The Annals of Statistics
1977, Vol. 5, No. 5, 1017-1026

ASYMPTOTIC PROPERTIES OF TESTS BASED ON LINEAR
COMBINATIONS OF THE ORTHOGONAL COMPONENTS
OF THE CRAMER-VON MISES STATISTIC!

By DAVID A. SCHOENFELD
Harvard University

Let X1, X», - - -, X» be independent identically distributed random vari-
ables defined on the unit interval. The generalized jth orthogonal com-
ponent is defined as V,; = n~t $7_, dj(Xi), where {1, di, da, - - -} is an ortho-
normal basis for ([0, 1]). These statistics are a generalization of the
orthogonal components of the Cramér-von Mises statistic [2]. Linear com-
binations of the V,; are applied to the problem of testing the null hypo-
thesis of a uniform distribution against the alternative density pa(x) = 1 +
h(x)/nt + ka(x)/n where h(x) is square integrable and k.(x) is dominated by
a square integrable function. When a; = § A(x) dj(x) dx, tests based on

™_1@;Vaj are shown to be asymptotically most powerful as min (m, n) —
co. The asymptotic power and efficiency of these tests are computed. A
procedure is developed for choosing among possible density functions
when a goodness-of-fit test rejects the null hypothesis.

1. Introduction. Durbin and Knott [2] showed that the Cramér-von Mises
statistic can be partitioned into orthogonal components in a manner analogous
to principal components analysis. These components can be used to test a simple
null hypothesis. The jth orthogonal component of the Cramér-von Mises sta-
tistic, Z,;, can be expressed as

an = n_% Z?:l 2% cos (.]ﬂ'-Xm) ?

where X, X5 - -+, X,, are continuous i.i.d. random variables defined on the
unit interval. Durbin and Knott proposed tests that reject the null hypothesis
of a uniform distribution when Z; is too large.

This paper shows that a sequence of tests can be found, based on linear com-
binations of the orthogonal components, which is asymptotically most powerful
for a given member of a large class of sequences of alternatives. The asymptotic
power and efficiency of these tests are derived and a method of finding 1 — &
confidence intervals for a density function is described.

Since results about statistics based on cosine functions can easily be extended
to other orthonormal bases, this paper will define components more generally.
For this purpose, let {d(x), d,(x), dy(x), - - -} be an orthonormal basis for the space
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of square integrable functions on the unit interval. We require that dy(x) = 1
so that d(x), dy(x), - - - have zero integrals. Let (b, b,, - - -, b,) be real coef-
ficients. We shall examine the asymptotic properties of tests which reject the
null hypothesis when Y™, b,[n=t 317 d.(X,,)] is too large.

The results provide a method for choosing that linear combination of the ortho-
gonal components which is appropriate for a given testing problem as well as a
method for finding a 1 — a confidence region for a density function when one
must decide which of several possible density functions fits the sample.

Section 2 contains definitions of the tests and distributions under considera-
tion. Section 3 contains the major results and Section 4 contains the proofs of
these results.

2. Definitions and assumptions. When a null hypothesis completely specifies
a continuous distribution, the probability integral transformation reduces the
goodness-of-fit problem to one of testing whether .or not a random variable has
the uniform distribution on the unit interval. Therefore, without loss of gener-
ality we take the unit interval to be the range of random variables, the domain
of functions and the region of integration.

Let {X,,, X, - - -, X,,} be a double sequence of random variables i.i.d. in each
row. Asymptotic results will be proved for a sequence of testing problems in-
dexed by n. The null hypothesis, H, is that X,; has a uniform distribution and
the alternative, H,, is that X, has probability density p,(x), specified in Defini-
tion 3.

DErFINITION 1. Let {1, d)(x), dy(x), - - -} be an orthonormal basis for .£([0, 1]).
The jth generalized orthogonal component based on {1, d,(x), dy(x), - - -} is defined
b

y an = VM(XM’ Xygs =+ s Xwn) =nt 2t dj(Xm‘) . ‘

For the special case when d,(x) = 2t cos jax, V,; = Z,;, the orthogonal com- |
ponents of the Cramér-von Mises statistic. The “smooth” test due to Neyman
[6] is based on the V,; when d,(x) are the generalized Legendre polynomials.
We use the symbol V, , to denote the vector (V,;, V5 -+, V,,). The tests
under consideration have the following form:

DEefrINITION 2. Let b = (b, b,, - -+, b,)’ be an m-vector. The level-a test
based on linear combination b’V,, ,, has the test function
Dumad V¥V, ) =1 when bV, >K,,
=0 otherwise
where K, , is chosen so that P(¢, ,, , = 1| H,) = a.

