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ASYMPTOTIC BEHAVIOR OF M-ESTIMATORS FOR THE LINEAR
MODEL

BY VICTOR J. YOHAI AND RICARDO A. MARONNA
Universidad de Buenos Aires and Fundacién Bariloche

This paper deals with M-estimators for the linear model y, = x0 + ©,1 < i
< n, where the x; are fixed p-dimensional vectors, and the u; are i.i.d. random
variables with distribution F. The estimators considered are solutions 8 of the
equation 7. y(y; — x;0)x; = 0 for some function y. Let X be the matrix
whose ith row is x;. Then it is proved that (8 — 6YX'X(@ — 0) is bounded in
probability assuming that y satisfies a set of conditions which include y to be
monotone and X to have full rank. This implies that a sufficient condition for
consistency is that the smallest eigenvalue of X'X tends tq infinity. For the case
in which p = p, — oo it is proved that p~(@ — 8YX'X(0 — ) is bounded in
probability, assuming that pe — 0 where ¢ = max, ¢;,(X/X'Xx,).

The asymptotic normality of these estimators is proved for both the cases of p
fixed and p — oo. The proof of the former is an easy consequence of a result of
Bickel on one-step M-estimators. In the case of p — oo we assume that y has a
bounded derivative and that p3/% — 0. This improves an analogous result by
Huber, who requires p% — 0.

1. Introduction. Consider the general linear model
(1.1) y, =X,0+nu,
where X, is a given n X p-matrix; 0 is the unknown p-dimensional vector of
regression coefficients; u, is the vector with components (u,, . . ., ,), where the
u’s are independent identically distributed random variables with distribution
function F; and y, = (¥;,, - - - » Vns) is the vector of observations. Let x}, € R? be
the ith row of X,, with elements x;,(j =1,...,p;i=1,...,n).

The classical estimator of 0 is the least-squares estimator, defined as the vector 8,
which minimizes |y, — X,0,| (here | - | denotes Euclidean norm). It is well known
that if

(1.2) Ep(y) =0 and E(u}) < oo,
then
(1.3) (6, — 0Y(X;X,)(0, — 8) = 0,(1),

(where O,(1) means “bounded in probability”). As a consequence of (1.3), a
sufficient condition for the consistency of 0, is that

(1.4) A X X,) — oo,
where A;(A) denotes the smallest eigenvalue of the matrix A.
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Eicker (1963) proved that if @ is consistent under any F which satisfies (1.2) then
(1.4) must hold.

When F has heavy tails, @ is not efficient, and may not even be consistent.
Hence, other “robust” estimators of @ have been proposed. In particular Relles
(1968), Huber (1973) and Yohai (1972) have studied the family of Huber M-estima-
tors, defined as solutions of

(1'5) 2'i’=lp(yin - x;né) = minimum,
where the function p is chosen conveniently. If p is convex with derivative y, then
(1.5) is equivalent to
(1.6) 2?=1‘P(J’m - x;no)xin =0..
These estimators are not scale equivariant, ie., they do not satisfy

é(ay,, s ap,) = ab( Y1 - -+ »¥,) Scale equivariant estimators may be obtained as
solutions of

(17) 2 sV — X,0)x,, = 0,
where '
%(x) = ¥(x/0),
and 6(y,, . . . ,y,) is an estimator of a scale paramater o satisfying
(1.8) 6(ayy, ..., ay,) = a|6(yy, . .., p)

Relles (1968) proved the consistency of these estimators when y belongs to the
Huber family

(19) ¥(x, k) = min(|x], k) sgn(x),
and Yohai (1972) proved the consistency for ¢ monotone. Both Relles and Yohai
assumed a Lindeberg-type condition for X, i.e.,

. 2 2 _
(1.10) lim, ,  max; ,max;,x;,/27- %3, = 0.

In Theorem 2.1 of this paper it is proved that (1.3) is satisfied when 0 is any
solution of (1.6), assuming that y is monotone, but without any assumption of X,,
except that its rank be p. Then (1.4) is a sufficient condition for consistency. It is
clear that (1.4) may not be weakened, since, as said before, it is necessary for the
consistency of the least-squares estimator.

In Theorem 2.2 we treat the case in which p may tend to infinity with n. Using a
strong Lindeberg condition, it is proved that (§ — 0y (X.X,) (6 — 0)/p = o,(1).

Results similar to Theorems 2.1 and 2.2 are stated without proof for the solutions
of (1.7).

