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SEQUENTIAL TESTS FOR HYPERGEOMETRIC DISTRIBUTIONS
AND FINITE POPULATIONS!

By Tze LEUNG LAl
Columbia University

While usual sequential analysis deals with i.i.d. observations, this paper
studies sequential tests for the dependent case of sampling without replacement
from a finite population. A general weak convergence theorem is obtained and
it is applied to the asymptotic analysis of the tests. Motivated by such applica-
tions as election predictions and acceptance sampling, the case of hypergeomet-
ric populations is studied in detail and a simple test with a triangular continua-
tion region is proposed and is shown to have many nice properties. The paper
concludes with a general heuristic principle of “finite-population correction”
which is applicable to both sequential testing and fixed-width interval estima-
tion problems.

1. Introduction and summary. While usual sequential analysis deals with i.i.d.
observations, this paper studies sequential tests for the dependent case of sampling
without replacement from finite populations. In particular, we shall first consider
the important case of dichotomous populations, i.e., Np items of the population are
of one kind (which we designate as 1’s) and N(1 — p) items are of another kind
(which we designate as 0’s). As an illustration, suppose there are two candidates A4
and B in an election and it is desired to project the winner when only a proportion
of the votes has been counted. Unless the outcome turns out to be extremely close,
the forecaster would want his prediction to be correct with a high probability and
he would like to make such a prediction as early as possible. If we formulate this
(two-action) problem in terms of hypothesis testing, then the forecaster has an
indifference zone of size 8, in testing the hypothesis H : p <3(1 — 8y) versus the
alternative K : p > (1 + 8y), where N is the total number of votes cast and p is
the proportion in favor of 4. Assume that the votes are counted in a random order
and let X, be the number of votes in favor of 4 at stage n. Then X, has the
hypergeometric density
(1D fespn) = Bx,=x] = (MP)(NO=2)/ (W),

x=01...,n

Subject to a preassigned error probability a(0 < @ < 1) of wrong decision, i.e.,

(1.2) P[Reject H] < a if p<
P[Reject K] < a P>
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the forecaster’s question is when he can be reasonably sure that enough votes have
been counted for him to decide who would be the ultimate winner. This therefore
reduces to the problem of finding a sequential test of H versus K subject to (1.2).
Such sequential tests of H versus K for the parameter p of finite dichotomous
populations clearly have many other applications, such as in process inspection
schemes, acceptance sampling, etc.

Instead of testing H versus K, consider even the simpler problem of testing
Hy:p =3(1 — 8y) versus H, : p =1(1 + ). In analogy with Wald’s SPRT’s, one
may want to form the likelihood ratio

(1.3) R, = f(X,; 3(1 + 0x), n) /(X 3(1 = 8y), n)

and to stop sampling at stage .
T = T(A,B) = inf(n(<N): R, > A or R, < B}

with 0 < B < 1 < 4, accepting H, or H, according as R, > A or R, < B (cf. [7],
pages 112-113 and 136-137). However, the well-known optimum properties of
Wald’s SPRT’s do not extend to the present dependent case. If one considers the
auxiliary Bayes problem with the usual 0-1 loss as the loss function, cost ¢ per
observation and prior probability A in favor of H,, then the posterior probability in
favor of H, at stage n is

(1.4) A, =AR,/ (AR, + (1 - M)},

and in this Bayesian setting the sequence (X,),c,<n is a nonstationary Markov
chain The sequential Bayes test accepts H, or H, according as Ay * <1 or
Ar * >3, and the stopping rule T* of the test can be found by using backward
induction and the Markovian structure of (X,), c,<» to solve the optimal stopping
problem for the loss sequence U, = cn + min{A,, 1 —-A,},n=1,..., N (cf.
Chapters 3 and 5 of [4]). It can be shown that T* takes the form

T* = inf{n(< N): R, > 4,0rR, <B,}.

The quantities 4, and B, may in general vary with n, as can be easily seen by
constructing examples where this is indeed the case. Thus Bayes sequential tests of
H, versus H,; need no longer be of the form of SPRT’s in the present dependent
case.

