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THE ASYMPTOTIC DISTRIBUTION OF THE SUPREMA OF THE
STANDARDIZED EMPIRICAL PROCESSES

By F. EiCKER
University of Dortmund

The supremum of the empirical distribution function F, centered at its
expectation F and standardized by division by its standard deviation has
recently been shown by Jaeschke to have asymptotically an extreme-value
distribution after a second location and scale transformation depending only on
the sample size n. In this paper the studentized form of the above statistic,
obtained by division by the estimated standard deviation, is shown to have the
same large sample behavior. This statement is equivalent to the analogous
assertion for the standardized sample quantile process for the uniform distribu-
tion. The three results imply each other. The present result yields immediately
confidence regions that contract to zero width in the tails. The proofs given here
rest on a limit theorem by Darling and Erdos on the maxima of standardized
partial sums of ii.d. random variables. In addition, Kolmogorov’s theorem is
used.

0. Introduction. Let X,,- - -, X, be a random sample from the continuous
distribution function (df) F on R' and let F,(u):= n"'37_,1(X; <u) be its
empirical distribution function. In order to construct confidence contours for F
that contract to F in the tails, the difference

F,(u) : = F,(u) — F(u)

is weighted by (F,(u)(1 — F,,(u)))‘% which may be regarded as an estimator for
(F(u)(1 — F(u)))‘%, the true inverse standard deviation of F,(u). Thus the statistic

P (u) = n3(E,(u)(1 = Eyw) TEy(w), Xy, < <X,

has “nearly” expectation 0 and variance 1. (X,,, Kk =1,- - -, n are the order
statistics of X, - -, X,.) I7n(u) may be considered as a studentized version of
V(u):= ni(Fu)(1 — Fu))"2F(u), u € {t:0 < F(t) < 1}. V,(u) satisfies
EV,(u) =0, EVXu) =1 for all u. In this paper the asymptotic df of the statistic
a, I7,, — b, where

Vn L= SupX,,,<u<X,,,, Vn(u)’

and a, := (2 log, n)%, b, :=2log, n + 1log; n (log, n : = log log n, etc.) is shown
to be a (type 1) extreme value df D(see Theorem 1). The statistic V, avoids the

Received October 1976; revised October 1977.

A preliminary version of this paper was presented at the Oberwolfach Institute for Mathematical
Research on December 4, 1975.

AMS 1970 subject classifications. Primary 62E20; Secondary 60F05.

Key words and phrases. Standardized empirical processes, asymptotic distribution, extreme value
distribution, boundary crossing of empirical process, goodness of fit test.

116

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ' )7
The Annals of Statistics. MIKOJIS

1 ()

%’1

. ®
www.stor.org



LIMIT DISTRIBUTION OF THE SUPREMUM 117

shortcoming of the Kolmogorov-Smirnov statistic which yields uniform distance of
the confidence curve from F over the whole real axis. This implies that the
Kolmogorov-Smirnov statistics are sensitive asymptotically only in the central
range given by {u : (log, n)™' < F(u) < 1 — (log, n)~!'} as can be inferred from
the theorems given below. It also results in bad power of the KS-tests against
alternatives that differ only in the tails. In contrast, a, 17,, — b, and a,V, — b, are
sensitive only in the moderate tails given by, e.g., {u:n"'logn < F(u) <
((log, n)logy n)~'} and the interval symmetric to this (Proposition 1); here

Vn ‘= Sup, . 0<F(u)<1 Vn(u)'

This defect, though, could partially be overcome by constructing confidence
contours composed of curve segments of different nature (in particular, segments
of lines and ellipses). Because of their intuitive appeal statistics like ¥, and ¥ have
been considered for a long time (cf. the survey papers [5], Section 2.5 and [7]).

Computing algorithms have been developed even for general confidence con-
tours (boundaries) by several authors but explicit or asymptotic probabilities seem
to have been known only for straight line segments. One of the latter cases is the
Rényi statistics [13], e.g.

sup0<a<F(u)Fn(u)/F(u)-

As compared with ¥V, or 17,, this particular statistic attributes relatively heavy
weight to a relatively small interval which does not move out into the tail as n gets
large.

For V, an extreme value distribution has first been obtained under the same
normalization as above, namely a,V, — b, by Jaeschke in his dissertation [11]
(Theorem 2 below). This distribution enters in his as well as in the present proof
through the application of theorems by Darling and Erdos [4] (see, e.g., Theorem
2.1 below). Analogous results for 17,, and the quantile process subsequently were
derived by fairly straightforward methods. The proofs are given below. In [12]
Jaeschke generalizes both results by admitting subintervals (Theorem 6 below) and
proves them very elegantly and beautifully by also appealing to strong invariance
theorems and other high-powered tools.

The proof given here proceeds by first pointing out the equivalence of Theorem 1
on the limiting df of I?;, with the analogous assertion for the sample quantile
process, and the latter is then actually proved. The representation of the order
statistics Uy, from U(0, 1) as ratios of two partial sums almost immediately allows
application of the Darling-Erd6s theorem. This theorem and Kolmogorov’s theo-
rem on sample df’s are the only advanced tools that are required. Otherwise only
some fairly elementary and straightforward: computations are needed. In a similar
fashion it has been possible to prove the equivalence of Theorem 1 with the
original result of Jaeschke [11] (Theorem 2 below). In contrast, the proofs given in
[12] become relatively short in particular by appealing to well-known results on the
speed of convergence in embedding and invariance theorems.
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The implication and interrelation of the results of this paper with strong laws
(like law of the iterated logarithm type statements), with invariance principles, with
other instances of probability and statistics where the extreme value df turns up are
not studied although they are doubtlessly fruitful and interesting (cf. e.g. [1], [2a]
and the survey paper [7]). Csorg6 and Révész in [2a], Theorem 2, have generalized
(1.9) below to general quantile processes. The occurrence of the extreme value
distribution D in the study of crossings of stationary processes is well known (cf.
e.g. [3] for some material in this context; for a particular instance cf. page 271 of
this reference). The df D also occurs, naturally, when dealing with statistics of
extremes. Smirnov obtains it in his 1944 paper [14], page 205, as the df of the
sup-norm functional of a histogram estimator for a density to be estimated over a
finite fixed interval [a, b]. If the number s, of subintervals is chosen to be log n
even the norming constants are very similar to the a,, b, used above.

