + . 0
: alg=1) .
alg=2) -+ a(l) 1] | a(g) |
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be of full rank. But, by the results in Marden [8], pages 152-155, (4.10) has nonzero
determinant if the zeros of g(¢) = S&a(/)$ are all outside the unit circle, which is
true here. Hence, the a()), for 1 < j < ¢ — 1, in (4.5) may be written as functions
only of 7 and we will write a(j, 7), 1 < j < ¢ — 1, to emphasize this. Furthermore,
since the ®, defined above are (at least) twice continuously differentiable in
a(l), - - -, a(g — 1) and (4.10) is of full rank the functions a(j; ) solving (4.9) are
also twice continuously differentiable functions of 7 (see Matsushima [9], page 24,
for example). This remark is of relevance to the CLT to be discussed shortly. For
the given § € © there exist o2, a(l), - - -, a(q) such that (4.8) holds. But, as we
have just seen a(l),-.., a(g — 1) may be obtained in terms of
7 =(B),..., L), a(q)). Furthermore, this 7 belongs to T since by the equa-
tion (4.8) for / = g, since a2 > 62 > 0, it follows that a(g) have the same sign, i.e.,
that a(g)/a(q) > 0 and that a(q)/ B(g) < 1. (Note, since | B(g)| < 1 then |a(g)| <
1 also) If 8y — 0, a.s. then 8, 62  (corresponding to 6,) will converge as. to
85, 02 , (corresponding to 8,). Now take a small open neighborhood of (7o, 62 ) €
T X R*. For fixed 7, 6> may vary in this neighborhood and as it varies there will
be a signal plus noise model of the above type (i.e., a parameter § € ©) corre-
sponding to each o2. On the other hand, fix ¢ and let 7 vary in this neighborhood.
Then there is also a § € @ corresponding to this 7. This means that for N large (at
least) Ly, may be minimized as a function of 7 and o2 with 7 specifying
k(e™; 7y =(Z8 B(j)e?) ™' (Sga(j; 7)e?) alone and o} may vary freely from .
Since k(e’; 7) is a twice continuously differentiable function of 7 (see the argu-
ment below (4.10)) condition C1 of [4] is satisfied. We have already noted that
when x(n) are serially independent and independent of y(n) part (a) of C2.3 for
&,(n) in (using the new notation)

(4.11) z(n) = SXCy; 1)e,(n — ),  k(e™; 1) = ZFC(J; m)e?,

is not unreasonable. But C2.3 (a) is the first part of [4], C3. Hence assuming also
the second part of [4], C3 the CLT of [4] may be applied to yield the asymptotic
normality of N'/%(7, — r,) without, in particular, the extra moment conditions (see
C2.3) of Theorem 2.1. The CLT of [4], Theorem 5, for N'/%(jiy — uo) applies also
to N'72(G2 y — o2 ).

One advantage of the above parameterisation in terms of 7 and o is that the
CLT for the vector 7 may be established under more general conditions than can
the CLT for # in (4.2). Since the transfer function giving the best linear predictor of
y(n) based on z(m), m < n — 1 is completely specified by
a(l), - -, a(q), B(D), - - -, B(q) (see Section 3), that is by , the efficient estimation
of 7 may be of principal interest. Also it would appear no easier to estimate  than
(7, ozz) via Ly, f,N or ﬁN.
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