When N is large, the computation of the likelihood ratio R, in the SPRT
becomes rather laborious for large n, and the continuation region in the Bayes test
would require a great deal of computational effort. In this paper we shall consider
a much simpler test. Let S, = 2X, — n. Thus in the voting application, S, is the
number of votes by which 4 leads B at stage n. When N — oo and 8, — 8 with
0<#<1,X, hasa limiting binomial distribution under H, or H, for every fixed
n. Let Z,=X,,,— X, If Z,,2Z,,- -+ were actually ii.d. Bernoulli random
variables such that P[Z, = 1]=p =1 — P[Z, = 0], then to test Hj:p =5(1 —
0) versus H{ : p =3(1 + 8), the optimum test is Wald’s SPRT with stopping rule

= inf(n > 1:|S,| > b}, where b is a positive integer. The error probabilities and
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the expected sample size of this test are given by:

(1.5) a = Py, [Reject Hy] = Py.[Reject Hj]
=(1-6)°/{(1+0)+(1-8)";
(1.6) Eyr' = Eyr’ = (b/0)(1 — 2a).

From (1.5), it follows that b = {log((1 — «)/a)}/{log((1 + 8)/(1 — 8))}.

The above binomial test suggests the following analogous sequential test (7, §) of
Hy:p =3(1 — 8y) versus H, : p =1(1 + ) for the parameter p of the hypergeo-
metric density (1.1). Without loss of generality, we shall assume that

(1.7) 0<6y <1 and IN(1-—8) isan integer.

We observe that to test H,, versus H,, there is no need to take more than
N(1 — 8y) + 1 observations. In fact by (1.7), N(1 — 8,) + 1 is odd and so
|Sni—6,)+11 > 1. If H, holds, there are N8y more items equal to 1 than equal to 0,
S0 Sn(-g,+1 > 1. Likewise if H, holds, then Sy,_g . < — 1. Obviously we
should also stop sampling when |Sy,_g,)| > 2, or when [Sy_4,_1| > 3, etc. We
therefore modify the stopping rule 7' of the binomial test as follows. Given
0<a<i,let
(1.8) ¢y = min{max[ {log((1 — a)/a)}/ {log((1 + 6y)/ (1 — 8))}, 1],
N(1 —6y) +1}.

To test H, versus H,, we propose the stopping rule
(1.9) r=inf{n > 1:|S,| > cy — (n — D)(cy — 1)/ (N(1 — 8y))}.
It is easy to see that 7 < N(1 — §,) + 1. Clearly we can also use the stopping rule 7
to test the composite hypothesis H : p <3(1 — 8y) versus K : p > 2(1 + 6,). The
terminal decision rule 8 of the test is to accept H,, (or H) if S, < — 1 and to accept
H,(or K)if S, > 1.

In most applications, N is a large number. If 8, is not too small, then under H,

and H,, Z,, Z,, - - - are in some sense approximately independent Bernoulli and
the following theorem holds in view of (1.5) and (1.6).

THEOREM 1. Let by be the smallest positive integer > cy, where cy is as defined
in (1.8). Suppose lim infy_ 60y > 0 and lim,_  N(1 — 8y) = . Then
lim sup_, by < 00 and
(1.10) Py [(r, 8) rejects Hy) = Py [(7, 8) rejects H|] = ay + o(1),

where  ay = (1 — 0) /{(1 + 8y) + (1 — ,)};
(1.11) Eyr=Eyr=(by/0y)(1 —2ay) +0o(l) as N-—>co.

The proof of Theorem 1 is straightforward and will be omitted. In view of (1.8),
ay < a for all large N under the assumptions of Theorem 1. By (1.10) and

monotonicity, the error constraints (1.2) are therefore approximately satisfied if N
is large and 6, is not too small. The following theorem, which is much deeper than
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Theorem 1, says that the error constraints (1.2) are still approximately satisfied by
the test (7, §) even when 8, is very small.

THEOREM 2. As N — oo and 8y — 0 such that N8, — oo,
(1.12) Py [(7, 8) rejects Hy| = Py [(7, 8) rejects H,| — a.

The asymptotic relation (1.12) turns out to be quite good as a numerical
approximation to the error probabilities even when N is not very large and N, is
quite small (say N =200 and N6, = 10). For N = 200, 400, 800, we have
evaluated the exact error probabilities for certain special cases of 8, and a to check
the accuracy of the asymptotic approximation given by (1.10) and (1.12). Some of
our results are given in Table 1 of Section 3.