In Section 3 we study the asymptotic normality of M-estimators, for both the
cases of fixed p, and of p — 0. In the former, normality is obtained as a corollary
of Theorem 4.1 of Bickel (1975). In the latter, we improve a result of Huber (1973).

It is important to remark that (1.5) holds with probability one if {x,,, ..., X,,}
is a sample from a p-variate distribution that is not concentrated on any subspace.
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On the contrary, the probability that a sample satisfies (1.10) may be less than one;
e.g.,if p = 1 and |x;| has a stable distribution with characteristic « < 1.

2. Consistency. The following conditions will be assumed about ¢ and F:
(A1) ¥ is nondecreasing;
(A2) there exist positive numbers b, ¢ and d such that

(2.1) D(u,z) >d if |u/<c and |z| <),
where

(22) D(u, z) = (Y(u + z) — Y(u))/z

and c satisfies

(2.3) qg=F(c)— F(—c¢)>0."

(A3) Ep(y(u)) = v < oo;

(A4) Ex(y(w) = 0;

(AS) XX, is nonsingular for all n > n,.

From now on, the subscript » will be generally omitted. Let @ be any solution of
(1.6), and put

(2.4) 0* = M9, 6* = M0, z, = (M) " 'x,,

where M is any p X p matrix such that M'M = X'X. Then
(2.5) 2?=1ZiZ; =1,

(2.6) ‘ izl = p,

and 6* is a solution of

2.7) 2?=1‘P(J’i - z;é*)zi =0.

The main results of this section are the following:

THEOREM 2.1. Assume (Al) through (AS). If p is fixed, then

@) Ié* — 0*| is bounded in probability.

(i) If \\X'X) > oo, then 0 is a consistent estimator of .

COROLLARY. Let {x;} be a sequence of i.i.d. p-dimensional random vectors such
that P(x;0 = 0) < 1 for all 8 € R?; and {u;} a sequence of ii.d random variables
with distribution function F, such that {X;} and {u;} are independent. Put y, = x;0 +
w; (this is equivalent to stating that the conditional distribution of y; given x; is
F(y — x0)). Assume (Al) through (AS). Then the estimator 0 defined in (1.6) is
consistent.

THEOREM 2.2. Assume (Al) through (AS). Suppose that p = p, depends on n and
(2‘8) limnewpnmaxi<nlzi|2 = 0’

Then p,;”2|6% — 6*| = O,(1).
We begin by proving some auxiliary results.
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LEMMA 1. Assume (A3), (A4) and (AS). Let J, ={1,...,n}. Then for any
k> O0andany set J C J,
P(Z;c¥(w)z;| > k) < po/K>.
PrOOF. 1t is straightforward to prove that
E|2jeJ‘P(“j)zj|2 = 172jeJ|zj|2§

then (2.6) and the Markov inequality yield the desired result.
Define now the matrices

(2.9) D(e) = d27_zz1(|u] < c)I(jz| < ¢),
and )
(2.10) Dy(e) = ED(e) = dg3"_zZ1(z)] < ¢),

where g and d are defined in (A2), and I(-) is the indicator function of a set.

LEMMA 2. Assume (AS). Define for any matrix A = {a;}, IA|> =2 E,ay Then
for any § > 0 we have

P(|D(e) — Do(e)|| > 8) < r’e’p/8?,

where r* = d%q(1 — q).
ProOF. The result follows applying (2.6) and the Markov inequality to

E(IID(e) — Dy(e)I?) = S l2 (2| < )

< re?2_ |z M(|z)] < e).
Let k, be any positive number such that

(2.11) ko <y(0) and yY(—o0) < —kg;
then we have the following lemma.

LeMMA 3. Let J, be any set such that Jy C J, and let m be the number of its
elements. Let 1 be a given positive number, andput T = {t ER" : q < || < 1,j =

1,...,n}. Assume (A,). Then, given 8 > 0, there exists L = L(n, 8, m) (which does
not depend on n) such that g
(2.12) P(sup, ¢y, cerZjes[ W4 — LUt + kolt]] > 0)<s

PROOF. Assumption (A1) implies that, if |t| > n and L > 0, then for all u
Y(u — Lt)sgn t < min[ (v — Ln), —y(u + Ln)].
Besides, with probability one,
lim, , y(u — Ln) < —kg, lim, , (—y(u + Ln)) < —k,
Hence there exists L such that, for any j,
P(supyys,¥(u; — Lt) sgnt + ko > 0) < 8/m;
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hence the left-hand term in (2.12) is less than
P( Ujejo[sup,,Q,jK,a,b(uj — L)t + kolt|] > 0) <8

PrOOF OF THEOREM 2.1. There is no loss of generality in assuming 8* = 0. To
simplify notation, define for § € RPand L > 0

(2.13) U8, L) = 37_ (v, — Lz0)(z0).
Then by (Al), since U(6*/|6*|, |6*]) = 0:
P(|6*| > L) < P(sup,g-, U(8, L) > 0),

and hence it suffices to prove that, given §, there exists L such that
(2.19) limsup,_, ., P(supyg -, U(0, L) > 0) < 4.