Some insight regarding a “uniformly good” weight function may be gained from
Theorems 6 and 7. In the latter small intervals tending towards the tails are
considered. Bolshev and Smirnov have studied numerically a “uniformly good”
weight function for the quantile process. However, the search for:a “uniformly
good” weight function may be futile in view of recent results by Berk and Jones
[la] who show that the minimum attained level statistic considered by them and
which may be roughly described by the sup of probability integral transforms of
empirical processes, is more efficient in the Bahadur sense than any weighted
Kolmogorov statistic at every alternative. Nevertheless the authors are able to
utilize Jaeschke’s result to derive the asymptotic null distribution of one of their
statistics (their Section 5).

1. Results.
THEOREM 1. With the notations and assumptions stated in the introduction and if
t,=T,(1) := (2log, n)%(l +b§+g:nzt) t € R!
then for either choice of the sign
(L.1) P(supy, cucx, (£V,(w) <t,) > (D)) as n->o
where |
(1.2) D(?) := exp(—e"/ (27721)) t €R!

is the extreme value distribution function.

In Section 2 we will derive from this

THEOREM 2 [11].  Under the above assumptions, (1.1) remains true if 17,, is replaced
by V,.
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The proof of Theorem 1 also yields the following results (see also Lemma 2.2 and
Lemma 2.3).

PROPOSITION 1. With the assumptions and notations of Theorem 1 there holds
with k, := n/((log, n) (log; n))

(1.4) P(Squ,og,,m<u<xk"_,,(i I7n(“)) < tn) - D(2),

(1.5) P(SUPX,,_,‘n_,,<u<x,,_.‘,g,,,,,(i I}n(“)) < tn) - D(1),

(1.68)  P(supx,,, ,cucn, i oy, <<ty (£ Va) <1,) = (D(D),
(1.7) P(SUP, ¢ (i Xy g )| V)] < )-*1

The assertions also hold for V, instead of V

Most likely the above assertions can be strengthened by narrowing the u-ranges.
The above k, have been so chosen for convenience. '

THEOREM 3. Under the conditions of Theorem 1,

(1.8) 1))* = exp(—2e~"/?)
(t € RY and
(19) P(max,_, ... | Ut <1) > (D(1))*
and
(1.10) P(supx,, <ucx, | Va(®)| <) = (D(1))*
where
(1.11) Ut := U, (Var Uy,)"? = U, — EUy,
EU,, = k(n + 1)7", Var Uk,, =k(n+1-kn+1)(n+2)""
and U,,, - - -, U, are the order statistics of a random sample from the uniform df
over (0, 1). :

REMARK 1. In view of Theorem 1, Theorem 3 says that crossings of the lower
boundary are asymptotically independent of those of the upper boundary. More-
over, the “local” fluctuations at the lower left and right and at the upper left and
right “corner” (if visualized for the rectangular df) are asymptotically independent
and essentially identically distributed. These remarks may be related to the ques-
tion of asymptotic independence of extremes (cf. [10, page 110]) and of high and
low level crossings of stationary Gaussian processes (cf. e.g. Berman [1]). They are
made more precise and proved after we have introduced some notation before
Lemma 2.3. Some results of probabilistic interest connected with the Darling-Erdés
theorems [4] (see Theorem 2.1 below), some of which are used in the proof of the
above theorems but others not, seem worth mentioning explicitly.
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THEOREM 4. With the assumptions and notations of Theorem 2.1 below and with
g, > 0, 8, > O the following hold:

(1.12) P(max,. < ep-nk~2Z, <1,) - D(1),
(1.13) P(max,, o cp-nk~2Z] <1,) = (D(1))*
(1.14) P(max, i pmk 22| < 1,) > 1

iff , = 0(1); 8, = O(1) (compare also Lemma 2.3 below).

This theorem specifies a qualitative remark regarding the k-range made by
Darling and Erdos. Part of the theorem is stated and proved by different methods
in [11] (Lemma 5.2). The proof given here consists in"a simple application of a
theorem by Gnedenko [8] on the class of weakly convergent linear transforms of a
given sequence of random variables. By the same method one proves

THEOREM 5. With the assumptions and notations of Theorem 2.1 below there holds
Jor any ¢ € (0, 1) and any positive null sequence 0(1) and with

1

(1.15) , =b(n) =2log, n + 2log3 n;
(1.16) a, = a(n) = (2 log, n)7;
(1.17) P(a,S,: — b, < 1) ~ P(max,o xcnk 72, <1,)
c2
—exp| ———e | =D(t —2logc)
27?2
and
(1.18) P(max,on <k <pck “3|Z,| < 1,) > (D(r — 2 log ¢))’.