In view of Theorem 2 (and Theorem 1 as well), the.stopping boundaries defined
by (1.9) can be regarded as a “finite-population correction” to the horizontal
boundaries in the binomial test. While this correction is negligible if lim inf,_, 68y
> 0 (or more generally if limy_, N %HN — oo as shown in Section 2), it has a very
significant effect if 8, = O(N _%). The proof of Theorem 2 is based on a general
weak convergence theorem in Section 2 for sampling without replacement from
finite populations. There are three different modes of weak convergence corre-
sponding to the three cases Oy N I o0, or N LN B (with 0 < B8 < ), or
OyN 150 (but N8,, — o). The last case is the most delicate and our analysis of the
first exit time 7 in this case involves the last exit time of Brownian motion and a
time inversion argument.

The following theorem, whose proof will also be presented in Section 2, gives the
asymptotic behavior of the expected sample size of the test (7, ) and shows that
there is a substantial saving in the sample size (under H, or H,) over the
corresponding fixed sample size Neyman-Pearson test of H, versus H, (see Section
3).

THEOREM 3. For 0 < a <31 and B > 0, let p(a) =1 log((1 — @)/ @) and
u(t; @, B) = ®((2k + 1)B 'p(a)t ™3 — Br7) — @((2k — 1)B~"p(a)r 3 — pr2),

where k =0, =1, =2, - - - and D is the distribution function of the standard normal
distribution. Define

(L13)  a*(a, B) = 32 (— DM/ (1 = @) S&(1 + ) w15 a, B) dr;
(1.14) A, = [&{1 — uy(t; &, 1)} 172 dt

- S (=D a/ (1 = &) &t 2w (t; o, 1) at.
Then
(1.15) A*(a, B) < (1 = 2a)p(a)/ { B + (1 — 2a)p(a) },
(1.16) A, > {(1 = 2a)p(a)} "
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Furthermore, as N — o0 and 0 — 0,
(L17)  Eyr = Eyr = {(1 - 2a)p(a) + o(1)}05>  if N2y —> oo,
= (4%, B) + o()}N  if Niby—p,
= N — (4, + o(1))(N6y)*  if Ni6y—0 but Ny— co.

The inequalities (1.15) and (1.16) are asymptotically sharp as al0; in fact as |0 (B
fixed),
(L18) A, ~(p()™' and  A*(a B) =1~ (B> + o(1))(p(e) "
The ideas used in the construction of the test (7, §) can be readily extended to
construct sequential tests for the means of more general finite populations. In

Section 4, by making use of the general weak convergence theorem of Section 2, we
shall study these kinds of sequential tests.

2. The three modes of weak convergence and the proof of Theorems 2 and 3.
Throughout this section we shall let {W(2), ¢ > 0} denote the standard Wiener
process and { W°(#), 0 < ¢ < 1} the Brownian bridge. For p > 0 and B > 0, define

2.1) Typ, B) =inf{t > 0: W(t) > pt +pB~'}  (inf D = o0),

22) Typ, B) = nf{t > 0: W(r) < Bt —pB~'};

(2.3) THp, B) = inf{z €[0, 1]: WO(t) > Bt + pB~'(1 - n} (inf@=1),
(24) Ti(p, B) = inf{t €[0, 1]: W) < Bt —pB~'(1 = O)};

(25) Ly(p, B) = sup{t > 0: W()) > B+pB ™'t}  (supD=0),

(26) Ly(p, B) = sup{t > 0: W(1) < B = pB ™'t}

Theorems 2 and 3 follow from Lemma 1 and Theorem 4 below.

LemMa 1. LetO<a <L and B > 0. Set p(@) =1 log((1 — a)/a). Fori=1,2,
write T, = T(p(a), B), T* = T¥@(a), B), L; = Li(o(e), B), and let

(2.7) T= m.in(Tl, Tz), T* = min( Tr, T;), L= maX(Ll, Lz).
() P[T, < T,) = P[Tt <T3]=P[L, > L,] = a.