Take k, such that
(2.15) po/k} < 8/4.

Using (A1) and (A4) we can find a positive number k, satisfying (2.11). Define
(2.16) 8, = ko/32k,.

Let {V,,..., V) be a covering of the spherical surface {0 : |8] = 1} with balls
of diameter less that 8,. Let §; be such that

2.17) 8, <qd/2,
(2.18) M(32/kp)*(v/qd)8, < 6/8.
Define L, and & such that
(2.19) k, < L,8,/2,
(2.20) 4e’rp /8% < 8/4,
(where 72 is defined in Lemma 2) and
(2.21) eL, <b.
Finally, define the sets
2.22) S ={0;10] = 1, 0Dy(e)0 > 5, },
(2.23) ’ S’ ={0; 0] =1, 0Dy(e)0 < 5, }.
It will be proved in the first place that
(2.24) limsup,_, ., P(suppcsU(0, L) > 0) < 8/2;
then it will be proved that there exists L, such that
(2:25) limsup,,_,.. P(suppcs U(8, L) > 0) < 8/2.

From this will follow (2.14), putting L = max(L,, L,).
To prove (2.24) decompose U as

U(e, L,) = g0 — h(0),
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where
g =Zi_w(w)z,

and

h(0) = L,37_,D(u, — L,z0)(z6)’,
where D is defined in (A2). Then by (2.1), (2.9) and 2.21)

h(0) > L,0'D(e)0¥0  such that ||] = 1.

Besides, by Lemma 2 and (2.20)

P(D(e) — Dy(e)l| > 6,/2) < 8/4;
hence by (2.22), with probability larger than 1 — §/4,

infye 0'D(e)0 = inf, . S[O'Do(s)ﬂ + 0'(D(e) — Do(s))O]
> 8, — |[D(e) — Dy(e)l| > 8,/2.
Hence by (2.19)
(2.26) P(infyc gh(0) > k) > 1 — 8/4,
and finally (2.26), (2.15) and Lemma 1 yield
P(supycsU(B, L) > 0) < P(lg| > infye 5h(0)) < 8/2.
This proves (2.24). Now we shall prove (2.25).
Put
J={j:j<nlz| >e}.

Then (2.6) implies that
(2.27) card(J) <m = :p/é,

where “card” is the cardinal of the set.
Let us now define the set

I=1I(n,0)={i:i<n,[|z20] >n).

It will be proved that there exists n € (0, 1) independent of n, such that, for all
0es’

(2.28) ZiernJzol >3,
and
(229) P(supsesmZ;e; ns1W(w)| > ko/16) < 8/16.

In effect, if n € (0, 1) and 0 € S’, (2.17) implies
gd/2 > 8, > 0Dy(e)0 = dg=,,-(z,0)%;
since 27_(z0)* = 1, this yields
(2.30) 1/2 < 2[61(220)2 =2ies n,(z;())z + zieJ—I(Z;o)z'
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But by (2.27)
EieJ—I(zwy <n°Ziesl <vmy
hence, since |z,8] < 1, (2.30) yields
1/2 — 9w’m < 2, /20,

so that for 7 sufficiently small (independently of »), (2.28) holds; (2.29) results from
card(J) < m.

Let now L = L(n, 6/4, m) be the number obtained in Lemma 3; where 7 is
obtained in (2.28)-(2.29), and m in (2.27). Then, by Lemma 3,
(2.31) P(suppes[Zier no¥( — L,26)(z0)

Decompose the sum in U(@, L,) into those terms corresponding respectively to
INnJ,J— I and J¢. Then we have, applying (Al) in the last two terms:

(2.32) U(e, L,) < s(0) + #(6) + u(0),
whereA
5(0) = Zier 0¥ — Lzi0)(z6),
H0) = 12, e/ 9w,
u(0) = 2,;c,9(4)z;0.
Then (2.29) implies

