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WEIGHTED MEDIAN REGRESSION ESTIMATES!

By FRIEDRICH-WILHELM SCHOLZ
University of Washington

In the simple linear regression problem (Y = a + fx; + e;i=1,---,m,
e; i.i.d. ~ F continuous, x; < .-+ < x, known, a, § unknown} we investi-
gate the following type of estimator: To each si; = (¥Y; — ¥3)/(x; — x:)
with x; < x; attach weight w;; and as estimator for 3 consider the median
of this weight distribution over the s;;. A confidence interval for j is found
by taking certain quantiles of this weight distribution. The asymptotic
behavior of both is investigated and conditions for optimal weights are
given.

1. Introduction and summary. In the simple linear regression problem {Y; =
a+ Bx; +ei=1,...,n, e iid. ~ Fcontinuous, x, < ... < x, known, a, 8
unknown parameters} the following estimator for 8 was introduced by Theil
(1950) and more generally investigated by Sen (1968): Compute s;; =
(Y; — Y)/(x; — x;) for x, < x; and use as estimator § = median {s;;: x, < x;}.
Sen found the asymptotic relative efficiency (ARE) of j relative to the ordinary
least squares estimator B This ARE is largest, say e,, whenever the x’s are
equally spaced or whenever the x’s are distributed over only two distinct values
in which case the problem reduces to the two-sample location problem.

Jaeckel (1972), when considering the above problem, proposed as estimator
of B that value of b which minimizes some dispersion measure of the residuals
Y, — bx,. In a special case he arrives at the following variant of the estimator
B: Order the s;; and attach weights w,; to each s,; and take as estimator /' the
median of this weight distribution over the s,;. Under some restrictive condi-
tions and using weights proportional to x, — x,, Jaeckel obtains that 5’ has ARE
e, with respect to f regardless of the design of the x’s.

In this paper we investigate the asymptotic behavior of Jaeckel’s variant under
weaker conditions for general w,,. This includes the Theil estimator as well
(w,; ~ const.). It is shown that one cannot improve on ¢,. Conditions on the
weights are given under which ¢, is achieved; however, the optimal weights are
not unique, as already the design of equally spaced x’s shows, where both
and §’ achieve e,. It is further shown that any two such weighted median esti-
mators which achieve e, will be asymptotically equivalent.

In the case of constant weights Sen also investigated the asymptotic behavior
of confidence intervals for  based on the s,; as suggested by Theil, and his
efficiency results parallel those of the estimator. Confidence intervals for 8 were
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not given by Jaeckel and are provided here for general weights. The efficiency
results match those of the estimation case.

2. Definition and asymptotic behavior of the weighted median regression
estimator. Let Y, =a + f8x, +e¢,i=1,2,---,n, ¢, ---, e, be independent
identically distributed random variables with continuous distribution function
F. x,< ... £ x, are known constants with 5,2 = ¥}, (x; — %)* > 0, @ and 3
are unknown parameters, of which we will estimate 8. For x;, < x; consider
the pairwise slopes

Si; = (Yf - Yi)/(xj —x) =8+ (e,. - ei)/(xj —X;) .
Let w = {w,;: i < j} be a set of weights with the following properties: w;; > 0,

w;; = 0 whenever x, = x, and },_;w,; = 1. We extend the definition of w;;

toall 1 < i, j < nas follows:
Wi, = — Wy for i

Define G(f) = 3.; wy; I, ;s with

\%
~.

IA

[[wSt] =1 if Si’-
=0 else.

G(7) is the distribution function of the probability distribution of weights w;;
over the s;;, i < j. Let

B, = inf{t: G(t) = .5}

B, = sup {t: G(r) < .5}.
Corresponding to the weights w define the estimator $, of 8 by 8, = (8, + 8,)/2.

Although asymptotic considerations would require an additional index n on

the x,, Wijs 8555 OLC., We omit it for notational convenience.

The asymptotic normality of §,, will be established under the following set (C)
of conditions:

(©)

Cl: H(f) = § F(t + x) dF(x) has a positive derivative at t = 0; denote it by
H'(0).

C2: With W, = 37, (2721 ws;)’, assume

n e, Drawh/We = 0(1) as n-— oo
SUP;<i<a (200 [wi; )W, = o(1).
C3: With b, = Y7, (x, — %)* assume that
On = Zi<j wij(xj — xi)/(Wn%bn)
stays bounded away from zero as n — oo; further assume that
max,;, |x; — ¥|/c, =0(1) as n— oo where ¢, =b,p, .