(ii) Define A*(a, B) and A, as in (1.13), (1.14). Then (1.15), (1.16) and (1.18) hold,
and

(2.8) ET = B~%(1 - 2a)p(a), ET*=A*a,B), EL= B?4,.
ProOF. It is well known that a = P[T, < T,] and ET satisfies (2.8). Since

{1+ wt/(1 + 1), t > 0} defines a standard Wiener process (cf. [5], page
402), we can write TF = T,/(1 + T)), Tf = T,/(1 + T,). Therefore P[T} < T3]
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= P[T, < T,] = a. Furthermore T* = T/(1 + T) and so ET* < ET/(1 + ET)
by Jensen’s inequality. We note that

ET*=1-E(1+T)'=[2(1+ 07 *dt — [(1 + )*P[T < 1] at.

Using (4.59) of [1], we obtain the exact expression A*(a, B) as given by (1.13) for
ET*, thus proving (1.15).

Since the processes { W(¢), t > 0} and {tW(1/1), t > 0} have the same distribu-
tion, it is easy to see that (1/L,, 1/L,) has the same distribution as (T, T,).
Therefore P[L, > L,] = P[T, < T,] = a. Since L and 1/ T have the same distrib-
ution, EL > 1/ET by Jensen’s inequality. Using (4.59) of [1], we obtain the exact
expression for EL = [Pt ~2P[T < {] dt as given by 824, thus proving (1.16). []

The following general weak convergence theorem for finite populations shows
that although there are three possible modes of weak convergence, the triangular
continuation region of the type considered in (1.9) has the remarkable property
that the probability of exiting the region from the upper boundary has a limit
which is the same for all the three different modes of weak convergence (see (2.15)
below).

THEOREM 4. For each N, let uy,, - - -, uyy be real numbers (not necessarily
distinct) such that

(2.92) Sy =0, limy, N 7'Z 3 =1
(2.9b) lim supy N "'SX | |luyil" < 00 for some r > 2.

Let Uy,, - - -, Uyy be a random permutation of these numbers, each of the N!
permutations having probability 1/N! . Let p be a positive constant and let 8y, ay
and ky be positive numbers and &y, {y be real numbers such that as N — oo,

(2.10) ky~N, 8y—>0 but NBy—>oo, ay~ply'
[En] + 1Sv] =0 (min{N, (NBN)Z})'
Define
(2-11) Syn = 27=I(UN1‘ - 0N)’ n=1---,N;

(2.12) vy =inf{n: Sy, > ay(N — n+ &) /ky}  (inf F=N),
(2.13) Tva =1inf{n : Sy, < —ay(N — n + §)/ky}s
(2.14) Ty = min{ 7y, Ty, }-

(i) Suppose N %ON — o as N —oo. Then for every h >0, the process
{BNEI,-’Z”_IZIUM., 0 <t < h} converges weakly to {W(t),0 <t <h}. Furthermore
(837x1, 027x,) converges in distribution to (Ty(p, 1), Ty(p, 1)) as N — oo, and the
family {027y, N > 1} is uniformly integrable. 1

(ii) Suppose N 28, — B for some B > 0. Then the process {N 3Ny, 0 <t
< 1) converges weakly to the Brownian bridge {W%1), 0 <t <1} and
(N ~Yry1, N ~'1y,) converges in distribution to (T¥(p, B), T(p, B))-
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(iii) Suppose N %BN —0 but N8y — co. Then for every h >0, the process
{(NBy)~ 'SV [y, 0 < t < b} converges weakly to {W(f),0 <t <h}. Fur-
thermore ((NOy) 2N — ty1), (NOy) %N — 7y,)) converges in distribution to
(Ly(p, 1), Ly(p, 1)), and the family {(N8y)"A(N — 1y), N 2 1} is uniformly integra-
ble.

COROLLARY. With the same notations and assumptions as in Theorem 4, as
N = oo (and so 8, — 0 but N8y > oo by (2.10)),

(2.15) Hm | P[7y; <Tyy] =@,  where a=1/(1+ e%*).
To prove Theorem 4, we shall use the following two lemmas.

LEMMA 2. Let uy; (i=1,-+-,N) be real numbers . satisfying (2.92) and let
Uyp* > Uyn be as defined in Theorem 4.