The asymptotic properties of the these tests are determined for sequences of
alternative hypotheses, p,(x) defined as follows.

DErFINITION 3. Let p,(x) be a strictly positive probability density function de-
fined on the unit interval such that

Pu(x) = 1 4+ n73h(x) + n7'k,(x) ,
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where A(x) is a function satisfying the condition,

(2.1 § (A(x))*dx < oo,
and
(2.2) [k (x)] < m(x),

for some square integrable function m(x).

Definition 3 is not the usual sequence used in asymptotic studies. One often
assumes that {Y,,, Y,,, ---, Y,,} is a double sequence of random variables with
distribution function F(Y, @,), where 6, is a sequence of r-dimensional vector
parameters with @, = 6, + n~iy. The hypothesis usually considered is that y =
0. However, a probability integral transformation and Taylor’s formula can
often be used to transform this sequence of alternatives into the form of Defini-
tion 3.

When testing for normal location or scale shifts, one takes » = 1 and F(Y, @,)
to be ®(Y — 6,) or O(Y exp(—0,)) respectively, where 6, = n—*y and O is the
standard normal distribution function. In the first case 4(x) = y®-*(x) and in
the second A(x) = y((®-'(x))* — 1). The remainder term, k,(x), is included in
Definition 3 to allow more general alternatives and does not need to be explicitly
calculated. For location shifts one can show that k,(x) is dominated by a square
integrable function without explicitly finding k,(x). For scale shifts it is sufficient
that n—ty < (log 2)/2 for (2.2) to hold.

3. Results. When a double sequence of random variables has the defined
sequence of densities, a special form of the central limit theorem can be proved.

THEOREM 1. Let {X,;, X, - - -, X,,} be a double sequence of random variables
i.i.d. in each row, and let X, have the pdf p,(x) in Definition 3. If g(x) is a square
integrable function whose integral over the unit interval is zero, then

n=t i 9(Xa)

has a limiting normal distribution with mean p = § g(x)h(x) dx and variance ¢* =
§ (900 dx.

Under H,, h(x) = 0so x = 0. Notice also that g(X,;) need not have second

~moments when A(x) = 0 since { (g(x))*(x) dx may not exist.

Two sequences of probability measures Q,, Q,’ defined on the same sequence
of measurable spaces are said to be contiguous if for all sequences of statistics
{r,}, T, —,0 under {Q,}if and only if T, —,0 under {Q,’}. Definition 3 des-
cribes a family of sequences of probability measures. For each function h(x)
and sequence of functions k,(x) satisfying (2.1) and (2.2) there is a corresponding
sequence of probability measures on the sequence of n-dimensional cubes.
Theorem 2 states that each of these sequences of measures is contiguous with
the uniform probability measure and therefore these measures are contiguous
with one another.
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THEOREM 2. Let {P,} be the sequence of probability measures defined on the Borel
sets of the n-dimensional unit cube by the expression P,(A) = §, [1i-, pu(x;) dx;. Let
{Q..} be the sequence of uniform probability measures, Q,(A) = §, dx,dx,, - - -, dx,.
Then {P,} and {Q,} are contiguous.

The asymptotic distribution of b’V,, ,, can be found when b’ are the first m-
terms of a square summable sequence and m — co with n.

THEOREM 3. Let V,; be as in Definition 1 and let X, have pdf p,(x). Suppose
m(n) be an integer valued function of n which approaches infinity with n. Then if

3.1 a; = § h(x)d;(x) dx,
and Y 5., b < oo, 374 bV, ; has an asymptotic normal distribution with mean
(3-2) 25-14;b;

and variance
251 i

Note that (2.1) and (3.1) imply that {a;} is a square summable sequence so
(3.2) is finite.