(This theorem obviously proves the last statement made in Theorem 4.)
An immediate consequence of the Darling-Erdos theorem is the following result
which probably can be extended to more general triangular arrays of rv’s:

CoRrOLLARY 1. Let {Y,; i=1,---,n,n €N} all be identically distributed
with EY,, =0, EY}, = 1, E|Y, ||’ < oo and let them be independent within each
1
row(ie., n fixed). Let Z, := Y, + -+ - + Y,,, S, := max, .,k ”2Z;. Then

anSn - bn _)dD anSn, abs — bn _)dD2
-1
(Sn, abs * = maxl<k<nk 2|Zk|)

Some hint as to what a “uniformly good” weight function may look like may be
gained from Theorem 7 below where we consider small intervals tending towards
the tails. The proof (not given in detail) depends on a recent result of Jaeschke [12]
(Example 3):



LIMIT DISTRIBUTION OF THE SUPREMUM 121

THEOREM 6 [12]. Let V,(e, 8) 1= Sup, ¢ s Vu(¥) for 0 <e < 8 < 1. Let {¢,},
{8,) be given null sequences from (0, 1) satisfying 8, > ¢, >n~" (log n)’, 8,/ ¢, —
0. Then with

t,(1):=(r+2logp + 27 !log, p)(2 log p)_%,
p, :=2""log(8,/,),

(1.18) P(V,(e, 8,) <1, (1) = (D()) (r € R.

Taking here especially 8, : = &;"(c,11 slowly enough) it is easy to prove

THEOREM 7. Let Fu)=u0 <u < 1),¢—0,
(1.19) g, >n 'logn; 0<c, <1l,¢,>1
such that
(1.20) log(1 = )| = of(logs &,)*)
where
(1.21) log* ¢, = |log &,|, log; &, = log|log &,|, etc.

Then
(1.22)

) 2n logs u 1 -
hm,.wP(supwq{(-u—(l—};) Fi(w) - 2 logs u— 27" log] }

2
<t-—log = c”)
= tim, .., P((2n 10g]" &) t5up, o (W(1 — ) FF, ()]
—2log; &, — 27" log; €, <t —log

2
1 - c,,)
= (D(»))’ (1 € RY).

In order to obtain similar results for intervals with 8, — ¢, > const. >0 it
appears that information on the speed of the convergence in (1.19) might be useful.

Note that (1.20) implies (1 — ¢,)log* &, — oo since log(l —¢,) + log; ¢, =
(logy e,,)%(o((log;f e)‘%) + (logy e,,)%) — 00. An example for (g,) —, (c) —
sequences satisfying the assumptions of the theorem is &, = 1/logn; ¢, =1 —
(log; n)~ 1. :

2. Tools, proofs and remarks. Before proving the main Theorem 1 (after
Lemma 2.1 below) we start with some preliminaries. The main tool is the following
result by Darling and Erdos:

THEOREM 2.1 [4]. Let Y, Y,, - - - be independent }v’s with mean 0, variance 1,
and uniformly bounded third absolute moment. Put Z;, = Y, + - -+ + Y, and let

1
S, =maxX,_, ... kK 2Z;.
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Then

(2.1) P(S,<t,)—>D(t) as n->oo (tER and
P(maxe-y,... k"7Z,] <1,) > (D)),

using notations of Theorem 1.

For the proof of Theorem 4 we need Theorem 2.2 below which is due to
Gnedenko. We use '

DEFINITION 2.1.  Let (X,) be a sequence of rv’s. Any double sequence (a,, b,) of
real numbers with a, > 0 associated with (X,) is called F-stabilizing iff a, X, + b,
—,F where F is some df.

THEOREM 2.2 [8]. Let F be nondegenerate. Then
{a,X, + b, >,F and aX,+ b,—,F}
iffa,/a,— 1 and b, — b, — 0.

Hence the class of F-stabilizing double sequences forms an equivalence class
defined by this latter property.

DEFINITION 2.2. A stabilizing sequence associated with (X,) is any double
sequence (a,, b,) with a, > 0 such that P(a,X, + b, < x) - F(ax + b) with some
reals a, b (a > 0) and some nondegenerate F.

We recall

DErINITION 2.3 [9]. The df’s F, and F, belong to the same type, if for some
constants a > 0 and b there holds F,(x) = F,(ax + b).

Hence the totality of df’s decomposes into equivalence classes, each forming a
type. Now

THEOREM 2.3 ([9], page 40). If F, — F and F,(a,x + b,) - G(x)(x € R'; a, >
0), F, G nondegenerate, then F and G are of the same type.

We now generalize Theorem 2.2 to convergence against df’s of the same type.
COROLLARY 2.1. Let F be nondegenerate and a, a, > 0. Then
{F.(a,x + b,) > F(ax + b)  and
F,(a,x + b)) > F(x)(x € R')}
iff

a‘Z‘, —1andb + (b,/a) — ab,/a, —0.

ProoF. Puttingy :=ax + b= a,x + b, = (a,/a)(y — b) + b,. The assertion
follows from Theorem 2.2.
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By Theorem 2.3 all stabilizing sequences associated with a given sequence (X))
yield limit laws of the same type. They decompose into equivalence classes each
characterized by a particular limit df which in turn is characterized by a pair of
reals (a, b).