CoMmMENTS. For w;; = ¢(x; — x;) i < J, B, is the estimator obtained by
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Jaeckel. One easily checks n 3, wl/W, =2 and sup, (3, |w;)W, <
n~' + sup; (x; — %)*/b,?. Thus (C) is satisfied whenever C1 and C3 hold, since
pn = 1. For w;; = ¢ whenever x; < x;, 8, is the estimator proposed by Theil
and Sen. If there are k > 1 distinct values t, < --- < ¢, among the x’s, denote
by u; the multiplicity of #; among the x’s. One easily checks that

n 3 WilWa = 3(1 — X (u/n)h)/(1 — 33, (ue/n)’) < 3

sup; (D¢ wiyl)/W, = 3 max; (n — w)f(n* — Tyud) = o(1)

iff min, (n —u;) > c0 as n—oo. Hence (C) is equivalent to Cl, C3 and
min; (n — u;) — oo as n — 0.

and

THEOREM 1. For a given set of weights w = {w,;: i < j} which satisfies (C) we

have
(B — B) =1 N0, (12H'(0))7) .
Proor.
P(2li<; wijl[ej—eigtnij] = .5 + max, ; wy;)
1) = Ple,(By — B) =) = P(Luc; WijI[ej—eistnij] = .5)
with ¢, = t(x; — x))/c, .

We will show that
2) (12)¥(T, — ET,)/W,t —, N(0, 1) as n— oo

where T, = 3 ,.; w;; U;; with U;; = Ito;;st,,,1- Proceeding with the projec-

tion method of Hajek (1968), we will approximate S, = T, — ET, by §, =
Yi, E(S,|e,) yielding E(S, — S,)* = Var S, — Var S,. Lengthy but straight-
forward manipulations show that
(3) Var S, — Var 8, = 3,.; w}[E Var (U,;|e) + EVar (U, |e,)]
= D Wisl2 -
Further one shows easily that Var§, = W,/12 + 3,6, with 0] <
4sup, |F(x + A,) — F(x)| - (X, |wy;|)* where A, = max,_; |t,.;] = o(1)asn — oo
by C3.
Hence
(4)  VarS, = 4W, + o(1) T (5, Wyl = AWl + o(l)) by C2.
(3), (4) and C2 yield '
%) E(S, — 8,)}/Var $, = (Var S, — Var §,)/Var §,
< X wh/(4Var §,) = o(1).
Denoting the distribution of Y,; = E(S,|e;)/(Var S’”)* by F,; and observing
Yo, = 122 (W) Wa(1 + o(1)),
we find by C2:

V>0 30 s,V dF,; < 12sup, (3| wi )Y (W.p¥(1 + o(1))) = o(1);
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hence by the Lindeberg-Feller central limit theorem
(6) S,/(Var §,)t -, N(0,1) as n-— oo

which with (4) and (5) yields (2).

Since max,; wi,/W, = o(1) by C2, (1) yields lim, . P(c,(8, — B) < 1) =
®(lim,_,, (ET, — .5)(12)}/W,}) provided the limit on the right exists. @ is the
standard normal distribution function. Now ET, — .5 = 4, + B, with B, =

Di<j Wijtni; H'(0) and
H(t,.;) — H(O ,
|4, = ‘Zi<i Wij <——('tl‘ﬂlt——‘(‘l —H (O)> Loig
< o(1) Xic; wii(x; — x))lt|/e, by Cl1

thus |4,|/W,t = o(1) and lim,_, (ET, — .5)(12)}/W,t = H'(0)t . (12)t. This
concludes the proof.

3. Confidence intervals for 8. From Section 2 we know the following: if
G.(t) = i< Wijln, a0 then o' = Var G,(8) = LW.(1 + o(1)), EG,(B) = .5
and

(G.(B) — -5))o,—,NO,1) as n—oo.

Define G, (u) = inf{r: G,(t) = u} for ue (0, 1), and let S, = G,7(.5 + z,,,0,)
and S, = G,7'(.5 + z,_,,0,) where z, = ®~'(u).
Then for large n we have

1 —a=P(z,, £ (Gu(f) — 5)0, < Zi_app) = P(S, = B S)),

i.e., we may consider [S), S,] as a large sample confidence interval for g with
approximate confidence level 1 — a. S, and S, are particular ordered slopes s;.

THEOREM 2. For weights w satisfying conditions (C) we have c, (S, — S,) —p
2ol (3HH'(0)).

PROOF. As in the proof of Theorem 1 we obtain by Cl and C3:

E[G,(B + t/c,) — G (B))/W,t = t- H'{0)(1 + o(1)) as n— oo
and by C2 and C3:
Var [(G,(8 + t/c,) — G.(B)/W,t] = o(1) as n— oo

hence YV te R
™ (Go(B + tfe)) — Gu(B)/W,t —ptH'(0)  as n—oo.