(i) Suppose that as N — o0,
(2.16) maxlgigNluNil = O(NE)'

Then the process {N~ SWU,, 0 <t <'1} converges weakly to the Brownian

bridge {W°(£),0 <t < 1}.
(ii) Let (dy) be a sequence of positive numbers such that

(2.17) limy_dy = 00, limy_dy/N = 0.
Assume that
(2.18) limN_mN"EluM_l}edI% u2, =0  forevery ¢>0.

Let Xn(0) = Yp(0) = 0, and for N/dy >t > 0, define

(2.19) Xy(8) = dx 2S00y, Yy(1) = dy2 25Uy,

Then for every h >0, the processes {Xy(f),0 <t <h} and {Yy(0), 0<t<h}
converge weakly to { W(t),0 <t <h} as N — .

Parts (i) and (i) (for the process X,(#)) of the above lemma have been estab-
lished by Rosén [9]. As to the process Y(#), we note that Yy(#) = — X %(2), where
Xx(0) = d;%ZfLN_[dN,]HUM.. Since the random variables Uy, . .., Uyy are ex-
changeable, the processes {X3(#),0 <t <h} and {Xy(?),0 <t <h} have the
same distribution and so the weak convergence of the process { Yy(¢), 0 < < h}
in the above lemma follows.

LEMMA 3. With the same notations and assumptions as in Lemma 2(ii), assume
further that (2.9b) holds (for some r > 2). Then there exists a constant 8 > 0 such
that

(220) E[S'_ Uyl <on’/*  forall N=12,--- and 1<n<N\.

Moreover, given any € > 0, there exists A > 0 such that for all N = 1,2, - - and
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N/dy >t > 1,
(2.21) P[IZE‘L”.‘]UNJ >e d,%,s for some s > t] <N
(2.22) P[[Zf';l[d'”] Uyl > ¢ dlés for some s > t] < N2

PrROOF. By a theorem of Hoeffding ([8], page 28), foral N=1,2,- - -,
(2.23) EZi Ul < EIZT Vil n=12---,N,
where Vy,, - + -, Vy, are a random sample of size n drawn with replacement from
the population {uy,, - - -, uyy}. Since Vy,, Vy,, - - - are iid. with mean 0 and

variance of = N 'S \uf;, > 1 and supy E|Vy,|P < oo for all 0 <p <r by

(2.9b), there exists a constant C > 0 such that
(2.24) E|(noN)_2l2’,?=lVN,.|’ <C foral N=12 --- and 1<n <N,

(cf. [12], Theorem 2). From (2.23) and (2.24), (2.20) follows.

As noted by Sen [10] (see also [11]), {n™'S"_ Uy, n > 1} is a reverse
martingale; hence (2.21) follows easily from the submartingale inequality and
(2.20). The inequality (2.22) follows from (2.21) since Uy, * - + , Uyy are exchange-
able and =¥_,U,, = 0.

PrOOF OF THEOREM 4. It is easy to see that condition (2.9b) implies (2.16). Also
(2.9b) implies that (2.18) holds for every sequence dj, of positive numbers such that
limy_, dy = o0.

The case N %ON — 0 but N8, — oo is the most delicate and we shall first consider
it. Let dy = (N8y)>. Then dy — o and dy = o(N). In view of (2.10), for all
N > N, (sufficiently large) and y > 1,

(2.25) P[zfy;l[d"'t] Uy > (N = [dyt])by

+ay([dyt] + &)/ky forsome N/dy >t >y]

< P[Zf-";][d”']UN, > %pdzllt for some ¢ >y] < N2

The last inequality above follows from Lemma 3. Likewise for N > Nyand y > 1,
(2.26) P[ENA4IU,, < (N —[dyt])by
—ay([dyt] + $n)/ky  forsome N/dy>t>y] <N~
From (2.25) and (2.26), it follows that for N > Nyand y > 1,
(227 P[1y; SN = dyy] + P[1y, <N — dyy] < 29772
Since r > 2, (2.27) implies the uniform integrability of dy (N — 7).