ProoOF OF THEOREM 4. We have

m, := n'**O =1log m, = e°Vlog n=2log, m,.= log, n + o(1).
Hence with a,, b, as defined in 1

a,\*> log,m,
(;’") ——B—gz—n' =14+ 0(1),(1,, =a,,
b,— b, =2log,n + %log3 n+ o(1) — b; = o(1),
b, = bm",

so that the assumptions of Theorem 2.2 are satisfied.
Since by Theorem 2.1, with

1
X, :=max ., k" 72,

a,X, —b, -,D
it follows that

a,X,, — b, —,D;
analogously

This proves (1.12) and (1.13) except for the lower restriction on the k. That the
upper bound n'*°® for the k cannot be lowered further is seen as follows.
Let for some divergent subsequence (n,) C N

llog, m, —log, m|=":¢, >C >0
then

b, — b,| > 26, — %log(l +

-1
> - >4
oz, nk) > 2, (1 — (4logyn)™') >C >0
for almost all k. Now Theorems 2.1 and 2.2 yield the assertion.

forall k;

In order to prove (1.14) it suffices to consider n*) — co. We write a(n) : = a,,
b(n) := b, and

_1
M, (n) 1= max, ¢, ¢,k 2|Z,].
Consider the event

4, 1= (a(n*D)M_, (n°V) — b(n°V) < 1)

= (a,M,(n°M) — b, < —b, + (t + b(n°M))a,/a(n’D).
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In
log, n°® = log o(1) + log, n = (log, n)(1 + (log o(1))/log, n)
we assume without loss of generality

[log o(1)| = o(log, n).
Then a,/a(n°V) =1 — (% + o(1))|log o(1)|/ log, n — 1 and
b(n°®) = b, + 2log o(1) + ( Ly o(l))(log o(1))/log, n

= b, — (2 + o(1))llog o(1)|

which implies
= b, + (¢ + b(n°V))a,/a(n°®)

= b,(—1+ a,/a(n°D)) — (2 + o(1)|log o(1)])

= (log, n)( + o(l))|log o(1)|/logy n — (2 + o(1))log o(1)|

— (2 + o(1))llog o(1)| > — co.

Thus Theorem 2.1 implies P4, — 1.

Since Theorem 5 is not needed later on its proof, which runs along the same lines
as the above one, is omitted.

Reformulation of the theorems of Section 1. Firstly, the probability transforma-
tion F(X;) = :U;, ~ U(0, 1) yields for u € (U,,, U,,)

V() =

( ) F,
F(u )(1 — F,(v))
where
F(u) := F(u) —u=n""2}, (U, <u) —u
and Uy, ... U, are the order statistics of the random sample (U, ... U,) on the
probability space (2, @, P). It suffices to prove the theorems for this case.
Next, the reformulation of the theorems of Section 1 in terms of the quantile

process follows immediately from the fact that u € (Uy,, Upyy,,), K =1,-
n — 1, implies

< n%wk,,(kn"l - Ui)

A 1 _
Vn(u) = nzwkn(kn ' - u) 1
> niwg,(kn™' — Uy )

with w,, = (%(1 - %))%. Putting

=(kn~' = twun"1<U,) k=1---,n—-1
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it follows
(22) “i\n = (Vn(u) < tnvu € (Uln’ tt Unn))
= n'lz;}c,,Akn
where k, := t(1 + t2/n)"' = (2 + o(1))log, n. The smaller k can be omitted since

for them the lower bound on the U, is negative (for k < k, we have 4,, = ).
Analogously with

Apy 1= ((k - Dn '+ tnwk_l,nn_% > Ukn) k=2---,n
(23) A¥ = (I7n(u) > —t,Vue (Uln’ cee, U’m))

= n+l—x, 4%
= Nk=2 "Afn-

Note here that

k; Ly tnwk—l,n/n%< 1
iff
n+l1—k>k, or k<n+1-—k,
Similarly
24) B, := (V)| <1, Vu € (U, Uy) = 4, N 47
(2.5) = (n2<k<x,,Altn)(nn+1—n,,<k<n—lAkn)(n'c,,<k<n+1—:¢,,Bkn)’

k-1
n

1
+ t,,wk_l’,,/r'ﬁ).

(Since k, = (2 + o(1))log, n we have on the k-range of the By,
k—-1_k, _k -1
—=_(1-1/k)=2(1 o((logy n)™"))
with a constant in o( ) independent of k and n. Thus

(2.7) Wi—1,n = wk,n(l - 0((1082 ”)_1))
which implies 7, ()w;._, , 7 T,(t + o(1))w,, for k, <k <n + 1 — «,. Later on we
will slightly narrow down the k-range and then equality will hold.) We shall show
in several steps that various groups of quantiles are irrelevant for the limiting
probabilities of /f,,, A, and B,. Firstly we prove Lemma 2.1 below.

Kolmogorov’s theorem states for the quantile process

(26) B, := (% —tw, /A< U, <

P(n%maxk|l_]_k,,| <y)—>1 —2e ¥ 427 — + - = K(p).
Since K is continuous, y, — oo implies
P(n%maxk=1, v ,nI (—jknl <yn) - L

Now for a sequence of naturals k, <n,

. kn -1 k” —1 %
W, :=inf, < cni t(Win A Wie—1,n) = tn( n (1 B )) o
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iff the sequence (k,) satisfies

kn/\(n_kn) >

n -
o(log, n) "

with some o( ). Now putting k, = K, we have
= (k/ (1 + 1) = b/t < Ty <K/ (04 1) = 5+ 1,0/

1 | 1
o) (n‘i—w <nU,< —-n"2+ w,,)
for K, < k < n — K. It follows:

LemMa 2.1.
1 _1
(2.8) P(N y<tan—x:Bin) > P( )-1.
PrOOF OF THEOREM 1. (1) Let Y,, Y, - - - beiid. rv’s with density e 7(y >
O)andletZ, :=Y, + - - - +Y,. Then

(Uln’ v Unn) d(Z /Zn+1’ ) Zn/zn+l)‘
Since we only prove weak convergence theorems we put U,, := Z,/Z, . With
put
(2'9) Qn = (|Z_n+1| < cnnfl)

with ¢, — oo with slow speed to be specified later (obviously any particular such
¢,-sequence can be replaced by a (c, + 0(1))-sequence, and we may do so later on
when convenient). Then

PQ,—1 n— o

by the central limit theorem.