In (7) the left side is nondecreasing in ¢, the limit on the right is a nondecreasing
and continuous function of . Using the stochastic version of Polya’s theorem,
we can conclude

) sup < [(GL(B + tfc,) — G.(B)/W,t — tH'(0)) -, 0 as n— oo.
(4) and (6) of the previous section yield that ¢, (S; — )i = 1, 2 are asymptotically
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normally distributed, hence stay bounded in probability. This and (8) imply that
(G.(S) — G,B)W,t=c,(S;—p)-HO)+R,;i=1,2with R,; >, 0as n—
oo, which together with

|G (S) — .5 — z,,0,|/W,t < sup,; wi;/[W,t = 0(1)

al

and
|G(Sy) — .5 — zy_pp0,|/W,Et = 0(1) as n-— oo

yields the assertion of the theorem.

4. Optimal weights. Since Theorem 1 allows us to approximate the distribu-
tion of §, by a normal distribution with mean § and variance ((12)*H’(0)b,0,)™*
it is of interest to note that
) 0, = 1 withequality iff (3w, -+, 23, w,,;) = A& —xp, -+, X — Xx,,)

for some ieR.
This follows from 3, ., w;;(x; — x;) = 25, (¥ — x;) 2; w;) < b, W,t. That the
optimal weights, which achieve p, = 1, are not unique is quite evident from
(9). How different the optimal weights can be is shown in the special case where
x;=1ii=1,---,n; here w={c(j—i): i < j} and w' = {¢’: i < j} represent
optimal weights. This raises the question whether (8, + $,)/2 would be an im-
proved estimator. The following theorem answers this question in the negative.

THEOREM 3. Let w, = {w;;: i < j} k = 1,2 be two weight systems satisfying
condition (C) and p,, = 1 k = 1,2 where p,, corresponds to w, in the fashion of
C3. Then

b,n(‘Bw1 — ‘ng) —p 0 as n-— oo,
i.e., the two estimators are asymptotically equivalent.

Proor. Let G, (t) = Y.c; Wikl ;s0 k=1,2, and set G,,,(8 + t/cu) = Thn
k=1,2witht,eR, c,, = pub,.
From the proof of Theorem 1 we have

0(Ti) = 7y Lica (L W) + 0(1)) k=1,2,
and after straightforward manipulations, one arrives at
(10) (COV (Typs Ta) — v T (T Wein Tj Wei) — § ey Wi Wil
S o(1) 2 (X5 Wil 25 Wazal) -
Note that 33, (X; [Win| X [Wisal)/(0(T1)0(T5,)) stays bounded by C2, and
72 D1 (X Wi 25 i) (0(To)o(Ton)) = 1+ 0(1) by p,=p,=1 and(9).

Since further },.; w;;,w,;,/(0(T,,)0(T,,)) = o(1) by C2 we can conclude from
(10) that

Cov (T1s Tan)/(9(T14)0(T2n)) = 1 + 0(1)
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which implies
(Ty, — ET,,)|o(T,,) — (Ty, — ET,,)[0(T,,) »p0  as n—oo.

From the proof of Theorem 1 we conclude that

)= N @ D)

<T1'n —_ ETln T2n _ ETZn
o(T,) 0(Ts,)

which in turn implies the same limit law for

(12)2H'(0) - (b4(By — B): balBuy — B)) -
This concludes the proof.

RemARk. In the equally spaced design x; =i i= 1,2, ...,n, we have the
following two optimal weighting designs: w;; = (j — i) - 6/(n(n* — 1)), i < jand
wi; = 2[(n(n — 1)), i < j. In the spirit of Hodges (1967) one can examine the
tolerance of f, and f§,, for extreme values of the y-observations. One easily
finds that the tolerance of f, is about 20.69% (= 100 - (1 — (.5)})%) and the
tolerance of f,. is about 29.39% (= 100 - (1 — (.5)})%). On these grounds it
appears that 8, is to be preferred although both estimators are asymptotically
equivalent by the previous theorem.

For a given weight system w the computation of 8, involves as many slopes
5;; as there are positive w,;. For ease of computation it would therefore be of
interest to find a weight system w, satisfying (C) such that a maximal number
of weights are zero. For example in the case of a symmetric design, i.e., x;
are symmetric around %, one might try w;, ,, =% —x; for i=1, ...,k
k = [n/2] and w;; = O else for i < j, then p, = 1. However, C2 is not satisfied
since n Y}, X, wh;/W,=n. In fact it can be shown that b,(8, — B) —,
N(0, (8H'(0)))7"), i.e., the asymptotic variance is increased by a factor of 1.5
over the asymptotic variance obtained for optimal weights satisfying (C). How-
ever, the lower bound of the ARE of this estimator compared with the ordinary
least squares estimator of B is still bounded below by .864 - 2 = .576, a price
that one might be willing to pay for a quickly computed and fairly robust esti-
mator of 3. The author has investigated the use of appropriate linear combina-
tions of two such “quick” estimators, corresponding to two ‘“quick” weighing
designs. The efficiency was somewhat improved but not much. Finally we
can state that the efficiency results concerning the estimators carry over to the
confidence intervals as well.
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