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A NOTE ON THE EXACT DISTRIBUTION OF A NONPARAMETRIC
TEST STATISTIC FOR ORDERED ALTERNATIVES

By VAN L. PARSONS
University of Cincinnati

The exact distribution of a nonparametric test statistic for ordered alterna-
tives, the so-called X2, statistic, is discussed. Two tables are given.

1. Introduction and main result. Suppose that we have n populations and from
population i a random sample X; |, X; 5, * -+, X; 5, i = 1,2, - -, n,is taken. Let
X, ; have distribution function F; for j=1,2,---,N,i=12---,n, and let
the samples from different populations be independent. We wish to test the
hypothesis

Hy:F,=F i=1,2---,n

against the ordered alternative

where at least one inequality is strict.

If F, is a normal distribution with mean p; and variance o2, the hypotheses to be
tested become Hy: p, = p and H, : p; < p, < - - - < p,. In this case the likeli-
hood ratio test yields the so-called X? test or E? test, depending upon whether the
common variance is known or not. The X? test statistic is defined as

%2 =3_ N (w - X )/,

where X is the grand mean of all the samples and p* is the maximum likelihood
estimator of y; under the restriction p; < g, < - - - < p,. It has been shown that
the distribution function of the X? statistic under the null hypothesis is a weighted
sum of x? distribution functions. The X* and E? tests are discussed in great detail
in Chapter 3 of Barlow et al. (1972).

If F, is known only to be continuous then the distribution-free version of the x*
statistic, the X2, statistic, may be used; this statistic was introduced by Chacko
(1963), extended by Shorack (1967), and is well summarized in Chapter 4, Section 4
of Barlow ¢t al. (1972).

In order to define the X2, statistic we need the following definitions. Let R, ; be
the rank of X, ; among all £N, observations. R, = 2} |R, ;/N,, N = 2}_|N,; and
define p¥, pf, - - -, u* to be the solution to the problem of minimizing 27_N«(R;
— 1,)* subject to pu; < g, < - -+ < p,. The p¥*’s are usually called the isotonic
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regression of the R;’s. A closed form expression for p* is
pr = Mi*(ﬁv Ry -+, En) = max‘;=1mn?=i2;=rNjRj/2;=rNj'
The definition of p* may also be expressed in terms of the greatest convex
minorant of the set of points (0, 0), E5_,N;, Z5_\NR), k=1,2,---,n. See
Barlow et al. (1972), Chapter 1, Section 2 for a complete discussion on the
computation of the isotonic regression.
The test statistic is then given by

12 N +1)\2
1.1 X2 = : .
( ) Xrank N(N'l-l) 2 )

The exact distribution of the X7, statistic under Hy, is unknown; however, the
asymptotic distribution of ¥2_, is that of X2 (see Theorem 4.5 of Barlow et al.
(1972)).

In this note we wish to point out a special, but important, case when the exact
null distribution of the X;,,, statistic can be computed. If all the sample sizes are
the same, say N, = N for all i, then we shall show that the distribution function of
the X2, statistic can be expressed as a weighted sum of standard Kruskal-Wallis
statistic distributions.

We now state our result. The proof is essentially an application of Theorem 1.2
of Boswell and Brunk (1969); we give the proof in Section 2 of this note. We need
the following definitions in order to state our result. For each m = 1,2, - - -, n
define

SN -

K = {k=(kpky,- -+, k) kp,ky - -+, k,are
nonnegative integers, 27_,ik; = n, 37_.k; = m}.
For k in K, define
@ ={(apap- -, a,):a,ay- - ,a, are positive integers
and exactly k; of the components are equalto i, i =1,2,- - -, n}.
For a € @ define
Ta(ay, ay, - - -, @,,) as the Kruskal-Wallis statistic
based upon m populations with sample sizes

Nay, Nay, - - -, Na,, (if m = 1, Tp(a;) = 0), that is,
‘ 12 — N+1

—_—>" N(R — — 2
N.(N._'_l) 21—] x( i 2 )

with N, = Na;, i =1,2,- - - ,m,and N = X7_ N, = nN.

Ty(ay, - -+, @) =

THEOREM. If equal sample sizes of size N are drawn from n populations then the
distribution of the X2, Statistic under the null hypothesis can be expressed:

P[>_(r2ank < J’] =3 1 Zrex, P[ Tv(ap oy - -+ 5 a,) < ]/ kti%,

where o is selected arbitrarily in @ for each k € K,,.
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If n is small this result is quite useful. We have for 0 <y and n = 3
(12)  P[Ram >»] =1P[TW(1, 1, 1) >»] +3P[Ty(1,2) >»],
and for n = 4 we have '

P[ X >y ] =5 P[Ta(1, 1, 1, 1) >y] +3P[Ty(1,1,2) >y]
+4P[Ty(2,2) >y] +3P[Ty(1,3) >y].

In order to compute probabilities for the X2, statistic we need the distribution
of the Kruskal-Wallis statistic. The exact distribution of the Kruskal-Wallis statistic
for three populations with equal sample sizes up to size eight has been compiled in
Alexander and Quade (1968). The distribution of the Kruskal-Wallis statistic for

two populations can be obtained from the distribution of the Mann-Whitney-
Wilcoxon statistic; extensive tables have been computed in Buckle et al. (1969).