(2) To begin with we will now prove that several restrictions of the k-range given
any n large enough are possible. In step (6) we need (2.15) below to be proved now.
Note

B,>%Q ((1 +c /n2 - t,,wk,,n%)

<Z, < (l - ¢ /nZ)(k -1+ t,,wk_l,,,n%))

(2.10) > Q,(k™21Z| < uy,),
L 1 log, n + 2t - _
(2.11) U, - = (2 log, n)Z(l + 2 loe Tog, 7 )( %)(1 k=12 (1 k/n)2

—c(k/n)7— (1 + o(1))/k3.
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For 2 < k < log n a convenient choice is ¢, = (1 + o(1))(log, n)%. Then

1 1 + 2t + o1 1
Uen > (2 log, n)z{(l Bl Toan o ))2-%— (%+ 0(1))(1082 n)f]
2

= (log, n)*(1 + o(1))
(212) > Tiog,(1/0(1)) = Tiogm(1/0(1)) (ke[2, - - - , log n])

for some o(1)}0 sufficiently slowly and where we use

1 log, n + 2s
Tiog 1(5) = (2 log, n)2(1 + W)

Now Theorem 2.1 for [log n] partial sums yields
o . L=
(2.13) lim inf, P(N < <log nBin) > 11m,,P(maxk=2’ ... nogmk 2| Z]

< Tyogm(1/0(1)) = 1.
Similarly by a symmetry argument given subsequently

(214) limnP(nn—logn<k<rf—lBkn) =1

and hence

(215) P(nkel2, log n]u[n—:]og n,n—l]Bkn) - 1L

In (2.14), (2.15) the point symmetry of the quantile process w.r.t. the point
n+1 1

(2.16) (T 5)

is exploited, i.e., with

(2.17) Usr1-1 1= 1 = Upps

(2.18) (Uin > Up) £ (Ui - -+, Uy,

Moreover, the upper and lower boundary for the U,, in the definition of B,, are
point-symmetric w.r.t. the same point: for

@19) )= B e/t g (k) = K
we have
(2.20) gk)=1-fn+1-k) k=1---,n

Incidentally, because of the symmetry (2.17) it suffices to prove (1.1) only for one
sign (subsequently done for +), because we have

(221) P(Ni—24i) = P(NE214k)-

(Note that no independence argument has been used here.)

(3) An upper inequality for the assertion (1.1), i.e.,
(2.22)

lim sup,_, . P(supy, cucy, Va(u) <t,) = lim sup, P4, < D(2),
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can now easily be proved as follows. We have by (2.2)

A, c®+9, NiexArn Ko 1= N{[1,n/logn] u[n — n/logn, nl}.
For k €1, n/log n]
(2.23)

( Z, < k+thn”2) n+1/”)
c( Z, < (—k + 1,k2) ,,+,/n)

A, C (—k™7Z, <1, + ¢,(k/n)?)

| = 1 1
c( k=3Z, (210g2n)7(1+10g3n+2t+0()))

4 log, n
if, e.g., ¢, = (log, n)%. Thus

(224) Q" ml<k<n/lognAkn c nn/logn( k_%z_k < Tn(t + 0(1)))
Now
(2.25) Tt + o(1)) = T, j1oq (¢ + o(1))

for with log(n/log n) = log n — log, n = (log n)(1 — (log, n)/log n),
log,(n/log n) = log, n — (1 + o(1))(log, n)/log n
= (log, n)(1 - (1 + o(1))/log n),
logs(n/log n) = logy n + o(1),
T, gt + 0(1)) = 2 log, (1 = (5 + o(1) /108 )
X (1 + (logs n + 2t + o(1))(1 + (1 + o(1))/log n)/ (4 log, n))
= T,(t + o(1)).

Hence by Theorem 2.1 the probability of the rhs of (2.24) tends to D(v).
In order to decrease the upper bound to D?(f) a sort of asymptotic independence
argument is used as follows. First, Lemma 2.1 implies

(2.26) P(ni2%4,,)—>1 (K, = n/o(log, n))

with an o(-) such that o(log, n) — oo. Taking account of (2.24) we hence have to
consider only large k values. We have with Z/,,_, := Z, 1= 2

AR, C ( -k S (1 + c,,/n%)t,,wk,,nil+ c,(n — k)/n%)

C((n+ 1= K22, STt + o(1)) + c,((n — K)/n)?)



LIMIT DISTRIBUTION OF THE SUPREMUM 129

and with ¢, = (log, n)? and n — k = o(n(log, n)~2):
An+1—k,n9n C (k_%z.l: < Tn(t + 0(1)))

Now, up to an asymptotically negligible event (indicated by <, ) and with
(2.29),

(227) Qn n 1’:; iAkn C n—>oan( N 2/=k;g nAkn)( N Z;;—n/log nAkn)
c (npeen(— k=32, < T,(t + o(1)))( N3 (k3 Z, < T,(1 + 0o(1)))).

For k <n/2, Z, and Z are independent. Hence the probability of the very last
event tends to D*(?).
(4) In order to prove

lim inf, PA > D*(f)

and thus to prove (1.1) we split up the k-range into five ranges. The first range is
K, := K, := n(log, )~ ' log, n up to n — K, upon which Kolmogorov’s theorem
will be applied: by (2.26)

(2.28) P(nizkA4,,) -1

The second range is k, : = n(log, n)~'(log; n)~! up to K, upon which the Darling-
Erdos theorem will be applied, yielding events of asymptotic probability one. The
third range is k = 1, - - , k, upon which again Darling-Erdos will be applied
yielding the probability D(¢). The remaining two ranges are essentially symmetrical
about n/2 to the two last ones.