(2.33) P(suppcs1(8) > ko/16) < 8/16.
By (2.28) and (2.31):
(2.34) P(suppcss(0) < —ky/4) > 1 — 6/4.
Finally, it will be proved that
(2.35) P(supgesu(0) > ko/16) < 3/88.
Let W,(j/ = 1,..., M’ < M) be the nonvoid intersections ¥, N S’ # J. Let 0,

be any element of W), so that @ € W, implies |0 — 8, < §,.
Define the event

@36) B = {[Sicsbw)z] <Ky,
so that Lemma 1 and (2.15) imply that P(B¢) < §/4. Hence
(237)  P(suppesu(0) > ko/16) < 8/4 + 2;‘:1»1’[3 (M (suppewu(6) > ko/16)].
In B we have for each j
supoau;l“(o)l < |Zies(u)z;6)|

+SuP0em|Eile‘P(“i)z:'(0 - oj)l
< IziEJC‘P(ui)z;Oj' + k8,;
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applying (2.16), the Chebychev inequality, and then (2.18) and (2.23) we have
P[B N (SuPoeu;|2ieJ“1’(ui)z§ jl) > ko/16]

< P c,9(1)28) > ko/32)
< (32/ko)*v(0/D(€)0;) /dg < 8/8M.

Hence the expression in (2.37) is less than 6/4 + M&/8M = 36/8. Finally,
(2.25) results from (2.32), (2.33), (2.34) and (2.35). This finishes the proof of part (i)
of Theorem 2.1. .

The proof of part (ii) is a trivial consequence of part (i).

PROOF OF THE COROLLARY. It is easy to prove that the fact that P(x;0 = 0) < 1
for all @ implies that A,(X'X) — oo with probability -one. Then part (ii) of the
theorem implies that for all § > 0:

lim"_mP(|0A -6 >8[x;,...,%,) =0 as,
which implies the consistency of 6.

PROOF OF THEOREM 2.2. Put

(2.38) E=¢, = maxi<n|zi|2s
so that by (2.8)
(2.39) D, — 0.
Then note that Lemma 2 implies that
(240) E|ID(e2) — Dy(e7)|| -0,
where the matrices D and D, are defined in (2.9) and (2.10). Note that
(2.41) Dy(e?) = dgl.
Now, to prove the thesis, recall that, as in (2.13),
(2.42) P(p7|6* > L) < P(supg_,p~2U(0, p2L) > 0).

Now decompose
43) p~:U(8,p7L) = =i (u)z0p~ = — L, D(u,— Lpz0)(z;6)"

Put 4, = sup|,,|=,|2’,?=1x[/(u,~)z§0p‘%|. Then by Lemma 1 it is possible to find L
such that for all n

| o

(2.44) P(A, > Ldq/2) <
1l n > n,. Then by (A2) we have

)

By (2.8) there exists n, such that p%e 3L < b for
for all n > n,

B’l = lnf|o|= 12?_—_ ]D(u[, - LP%Z;O)(Z:O)Z

> infg_,0D(e2)8 > qd — | D(e7) — Dy(e?)|-
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Then, by (2.8) and Lemma 2 there exists n, > n, such that
(2.45) P(B, <dq/2) < gVn > n,.

Then by (2.42), (2.43), (2.44) and (2.45) we have for all n > n,

P(p~26% > L) < P(4, > Ldg/2) + P(B, <dg/2) <.

This finishes the proof.

REMARK. Suppose now that 6 is a solution of (1.7) where 6 — o in probability.
Then Theorems 2.1 and 2.2 still hold if we replace (Al) . .. (A5) by (A'l) ... (A’6)
where

(A']) (AD);

(A”2) y, satisfies (A2);

(A’3) there exists ¢ > 0 such that E (J2((1 + &)u)) < o0;

(A’4) there exists ¢ > 0 such that for all A such that |A| <e, we have Ex(¢,((1 +
Nu)) = 0;

(A’5) (AS);

(A’6) there exists ¢ > 0 such that

SUPp <, |A’|<5EF([‘P0((1 + Nu) — ¢,((1 + }\')“)]2)/ (A - XY < .

If n%(é — 6) = 0,(1), (A’4) may be replaced by Ep(y,(u)) = 0.
We do not give the proofs of these results here. They are based in tightness
arguments similar to those used in Yohai (1972) and Bickel (1975).