Define Yy (¢) as in (2.19). By Lemma 2 (ii), { Y(#), 0 < ¢ < h} converges weakly
to { W(t),0 <t < h} for every h > 0. Using this fact, together with (2.10), (2.25)
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and (2.26), we obtain that for all fixed positive constants ¢, #,,
P[ty; >N — dyt, 5y > N — dyt, ]
= P[ZISIUy, < (N —[dyt])8y
+ay([dyt] + &) /ky  forall N/dy >t >1,
SMAAU, > (N = [dyt])0n
—ay([dyt] + $v)/ky  forall N/dy>t> h]
— P[W(1) <1+ pt forall ¢ > 1,
w(t)>1—pt foral >1)]
= P[Ly(p, 1) <1;, Ly(p, 1) < 1]

Hence (dy (N — 7y,), dy '(N — 7y,)) converges in distribution to

(Ly(p, 1), Lo(p, 1). ] ‘
Next consider the case N0, — B for some B > 0. By Lemma 2(1),
{N_%Z[N’] Uy, 0 <t < 1} converges weakly to {W(t), 0 < ¢ < 1}. Therefore in

i=1

view of (2.10), for 0 < ¢}, ¢, < 1,
(228)  P[1y, > Nt), 75y > Ni, |

= P[SYU,, <[ Nt]by
+ ay(N —[Nt] + &y)/ky  forall 0<1<y,
SN U, >[Nt]0y — ay(N —[Nt] + §y)/ky ~ forall 0 <1< h]
S P[Wo) <Bt+pB (1 -0VO<1<1, wo(t) > pt
—pB7 (1 = VO <1 < 1]

Finally for the case N %BN — o0, we set dy = 052 and define X, (¢) as in (2.19).
By Lemma 2 (ii), {Xy(f), 0 < < h} converges weakly to { W(t), 0 <t < h} for
every h > 0. Using this fact and (2.10), we obtain by an argument similar to (2.28)
that (dy "7y, dy '7y,) converges in distribution to (Ty(p, 1), To(p, 1)). To prove the
uniform integrability of dy 'y, we note that for all large N and N/dy >t > 2p,

Plyy > dyt] < P[S141Uy, > [dyt]0y — ay(N = [dyt] + $3)/kn ]
< P[l4lUy, > dir/4] < M77/7 by (221). 0

PrOOF OF COROLLARY. Let a = 1/(1 + *). Then p =3 log((1 — a)/a). If

N(j) is a subsequence such that N %( J)Ox(; — o0, then by Lemma 1(i) and Theorem
4(i), (2.15) holds along the subsequence N(j). The same conclusion is still true if
N ]7( /)0y, — B for some B >0 (respectively B = 0), using part (ii) (respectively
(i) instead of part (i) of Theorem 4. []
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PROOF OF THEOREMS 2 AND 3. Note that under Hy, 7 as defined by (1.9) is of
the form (2.14) with ky = N(1 — Oy), ay = cy — 1, & = &y = {N(1 — cyy)/(cx
— 1)} + 1. Clearly condition (2.10) is satisfied. Hence Theorem 2 follows from the
corollary to Theorem 4, and Theorem 3 follows from Lemma 1(ii) and Theorem 4. ]

3. Comparison with some exact numerical results and improvement over fixed
sample size tests. When N is not too large, the error probability Py [(7, 8) rejects
H,] (which we denote by P) and the expected sample size Ey1 (whlch we denote
by E) of the test (,§) introduced in Section 1 can be computed by exact
numerical methods on a computer, as is done in Table 1 below for certain values of
N, 8y and a. Table 1 shows that a approximates P quite well when 8, is small.
Moreover, in all cases considered, @ > P, and hence the error constraints (1.2) are
satisfied.

TABLE 1

N Oy a P E
200 .03 2 1735 130.2
400 025 2 1842 228.8
800 .025 2 1907 330.5
200 .05 1 08915 117.2
400 .05 1 09228 171.2
800 .05 1 09418 2270
200 2 .1 .08120 214
400 2 1 07796 23.6
800 2 .1 07662 248
400 4 .05 .03019 9.30
800 4 .05 .03139 9.33

In Table 1, for 6, = .2 or 6, = .4, the approximation of a to P is not as good as
for the smaller values of 6. A better approximation for P in this case is provided
by ay in (1.10); moreover, (1.11) also provides a good approximation for E in this
case. For example, if 6y = 4 and a = .05, then a, = .0326, in good agreement
with the corresponding values .03019 and .03139 of P in Table 1.