In order to handle the second range, (k,, K,), let k,, K, be chosen as above, let
Q, as given in (2.9) and Q,, := (|Z, | < kn% log, n), thus PQ,, — 1.

For k € (k,, K,) we can replace the B,, defined in (2.6) by simpler and smaller
events. We need

k=14 twe_y mi>k— 1+ tw,(1—1/k)n2

log; n + 2t )(1 _ (log, n)log; n )

1
>k4;(2klog2n)2[(l + 4Tog, n ,

log, n _1
(1 ~ Tog n) — (2k log, n) 2}

2

logyn + 2t + o(l)—4log4n)

1
>k + (2k log, n)Z(I + 4Tog, n

>k + k>T,(—5 log, n)
for all n large enough, any ¢ fixed. Then, we obtain the following if ¢, — oo,
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¢, = o((log, n)?),

B, D 9((1 + —ci,)(k — K3T,(~5logyn)) < Z, < (1 - —))

n:
X (k + k3T,(—5 log, n))
D Q,,(lZ_kI <kz T,;(—6 log, n))
> Q,,(1Z - Z,| <k T,(~6 log, n) — k7 log, n)
> 9,9,((k ~ k) HZ ~ Z,| <wi),
where w;, is a constant satisfying

wl;n > (z—;]f_k—)z(Tn(_6 10g4 n) - 10g3 n)

> (1 + (% + o(l))(log3 n) " (log, n)_l)(2 log, n)%
x (1 = (log; n)(log, n)™?)
- (2log, n)%(l + (% + 0(1))(log3 n)~1(log, n)")
> T,(logs n) > Ty(log, n),
N:=[K, - k,],

for (3 + o(1))(logs n)~'(log, n)~! > (log, n)(2 log, n)~! and T,(x) is isotonic in n
for log, n > 50, say, and 0 < x < log, n, as may be seen as follows. Put (2 log, n)'zl'
= y so that

T,(x) =y + (x ————log 2 +1og.y )/y,

(2.29) 'z%? Tun(x) =1~ (logy +x - l°§ 2_ l)y“2 > 0.

Hence by Theorem 2.1

lim inf,,_,wP(ﬂf;kan,,) > limN_,ooP(maxF,,...,AJ_%IZ-I < Ty(log, n)) =1

By a symmetry argument like (2.17) the same relation holds for NjZ%._ k,Bin-
Hence (2.8) has been sharpened to

(2.30) P(n;zkB,,) - 1.

(5) The third range (and the one symmetrical to it) yields the interesting figure.
It is dealt with by



LIMIT DISTRIBUTION OF THE SUPREMUM 131

LeEMMA 2.2.
(2.31) lim, P(N ¥ 14y,) = lim, P(NG5,— i Arn) = D(2)
for k, = n(log, n)~'(log, n)~".

PROOF. On account of step (3) of this proof we only have to show that lim inf,
of the lhs probabilities is not smaller than D(#). Analogously to (2.23)ff. and using
¢, = o(log, n), say, in the definition of £, we have for k > 21+ 2/ =02+
o(1)) log, n (cf. (2.2a))

(2.32) A D (= k73Z, < x,,)-
Here with o(-)-sequences that are possibly negative

Xy, 1= t,(1 = k/n)7 — (k/n)?o(log, n)

> 1,(1 = k,/n) = (k,/m)?o(log n)

1 log, n + 2¢ -1
> (2 log, n)l{(l + ——4—10—ng)(1 — (log, n)

X (log, n)—l) - 0((1032 ")_1)}

logyn + 2t + o(l))

1
= (2 log, n)z(l + oz,
> T,,(t + o(1)),

the latter according to (2.25) a fortiori. The assertion for n — k, <k < n follows
from symmetry considerations already employed.
(6) The asymptotic independence argument already used in (2.27)ff. yields

(2.33) llm in.fnP(nke{l’ P ,k,,}{n—k,,,~ . ,n}Akn) > Dz(t),
and recalling (2.30),
lim inf, P(4,) > D(¢).

Together with (2.22), the assertion (1.1) of Theorem 1 with the plus sign is
established. The other sign has been dealt with by the remark following (2.20).

PrOOF OF THEOREM 3. In order to prove (1.8) it suffices to show according to
(2.4) that
2 g e n
P(nlog"<k<kann) -D (t) (t E R kn . (10g2 n)log3 n )

Here the restrictions of the k-range permitted by (2.15) and (2.30) and the
symmetry and independence argument already used in (2.27) are taken into
account. We first prove

(2.34) Hm Sup,_, o P(N jog nck<k Bin) < D(2)
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by noting that from the definition (2.6) of the B, and under employment of the
notations in the proof of Theorem 1 it follows

B, C (n‘12n+l(k - tnk%) <Z, < "_'Zn“(k + tnk%))’

B, (1= e 3)(k — 1,k3) < Z, < (1 + e,n73)(k + 1,k3).)
Choosing ¢, = log, n we have (1 * c,,n‘%)t,, = T,(t + o(1)). Denoting
1 —
Z*, = k™ 2Z, one gets for k <k,
B, C (122 < T(t + o(1)) + c,(k/m)?)

logy n + 2t + o(1)
“4log, n

c (|z,:=| < (2log, n)f'(l +

+ (log, n)~'0((logs n) ~* log )))

= (12 < T,(t + o(1)) = (1Z¥] < T, (1 + o(1))),

the latter according to (2.25) a fortiori. Now (2.34) follows from (1.13) taken for k,
partial sums.
In order to prove