Theorem 3 has two immediate corollaries.

COROLLARY 1. The vectorV, ,, has an asymptotic multivariate normal distribution
with mean vector a = (a,, @y, - - -, a,,) and variance-covariance matrix 1, the m X m
identity matrix.

COROLLARY 2. Under the hypothesis that X, has the uniform density, the sum
.yp ne y
Ymw b, V,,; is asymptotically normal with zero mean and variance equal to 3,7_, b;*.

We shall assume that the sequence {a;} is defined by (3.1). If we use the first
m-terms of this sequence as coefficients for the orthogonal components, we can
approximate the most powerful test of H, versus H,.

THEOREM 4. Let ¢, ,, (a,V, ,) be the test function based on a’V,, ,, as in Defini-
tion 2, where a; is given by (3.1). Assume m — oo as n— co. Then if 4,(X,;,
X, -+ X,,) is any sequence of level-a test functions of H, versus H,,

lim infnaoo‘[Pn(Sbn,m,a(a’ V'n,m) = 1) - Pn(ln(an’ Xm’ | Xwn) = 1)] = 0.

The expression for the asymptotic power and efficiency of tests based on a
linear combination of the generalized components, >;7_, b, V., have a particu-
larly simple form.

THEOREM 5. Let m be a fixed integer, a; be defined as in (3.1), b be an arbitrary
m-vector, and ¢, , b, V, ) be the test function defined by Definition 2. Then the
following two expressions hold:

1. lim,_, K, , = z_,>", b/}, where z,_, is the (1 — a) 160 percentile of the

normal distribution.
2. limnﬂoo Pn(¢n,m,a(b’ Vn,m) = 1) = (D[(Z;’;l b.fa.f)(Z;";l bja)_% - zl—a]'
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THEOREM 6. The asymptotic efficiency [4, page 267] of ¢, . (b, V, ), is given
by
(3-3) € = (XN7=1 46, [[(157-1 4, ) (7= 0] »
when 317 ,a;6; > 0. The test would have power less than o if Y7 a;b; < 0.

Let p,*(x) = 1 + nth*(x) + n~'k,*(x) be another sequence of alternatives
satisfying Definition 3, with a;* = § h*(x)d;(x)dx. The sequence of tests
Dm,u(a*, V, ,) is asymptotically most powerful for testing H, versus the alter-
native that X, has the density p,*(x). Letting m — co and substituting a,* for
b; in (3.3), we have an expression for the asymptotic efficiency of ¢,, .(a*, V, ,.)
when the alternative hypothesis is H,. This can be rewritten as

e=[l -4 X7 (@(X55 ) — a* (D5 a*) YT
or

3.4 e=(1—1%§ (Mx)/c — h*(x)[c*)* dx)?,

where ¢ and c* are the & norm of A(x) and k*(x) respectively.

The class of alternative sequences of densities that satisfy Definition 3 can be
associated with the space _# of square integrable functions having zero integrals.
The sequence {p,(x)} is associated with k(x). This association is “many to one”
because of the second order term k,(x). Equation (3.4) shows that if two alter-
native sequences are close in the ([0, 1]) norm on the unit sphere in _# then
the most powerful test for one of the alternatives will be fairly efficient under
the other alternative. In essence the efficiency measures the “angle” between
two alternatives; if this “angle” is small the same test could be used for both
alternatives.

The orthogonal components can also be used to find a 1 — a confidence set
for an unknown density. When there are a finite set of possible densities it is
easy to check which of these densities belong to the set.

THEOREM 7. Assume that {d\(x), dy(x), - - -,} are bounded functions. Let p(x) be
a density function on [0, 1], let u, = § d,(x)p(x)dx, and let T;; = § (d;(x) —
u;)dy(x) — u)p(x)dx. Then if {X,,, X,,, ---, X,,} are i.i.d. with density p(x),
V..m is asymptotically m-dimensional multivariate normal with mean vector u =
n¥(uy, Uy, + - -, u,)" and covariance matrix {T';;} as n — oo (fixed m).