Table 2 compares the exact value of E given by Table 1 with the corresponding
asymptotic approximation 4*(a, B)N given by Theorem 3 when 6, is small but

TABLE 2
N Oy Nigy =8 a E E
200 03 424 2 139.6 1302
400 025 5 2 249.8 228.8
800 025 707 2 363.3 330.5
200 05 707 1 127.5 1172
400 05 1. 1 187.1 1712
800 05 1414 1 2442 270
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N %HN is not small. Since 4*(a, B)N as defined by (1.13) is rather complicated, we
shall replace it by its upper bound E = N(1 — 2a)p(a)/{ B> + (1 — 2a)p(a)} (see
the inequality (1.15)), where p(a) =3 log((1 — a)/a).

Let 0 < a <1 and let z, = ®~!(I'— a), where ® is the distribution function of
the standard normal distribution. Let
(3.1) my = positive odd integer closest to Nz2/ (N03 + z2).
(There are two such odd integers if Nz2/(N8g + z2) is an even integer; in this case,
we take my to be the larger one.) To test H, versus H,, the fixed sample size
Neyman-Pearson test which takes m, observations and rejects H, if and only if
S,,, > 0 would have the following error probabilities:
(3.2) P* = Py [Reject Hy| = Py [Reject H, ]’

—>aasN->oandfy, -0  suchthat Ny — co.

The last relation above follows from Theorem 4 and (3.3) below. The following
table compares the exact error probability P* and the sample size m, of this
Neyman-Pearson test with the exact error probablhty P and the expected sample
size E of the test (7, §).

TABLE 3
N =800
Oy a E P My P*
025 2 330.5 1907 469 .1998
05 1 270 09418 361 09948
4 05 933 03139 17 03867
2 1 248 07662 39 09646

Table 3 shows that P* is larger than P and m, is substantially larger than E.
Also P* is quite close to P except in the last row; here a(= .1) exceeds P by about
.02 and P* is close to a. If in (3.1) we replace a by P, then we obtain my = 49
(instead of 39), and with this new value of m,, P* = .07116, which is close to
P = .07662.

We note that as N — o and 8, — 0 such that N8, — oo,
(33) my = (z2 + o(1))0y%  if NTIBN — 0,
={(B+ )72+ o()}N NGy~ (> 0),
— (272 + o(1))(N8y)*  if N2y —0.

Let us compare (3.3) with the asymptotic formula (1.17) for E. Using (1.18), it is
easy to see that for fixed 8 > 0, as a0,

(3.4a) 22 ~2|log a| = (4 + o(1))(1 — 2a)p(a),
(3.40) (1- (B2 +2)7'2)/ (1 - 4% B)) >
(3.4¢) 27~ A, /4,
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where p(a), A, and A*(a, B) are as in (1.17). The common factor 4 in the above
three expressions can be interpreted as the “asymptotic efficiency” of the test (7, §)
relative to the corresponding fixed sample size Neyman-Pearson test.

4. Extensions to general finite populations. Let II be a finite population consist-
ing of N real numbers y,,, - - - , yyy (not necessarily distinct) with mean py =
N~'SY | yn; and variance o3 = N 7'S_ (yy: — p)* > 0. Suppose that the con-
tents of the population are unknown and so are u, and o,, while the population
size N is large and known. Let Y, Y,, - - - be the successive observations drawn at
random without replacement from the population II and let

(4.1) S,=Y,+---+Y, Y, =n’ls,
02 = max{n_IZ'}:l(Yi - )_’,,)2, n_'}.

Using Theorem 4, the ideas of Section 1 can be easily extended to construct a
sequential test of H} : py = — 8yoy versus H} : uy = yoy, where 8y is a given
small positive number. Let n, be a fixed positive integer. For 0 < a <3, we let
p(a) =1 log((1 — @)/ ) and use the stopping rule
(4.2) ™ =inf{n; ny <n <N,[S,| > p(a)by '0,(1 — n/N)},

in analogy with the stopping rule 7 in (1.9). The terminal decision rule is to reject
H if S.. > 0 and accept H¢ if otherwise. The following theorem shows that the
error probabilities of this test are asymptotically equal to a as N — co and 8y — 0
such that N8y — co.