(2.35) im inf, o P(Nog nck<k Bin) > D(2)
note

Wi > (k/m)(1 = k/n) > (k/n)3(1 = ((log, )logy n) ")
for the k in question. Hence

t,we, > ((k/n)2log, n)%(l + b—i%;’-fl — o(1/log, n))
= (k/m) T, (t + o(1))
and
bWt > (1= 1/K) 1w, > (1 = 1/l0g m)(k/n)2 T,( + o(1))
= (k/n)IT,(t + o(1)).
Thus

B, > Q,,((l + c,,n‘%)(k - k2 T,(t+ o(l))) <Z,
< (1= e 3)(k + ki T,(r + o(1))))
= 9,(122] < Tt + o(1)) = ¢,(k/n)?)
= Q,(1Z¢ < T, (1 + o(1)))
which implies (2.35) again by (1.13).
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Statement (1.9) is essentially a reformulation of (1.8) as is seen from (2.6) since in
(1.11) we have
Ut, = Uy, — k/ (n+ D)(k(n + 1 = k)(n + 1) X(n +2)"") 7
and for kA (n — k) = o0, k = o(n(log, n)~?),

R P} R REAGR O

n+l " (n+1D*n+2)
Finally (1.10) will be proved below.

ProOOF OF THEOREM 2 AND THEOREM 3, (1.10). Due to the last part of Proposi-
tion 1 and due to Lemma 2.3 below it suffices to prove the convergence to D(¢) in
case F(u) = u for the expressions

PV, (u) <t,u€l,)

I 1—u :
(236) (§) P( V,,(u) < tn(l—_}m)

X (1(3 (nF, () Fsup,| 7, (w)l)" Vu In),

where

1 -
1= (P2 U,,(tog, nylogs m) ™).

In order to evaluate the rhs probability the event may and will be intersected with

Q, = (supu|f,,(u)| < 11 ), PQ, -1

o(n?)
where o(n %) > n%, say, and with
Q1 = (sup,| V,(w)| < T,(1/0(1))), PR, —>1, any o(1) >0
(where the claimed convergences hold due to Kolmogorov’s theorem respectively to

Theorem 1). Now uniformly in u, ¥ < o(1) on £,

1—u \? 1 '
(2.37) ( — F,,(u)) < (1= (1 + o(1))F,()) <1+ 1/0(n).
We shall construct a third sequence of events 2,, with PQ,, — 1. For u € I, we
have

(nF,,(u))_% < (nF,,( log ))_%.

n
Now the central limit theorem can be applied to F,(logn/n): putting p, :=
log n/n, we have

o, := Var(nF,(p,)) = np,(1 - p,) = (1 + o(1))log n > o0
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and hence
nF,(p)/ 0, >4N(0, 1).
It follows that
P(nF,(p,) > np, — o,/0(1))
= P(nF,(p,) > (1 + o(1))log n) —» 1
for all negative o(1) converging not too fast to 0. Hence
@, := ((nE,(w) "2 < (1 + o(1))(log n) " *Vu € I,)

satisfies P{,, — 1.
Now for ¥ € I, and under restriction to £, N 2,, N Q,,

(2.38) (nF,(u)) "7 sup,| P,(w)| < (1 + o(1))(log n)~*

X T,(1/o(1)) = (2 log, )5(1 + o(1))

log n

and finally, with (2.37),

,,,(1—1—;;'(1;5)%(1 + (0F0) sup, 7,0

L logy n + 2t + o(1) 1 2log, n\:
(;am&@{1+ Tor IJJ2+“”)1%n

= T,(t + o(1)).
It now follows that
P(V,(u) <tVuel)=P( I7n(u) < T, (t + o(1))Vu € 1) + o(1) - D(¢)

by Proposition 1 (first part), if we there replace Uy, , by (1 + o(1))n~ " log n and
U, » by (1 + of 1))n "'k, which can be done. The analogous statement is true for
the u-range (1 — o(1/log, n), 1 — (log n)/n) and for |V,(u)| instead of V,(u). An
asymptotic independence type argument like (2.33) in the proof of Theorem 1 and
as in the proof of Theorem 3, first half, together with Lemma 2.3 below, yields all
the assertions.

ProoOF oF REMARK 1. With the notions just introduced we have
PB, = P(A,A*) = D*(1) + o(1),
the latter by (1.8) of Theorem 3. On the other hand by Theorem 1 lim, P/f,, =

lim, PA,*= D?(¢) so that we may say that /f,, and A4} are asymptotically indepen-
dent for any fixed ¢. Moreover, in the proof of Theorem 1 it will be shown that

P(nl<k<k,,Akn) +o(1) = P(ﬂn—k,,<k<nAkn) +o(1) =
P(ﬂl<k<k,,A1fn) +o(1) = P(nn—k,,<k<nA;:n) + o(1) = D(2).

Together with the assertions of Theorem 1 this implies that all four of these
intersections are asymptotically independent. Lemma 2.3 below concerns the last
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relation of Proposition 1 for V,(-) instead of 17,,(-). It is related to Lemma 6.1 of
[11] for the Poisson process and is identical with the sufficiency half of Corollary 2
of [12] but the proof given here requires only Darling-Erdos’ theorem.

LemMa 2.3. Let d, > 0 be real. Then
(2.39) P(supycycni-i| V(W) <1,)—>1, tERY
if d, — 0 by symmetry the analogous assertion follows for 1 — ndl<u<l.

The necessity of the condition can also be proven with the tools used below, but
it is not needed. Both directions are proved in [12] with the help of more advanced
tools.

PROOF.