CoROLLARY 3. If 8, ,_, is the (1 — a) 100 percentile of a y,*(0) distribution,
the set {p(x): (V,,» — m@)['-\(V, . — ntu) > B, . .}, in which u and T are defined
as in Theorem 7, is an asymptotic 1 — « confidence set for the density function oj
X,

ni*

When the densities of interest are of the form p,(x) = 1 4 60h(x) there is an
asymptotic confidence set for 4(x) which does not depend on #. This set would
be useful if the distribution was a mixture of a known and an unknown distri-
bution and one wanted a confidence set for the unknown distribution which
did not depend on the mixing parameter.
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THEOREM 8. Let p,(x) = 1 + Oh(x) be a strictly positive density for 0 < 0 < ¢
and let {d,(x), dy(x), - - -} be uniformly bounded. Define

A;; = § d(x)d;(x)h(x) dx ;
a;, = § dy(x)h(x) dx ;
a=(a,a, - ,a,);
6, = nH@v,,) - @a)";
6,=0+ 0<6*<c
=0 0% <0
=c 6* = c;
[T = énAij - (én)zaiaj s ‘ i)
=14+0,4;,—0,a’, i=j;
6, = (V5. ta)(nta’l ~ta)~" .
Then as n — co
(3.5) (Vom — ni6,a)YT XV, ,, — nif,a)
has the y2,_,(0) distribution and
{h(x): (Vo — 110,2)T, NV, ,, — 130,8) > B, 1;_.}

isa 1 — e confidence set for A(x).

Since cosine functions are standard computer software the orthogonal compo-
nents of the Cramér-von Mises statistic are easy to compute. For certain special
applications other sets of orthogonal components might be better. If the null
hypothesis is a standard normal distribution and the components are based on
{(j""tH;(®(x))} where H,(x) is the jth Hermite polynomial, then the first com-
ponent measures location shift, the second measures scale and each succeeding
component measures the corresponding coefficient in the Type A Gram-Charlier
series [5, page 156].

Monte Carlo studies were conducted using the components based on {cos jrx}.
A total of 10,000 samples of 50 uniform random numbers were drawn. The
first five components were computed and used in 10 different linear combina-
tions to perform tests with an asymptotic 5%, significance level based on Theorem
5. From 4.49, to 5.59% of the 10,000 samples were rejected, depending on the
linear combination used on the test. Monte Carlo power studies were also per-
formed and the number of rejections was usually quite close to the number
predicted by Theorem 5.2.

Monte Carlo studies of the proposed 1 — & confidence limits were also con-
ducted, using 100 samples of size 500 and 100 with mixing parameters .25, .5
and .75. In each study a mixture of a uniform and one of 10 different alternatives
were generated and the procedure described in Theorem 8 was performed to see
if each of the 10 alternatives was in the 1 — a confidence region. The 909
confidence interval for samples of size 500 with mixing parameter .5 contained
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the correct alternative from 869, to 939%, of the time. When the mixing para-
meter was changed to .25, the 909, confidence set contained the correct alter-
native from 619, to 919, of the time (mean 78, s.d. 11). The 909, confidence
set contained the correct alternative from 729, to 929, of the time (mean 87,
s.d. 6) when a .75 mixing parameter was used with samples of size 100. The
procedure did not perform satisfactorily for the other mixing parameters with
samples of size 100. One would expect that a procedure that discriminates be-
tween contaminating densities would require a large sample since only part of
the sample comes from the density of interest.

The particular densities that were excluded in each trial depended on how
similar their shape was to the density used to generate the sample. For instance,
if a sample of size 500 came from a .5 mixture of the uniform density and the
triangular density f(x) = 2x, a quadratic density, f(x) = 3x%, was excluded from
a 909, confidence interval 309, of the time. On the other hand, the density
S(x) =4x, x < 4, f(x) =4 — 4x, x = § was always excluded and the density
f(x) = 4x* was excluded 689, of the time.

4. Proofs.

Proor oF THEOREM 1. One must check that the double sequence {n-tg(X,;)}
obeys the three conditions of the general form of the central limit theorem [3,
page 493].

Let ¢ > 0, S, = {x: |g(x)| > ent}, and denote the complement of S, by S,.
The condition on a double sequence that imply a limiting normal distribution
reduce to the condition that as n — oo,

n s, Pu(X)—0;
§5, (9(x))’Pa(x) dx — § (9(x))* dx ;
nt 5, 9(X)pa(x) dx — § g(x)h(x) dx .
By using the representation of p,(x) given in Definition 3, these conditions
hold if the following integrals approach zero as n — co.