THEOREM 5. Assume that
(4.3a) lim infy_, 0y > 0,
(4.3b) lim supy_ N 'SV \|ynil" < 0 for some r > 2.
Then as N — o and 8y, — 0 such that Ny — oo,
P[S.>0]>a« i = —0Oyoy,
(44) PIFS:* < 0} >a ; ZZ = NGII,.N

PrOOF. We shall only consider the case uy = — 6ya,. Without loss of general-
ity, we can assume that (4.3b) holds with 2 < r < 4. Using an argument similar to
the proof of (2.20) and the Esseen-von Bahr inequality (cf. [6], noting that
1 <r/2<?2), it can be shown that (4.3b) implies the existence of a positive
constant C such that

45)  EIZ {(Y, — ) = o} )7
1

Cn forall N=1,2,--- and

<
<n<N.

Since {n™'S7_((Y; — py)> 1 <n <N} and (¥, — uy, 1 <n < N} are reverse
martingales, it follows from (2.20), (4.5) and the submartingale inequality that for
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every & > 0, there exists A > 0 such that
(4.6) P[max,,<j<]\,|vj2 — o] > e]
<A~¢/2-D forall N=1,2,-- - and 1<n<N.

Using (2.20) and the Markov inequality and noting tht vf >j~L it is easy to see
that

4.7 limy_,,P[7* < n] = 0 for every fixed positive integer 7.
Set uy, = (Vy; — Iy)/ On- From (4.6), (4.7) and Theorem 4, (4.4) follows easily. []
Suppose Yy, Y,, - - - were in fact i.i.d. normally distributed with mean py and

variance o2 and suppose that 6% were known. Then to test H} versus H¥, we would
use Wald’s SPRT with stopping rule

F=inf{n > ny:[S,| > p(a)by oy }.
Thus the stopping rule 7* can be regarded as a “finite-population correction” to ¥
and the factor 1 — n/N in (4.2) (which leads to a triangular continuation region)
as a “finite-population correction factor” to modify 7.

The finite-population correction factor, which we have used above in the
sequential testing problem, appears again in the stopping rule for the related
problem of fixed-width interval estimation for the mean p, of the finite population.
Suppose a, were known. Given 8y > 0and 0 < a < 1, letw, = ® (1 — a/2)and
define

(4.8) m% = smallest integer > Nw2/ (Noy 83 + w?).
Assume that (4.3a) and (4.3b) both hold. Then as N — oo and 6y — 0 such that
N8, — o, ,

(4.9) P[|%, — iyl < O] >1-a,

and therefore an approximate (I — a)-level confidence interval with prescribed
width 26, for p, would be (Ym. 0y, 7, + + Oy) in this case. Since oy is actually
unknown, this suggests using the flxed-W1dth interval (YM 0y, )_’MN + 8,), where
M), is the stopping rule

(4.10) My =inf{n > ny: n > Nw2/ (Nv, 65 + wi)}

= inf{n > ny : w05 > v(1 - n/N)}.
The term 1 — n/N in the last expression of (4.10) can be regarded as a finite-
population correction factor to the classical Chow-Robbins rule for the i.i.d. case

(cf. [3]). From (4.6) and (4.8), it follows that as N — co and 6y — 0 such that
N8, — o,

(11a) mf = (w2 +o(1))og?2 and  My/mi—pl  if N2y oo,
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@.116)  mp = {(B%x>+wd) w2+ o()}N  and
My/my—pl  if N7by—B(>0),

(4.11c¢) ml = N — {(oyw,) "> + o(1)}(N8,)*  and
(N — My)/ (N — m}) —>p1 if N6y —0.

Making use of this fact and Lemma 2, it is not hard to show that (4.9) still holds
wi’lth the fixed san}ple size m¥ replaced by the stopping rule M. For the cases
N20, — o0 and N 26, — B > 0, these extensions of the classical fixed-width inter-
val theory to finite populations have recently been obtained by Carroll [2] in a
somewhat different context. ’
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