TABLE 1
%2 prescribed a-levels vs. true a — levels
3 populations
prescribed a-level .10 .05 025 .01 .005
and critical value 2.580 3.820 5.098 6.822 8.146
sample true a-level
size (percentage error)
2 1222 0111 0 0 0
22 (—178) (—100) (—100) (—100)
3 .0970 .0518 .0238 .0006 0
(-3.0 (3.6) (—4.8) (—94) (—100)
4 .1007 0494 .0204 .0053 .0004
(.72) (-11) (—18) (—47) (-92)
5 .0986 0531 .0216 .0063 .0020
(—-14) 6.3) (—14) (=37 (—60)
6 .0968 0517 0215 .0078 0027
(—14) 3.4 (—14) (-22) (—45)
7 .1025 0476 .0223 .0073 .0030
2.5) (—4.8) (—11) (-27) (—40)
8 .0998 0510 0241 .0082 .0034
(-.17) 2.0) (=37 (—18) (-32)

Using expression (1.2) and the tables in the above mentioned references the exact
distribution of the x2,, statistic can be computed for three populations with equal
sample sizes up to size eight. In Table 1 we have compared the x> prescribed
a-level with that of the true a-level for three populations. The X* approximation
appears reasonable for a-levels .05 and .1 and sample sizes N = 3,4, - - -, 8, but
using the X2 approximation for a-levels .01 and .005 would perhaps yield too
conservative a test.

In Table 2 some exact critical values which yield a-levels closest to .005, .01, .025
and .05 are given.
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TABLE 2
Selected X2, a-levels for three populations
Sample
Size 2 3 4 5 6 7 8
cwv.* P cw. P c.v. P c.v. P c.v. P c.v. P c.v. P

4.57 0111 | 5.68 .00476 | 7.03 .00496 | 7.28 .00426 | 7.380 .00462 | 7.576 .00496 | 7.595 .00475
3.71 0333|559 .00833 |6.96 .00525)7.25 .00532|7.377 .00538 |7.502 .00501 |7.593 .00522
342 1222|1542 0119 |6.26 .00949 [ 625 .00979 | 6397 .00916 | 6.441 .00953 | 6.495 .00999
540 .0238 |6.03 .0101 |6.17 .01006 | 6.394 .01056 | 6.434 .01069 | 6485 .01004
5.06 .0262 |4.88 .0224 |4.87 .0236 |5.064 .02175 | 5.016 .02313 | 4.955 .02492
426 .0470 |4.76 .0297 |4.85 .0282 |5.052 .02502 [ 5.009 .02569 | 4.940 .02517
380 .0518 |3.84 .0494 |3.85 .0450 |3.871 .04546 | 3.769 .04891 | 3.920 .04979
275 .0970 |3.73 .0512 |3.84 .0531 |3.868 .05117 |3.762 .05418 |3.885 .0502

*We define c.v. to be the critical value and P = P[x2,,, > c.v.].

2. Proof of theorem. We wish to apply Theorem 1.2 of Boswell and Brunk
(1969). The statement of this theorem involves many special notations, so we refer
the reader to page 372 of Boswell and Brunk (1969) for the special notation and
Theorem 1.2 which we shall use below. (We have changed least concave majorant
in Boswell and Brunk (1969) to greatest convex minorant.)

In the terminology of Boswell and Brunk (1969) let I = R' and

12 Nn + 1\?
Jn(0, &) = mz > ) .

(Note that the right-hand side does not depend upon £) We now verify the
hypotheses of Theorem 1.2.

The function f,,(v, £ is symmetric in the components of v in Y, and in £ in R".
Now,

m —_
i=laiN(wi

12
nN(nN + 1) 2

Sl £), 8) = nN + l)2,

'in=1aiN(ui(aa g) - 2

and by definition of u(a, §) we will have f,(y(a, £, §) continuous in ¢ for all
ac€®,,m=12"--,n

l 2
Fue(2(8), ) =;ﬁ(n—Nz_'_—l—)2?”-(efNai(5)(ui(a(€), §) — nN2+ l) ;
but we may also express
2
(1.3) Fue(2(§), &) = "W(T;\,z_'_—l)‘leN ( w*(€) — nN2+ 1 )

with p*(¢) = max._,;min?_ i25=,&/(t — r + 1) (see Barlow et al. (1972), Chapter 1,
Section 2). The function p*(¢) is continuous in £ for £ in R”, and it follows that
Jue)(2(6), ) is continuous in £ for ¢ in R". Therefore, condition (1.4) of Theorem 1.2
is satisfied.
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For our problem let Z = (Z, 5, - - -, E,) = (R, Ry, - - -, R). Under
Hy, R, R,, - - -, R, are exchangeable and hence Theorem 1.2 may be applied.

n

However, from expressions (1.1) and (1.3) it is clear that the random variable
fu(Z, E) in the left-hand side of equation (1.5) of Theorem 1.2 of Boswell and
Brunk (1969) is just the X7, statistic. Also, the random variable f,,(y(a, E), ) on
the right-hand side of that same equation is just a Kruskal-Wallis statistic based on
m populations with sample sizes Na,, Na,, - - - , Na,,. This concludes the proof.

Acknowledgment. The author thanks J. D. Cryer and an Associate Editor for
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