4.1) ‘ nis, dx; .
(4.2) ‘ nt §s h(x)dx;

(4.3) §s, ka(x) dx

(4.4) n* s, (9(x)°h(x) dx ;

(4.5) n* {3, (9(X))k,(x) dx ;

(4-6) nt {5, 9(x) dx;

(4.7) n7t {5, 9(X)k,(x) dx .

Let I,(x) denote the function that is 1 on the set 4 and zero elsewhere. The
integrands of (4.1) — (4.3) are

nls,(x),  mh()L (%), k(X)L (%)
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respectively. By the definition of S,, I (x) < |g(x)|/nte and so (g(x))/<,
h(x)|g(x)|/e and m(x)g(x)/e dominate these integrands. Furthermore each of the
integrands has a pointwise limit of zero, since x is eventually in S,, so the
Lebesgue dominated convergence theorem, LDCT, can be used to show that
(4.1)~(4.3) approach zero. On S,, |g(x)|/n* < e, which can be used with the
LDCT to show that (4.4), (4.5) and (4.7) have the desired limit. The function
g9(x) has a zero integral so (4.6) equals —nt { g(x) dx, which can be shown to
approach zero by the same arguments used for (4.2).
The proof of Theorem 2 is facilitated by two lemmas.

LEmMA 1. Let {X,, X,5 - -+, X,,,} be adouble sequence of uniform random vari-
ables independent in each row and let U, (x)| < f(x), with f(x) integrable. Then

lim, ., E(U,(x)) = 0 = = 211, Uy(X,) =, 0.
h

i=

Proor. One needs to check the three conditions of the law of large numbers,
that for any ¢ > 0 with 4, = {x: |U,(x)| > en}, specifically that

(4.8) n{, dx—0,
(4.9) nt {z (U, (x))*dx — 0,
(4.10) {7, Un(x)dx — 0,

as n— oco. The first integrand is dominated by f(x)/e and the second by ef(x);
hence, the LDCT implies that the first two conditions hold. The last integral
can be rewritten as E(U,(x)) — {,, U,(x)dx. The first term approaches zero as
a consequence of the hypotheses, and the second approaches zero by the LDCT.

LEMMA 2. Making the same assumptions as in Lemma 1 and letting y =
§ (h(x))? dx we have that,

(4.11) D 10g (Pu(Xa) + Lo — n7t i h(X,) =, 0.

Proof. Let r,(x) = n*h(x) + n~'k,(x), so that p (x) = 1 + r,(x). The proof
is based on the fact that log p,(x) is approximately equal to r,(x) — 4(r,(x))%
Rewrite (4.11) as

nt Tiak(Xu) — (2n)70 D [(A(X,0)) — 7]
(4.12) — nt 3 h(X, )k (X)nmt — (2n) Tt n (ka(X,0)) et
+ Z:”:l [log Pn(X'M) - rn(Xni) _l— J2‘("1,,(/‘/71,1))2] *
Using Lemma 1, one can easily show that the first 4 terms in (4.12) approach

zero in probability as n — oo. To show that the last term approaches zero in
probability we must verify that conditions (4.8), (4.9) and (4.10) hold with U,(x)
replaced by n[log p,(x) — r,(x) + $(r,(x)!]. Let nflog p,(x) — r,(x) + 3(r(x))’]
be denoted by W ,(x). By Taylor’s formula on log (1 + r,(x)), one has that

W ()| = n(ra(x))’/3]1 + ¥,
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where y has the same sign as r,(x) and |y| < |r,(x)|. The set 4,, as in the
proof of Lemma 1, is {x: |W,(x)| > ne}. Remember that |r,(x)| = |n~th(x) +
n=k,(x)| < nH(h(x)| + m(x)) and let B, = {x: |r,(x)| < 4}. On B, } < |1 +
I1 < 3, 50if [W,(x)| > newehave that ¢ < (,())(3) = BB H(h(x)| + m(x)).
On B,, } < n¥(|h(x)| + m(x)). In either case nl, (x) is dominated by an inte-
grable function so (4.8) holds. Similarly, on 4, n B,

W ()| = 4(I1A(x)] + m(x))?
nW () = e4(|A(x)| 4+ m(x))*,  and
W ()] = n*@)(R(X)| + m(x))* -

IWa()| = 4(|h(x)] + m(x))*,
nW ()" < 4€'(Jh(x)| + m(x))*,  and

I7,.5,(x)—>0 as n—oco.