(1) W.lo.g let k, : = n°® > ¢1° We shall show that it suffices to prove
V,(u)| < t,,).
With @, :=(Z,,, > nt /o(1)), PQ, — 1, o(1) being a positive null sequence con-
verging slowly enough, and with U,, replaced by Z, /Z, we have
P(nUy, , > k,) > P(2,(Zy, > —k,(1 + 0(1)))) -1
by the central limit theorem. Now
P(supycycpoir-1|Vy(w)| < 1,) > P((nUy , > k,)4,) = o(1) + PA,.

Since 2k, is of the same type n®® as k, we henceforth write k, instead of 2k,.

) 1
Moreover, since on the wu-range in question (1 — u)?t, >
(1 = n°O=Yy >¢ .= T,(¢) with some ¢’ < ¢ we also have

A,D 4, := (I F(u)| < t,’,(u/n)% Vu € (0, Ukm,,))

and it suffices to show PA, — 1. We shall write here and more often subsequently z,
instead of ¢, since an alteration of ¢ is inessential.

(2) We solve the inequality in the definition of A, for u. From u? — 2uF,(u) +
FX(u) < t*u/n we get

lu — F,(u) — 22n)7"| < (2n)_1t3(1 + 4nF,,(u)tn'2)5l.

It suffices to consider the upper inequality arising from this only at U,, — and the
lower one at U, + (k=1,- - -, k,). Thus

(240) 4,5l (k- 272 {(1+ aki?) — 1} <nU, <k+ k%tn)
52, ni((k - 273{(+ aki; ) - 1})(1 + 1/0(n)) <2
< (k + k35,)(1 = 1/0(n?))
52, ne((k/o(n)) - 272{ (1 + 4kt2) 2 - 1) < Z,
<~ (k/o(n?)) + k21,).

P4, —>1 where A4,:= (sup0<ll<U2k n
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Here the factors 1 = 1/ o(nil) can be absorbed in
t, 1= (2log, n)%(l + (4 log, n)~'(2t + log, n))

to yield some #, since 1/ o(n%) = o((log, n)~"). We shall henceforth again drop the
dash at #. Similarly the term k/o(nz) < n®V=3 /o(1) = o((log, n)® if the o(1)-
sequence in £, is chosen suitably, so that this term can also be absorbed in
2712{ - - - } in the lower bound. Summarizing, we want to show

@41) Py > o(1) + P( oo —272{(1 + 4ki72)F - 1) k3 < 2))

<)) = 1(2¢ = k71(Z, - k).
(3) Using :
log, n = log, k, + [log o(1)| = (log, k,)
X (1 + [log o(1)|/log, k)
we have
2> (2 log, n)(l + (2¢.+ log; n)(2 log, n)_l)
=2log, n + log; n + 2¢
(2.42) > 2 log, k, + log; k, + |log o(1)| + 2¢
= (2 log, k,)(1 + (2t + |log o(1)| + log, k,)(2 log k,) ")
> T2 (1/0(1))

where the argument of the 7 function can be chosen to tend to + co. Now (2.41)
can be proved immediately for the upper inequalities applying Theorem 2.1 with n
replaced by k,, :

P(max,_, ... , Z¥ <t,) > P(max, Z¥ < T, (1/0(1)) - 1.

(4) The equivalent assertion for the lower inequalities in (2.40) resp. (2.41) is
more complicated and requires splitting the k-range up into five sections. Firstly,
1

fork=1,---,0(t,), observing (1 + x)z > 1 + x/2 — x?/8 for x > 0, we get

P(ngel(k - 272{(1 + 4kt~ 1) <nll,,))
> P(Ng&) (k%2 < nU,,)) > P(o(1) < nU,,)
=Plo(1) < Z)—> 1.
Secondly, by a slightly sharper analysis and putting
(2.43) A 2= (—27 % E2{(1+ k) - 1) < 22),
one has starting from (2.41)
@) NI > iK1 = k7)) <22) 5 (- (1) < 22)

since k%(l — kt;?) assumes its minimum on the k-range in question at the left
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endpoint. But now o(t3) > (1/o(1))(log, (322/4))? > Tyz/4(1/ (1)) with suitable
positive o(1) — sequences, and again by Theorem 2.1 with 3¢2/4 instead of n the
probabilities of the events (2.44) are seen to tend to one.

Thirdly, for 3#2/4 < k < 2 we have in (2.43) (1 + 4kt~%)7— 1 > 1, resulting in

A0 (2712 <Z8) o (-27'g < Z¢)
D (= Ty(1/0(1)) < Z¥)
since log, £ = o(t,). Theorem 2.1 with n replaced by £2 thus yields
P(NGosz/adin) > Pinfy o coZt > —Ty(1/0(1)) 1.

On the fourth range, £ < k < 1% we have in (2.43)
@245) (1 + 4k 2 = 1> k347 (1 = 27,k 7) > 2k307 (1 — £572).
Hence

A O (= 1,(1 = 173) < Z2) 2 (= Typ(1/0(1)) < Z)
since T;i(1/0(1)) = O(log, £,) = o(t,) = o(t,(1 — ¢t %)). Theorem 2.1 now yields
P(Nfpdy,) —> L.
On the fifth range, £!° < k < n°®, we have instead of (2.45)
(1+ 4kt,,'2)% — 1> 2k (1 = 47
= 2k747 (1 — 0((logy ) ™2)) > 2k T, (2 + o(1)).
By this and taking the extreme inequalities in (2.42) we have
A, D (—1,<2Z¥) D (T (1/0(1)) < ZF);
finally
P(N¥_1As,) > P(inf, <o) ZF > T, (1/0(1))) = L,

which completes the proof of the lemma.
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