3. Asymptotic normality. The asymptotic normality of the estimators will be
proved for both the cases of p fixed and p — oo, respectively in Theorems 3.1 and
3.2. The proof for the former case is an easy consequence of a result of Bickel
(1975) for one-step M-estimators. The asymptotic normality for the case p — oo is
proved assuming that y has a bounded third derivative and that p%e — 0, where ¢ is
defined in (2.38). This improves an analogous result by Huber (1973) who required

p% —0.
From now on, the notation of Section 2 will be kept, as well as the assumption

that the “true parameter” is @ = 0.

THEOREM 3.1. Assume that Y and F satisfy (A1) through (AS), and the following
conditions:

(&3} JRo[W(x + h) — Y(x — h)]zdF(x) = o(1) as h—0
and
SUP|y <o, pri<e LIl T D[ W(x + g + ) — Y(x + q)]dF(x)} < o0

for some € > 0;
(C2) There exists A(Y, F) such that
J2 [ W(x + B) — Y(x)]dF(x) = hA($, F) + o(h).
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Assume also

G
© max,<,,|z| =0.

11 n—-)cO

Let 0* be defined as in (2.4) with 0 given by (1.6) Then the distribution of
(0* — 0*) tends to a multivariate normal with mean 0 and covariance matrix 7,
where
G.1) 1 = Epy?/A(Y, F)".

THEOREM 3.2. Assume that, in addition to (A1) through (AS),  and F satisfy the

Jfollowing conditions:

(N1) y is three times differentiable, and has a bounded third derivative: |y (u)| <
(&

(N2) Ep|¢/(u)| and Ex(y"(u))* are finite;

(N3) Eg""(u) = 0

Assume also that

. 3
(N4) hmn—>oopn n O’
where ¢, = max;,|z|*.
Let a, be any sequence in RP~, with |a,| = 1. Then the distribution of a ' (6% — 0%)

tends to N(O, 72), where 7* is defined in (3.1) (note that in this case, A(Y, F) = Egy’).

PROOF OF THEOREM 3.1. Note that 6* may be viewed as a “one-step” estimator
with 0 itself as the “initial estimator.” By Theorem 2.1 the initial estimator has the
order of convergence required by Theorem 4.1 of Bickel (1975) (see the remarks at
the end of that paper). Hence our result follows easily from Bickel’s theorem.

ReMArk. If 0 is a solution of (1.7) with n%(é — 0) = 0,(1) and (Al)-(A5) are
replaced by (A’1)-(A’6) and condition (G) holds, then Theorem 4.1 of Bickel gives
also sufficient conditions for the convergence of (6* — 0*) to a normal distribution

N(0, 7°I), where
2 = Ey2/A(Y,, F).

PrOOF OF THEOREM 3.2. Multiplying (2.7) by a, and performing a second order
Taylor expansion, we have

(32). 0 =37 (4 — 70*)za
=w, — W, — w,0* + 10*'W,0* — tws,
where
wy = 2o (u;)za,
w, = (EY)2"_ a'2,2,0*,
wy = 20, [¥'(w) — EY'](a'z)z,
W, =27 " (w)(a'z)zz,

ws = "_ " (u; + n,20*)(6%)(az,).
with |n;] < 1.
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Note first that Ew; = 0 and Var (w,) = Ey*(u); since ¢ — 0, the Lindeberg
theorem yields

(33) w, converges in law to N(0, Ey?).
Besides, (2.5) implies that
(3.4) w, = (Ey)a6*.

Hence, to prove the thesis, it suffices to show that the remaining three terms of
(3.2) are g,(1). It will be first proved that

(3.5) pelwi| = o,(1).
In effect, Ew, = 0, and its covariance matrix is:
Cov(w,) = Var(y)21_,(a'2)22;;
hence, since =7_,(a'z,)* = 1
PEIw;|* = pVar(¥)2.,(a'z) |z < Var(')ep 0.
This proves (3.5). Since by Theorem 2.2, p‘%|é*| = 0,(1), this deals with the

third term of (3.2).
Now it will be proved that

(3:6) PlIWall = 0,(1).
In effect, since |W,||> = trace (W,W)):
PE|W,I? < EQ")'Zi- (a2 lz|p* < E(")'ep* —0.
Application of Theorem 2.2 finishes with the fourth term in (3.2). Finally, it will be
proved that

3.7 ws = 0,(1).
In effect, the Cauchy-Schwarz inequality and (2.5) yield

[wsl < e (z0*) 0%z < cl6¥eZ1-(26*) = clf*e = |p =70 epie;
then Theorem 2.2 and (N4) imply 3.7, thus finishing the proof of the theorem.
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