Therefore |W,(x)| and n~!|W,(x)|* are dominated by integrable functions on 4,
and |W,(x)| and n~*|W,(x)[* approach zero on 4,. The LDCT implies (4.9) and
(4.10).

Proor oF THEOREM 2. We use a corollary to Le Cam’s first lemma [4, page
203] to show that P, the joint distribution of {X,}, is contiguous to Q,, the
uniform probability measure on [0, 1]*. This result states that P, and Q, are
contiguous if the likelihood ratio statistic for testing Q, versus P, is asympto-
tically log normal with mean —¢*/2 and variance ¢ under Q,. By Theorem 1,
n—t 3*_, k(X,,) has an asymptotic normal distribution with mean 0 and variance
7. Therefore, Lemma 2 implies that [[7_, p,(X,,) is asymptotically log normal
with mean —y/2 and variance 7.

ProoF oF THEOREM 3. Let g(x) = X7, b,d;(x). Then
(4.13) E(X7.0b;V,; — n7 27, 9(X,0))
= E(n™* 31, [ 27 6;d;(X) — 9(X.0)])* -
Under H, the quantity in square brackets has zero expectation, hence expres-

sion (4.13) equals

J S (Z;'n=1 b.‘idj(Xni) - g(Xm'))z dx
which approaches zero as m — co. Convergence in quadratic mean implies
convergence in probability. Theorem 2 shows that convergence in probability
occurs under {H,} as well. The result follows from the asymptotic distribution
of n=t 33*_, g(X,;), given by Theorem 1.

PRrOOF OF THEOREM 4. Definition 3, of p,(x), implies that § A(x) dx = 0, and
so for A(x) = X5, a;d;(x). Using the previous argument we find that

Z:;'n=l aj an ——)p n_% Z?:l h(Xm) *

By Lemma 2, 37, a,;V,; —, 317, log (p,(X,;)) + 7/2. The most powerful test
of H, versus H, is that which rejects when ;7 log p,(X,;) > k.
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PrOOF OF THEOREM 5. Statements 1 and 2 are a consequence of Theorem 3
where one has chosen the sequence {b;} with b, = 0 when j > m.

ProoOF oF THEOREM 6. The definition for asymptotic efficiency used is due to
Héjek and Sidak [4, page 267]. The proof is straightforward.

ProoF oF THEOREM 7. It is necessary to show that 37, b,V ; has the asymp-
totic normal distribution with mean >}, ntb;u; and variance Y7, >im 6,1, b,
for all possible sequences b, b,, - - -, b,,. This is a straightforward application
of the Lindeberg-Feller theorem [1, page 187], noting the fact that 37, b,d;(x)
is bounded.

Proor oF THEOREM 8. Since the statistic §,* is a-consistent estimate of 6, so
is 4,, the restriction of 6,* to the parameter space of §. We use 6, rather than
6,* to insure that I', remains invertible.

Expression (3.5) is a continuous function of (V,;, V.5, <=5 Vo 6,). Let T be
the matrix obtained by substituting 6 for g, in the definition of T',, and let 4,
be the function obtained by substituting I' for T, in the definition of #,. Since
§ —, 0, the expression (3.5) approacheé

(Vo — nt0,aYT-4(V, . — nf,a).
This expression can be written as
(4.14) (V, m — ntfay ('~ — I'a(@’Ta)~a’'T-)(V, ,, — ntfa) .

The vector (V,, ,, — ntfa) is asymtotically multivariate normal with zero mean
and covariance matrix I'. By diagonalizing I' and transforming by an appro-
priate orthogonal matrix, expression (4.14) can be written as the sum of squares
of m-1 independent asymptotically normal variates with zero mean and unit
variance.
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