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LEAST FAVORABLE PAIRS FOR SPECIAL CAPACITIES

By HELMUT RIEDER
University of Freiburg

The least favorable pair (LFP) that Huber (1965), (1968) wrote down
when he considered minimax test problems between neighborhoods of
single probability measures Py, P, defined in terms of e-contamination and
total variation is a canonical but only one possible choice of an LFP.

We treat these neighborhoods by means of special capacities. The
minimax test statistic is obtained by explicitly solving a minimization
program, all LFP’s are characterized by their (Po + P1)-densities, another
LFP is given explicitly.

The technique is similar to that used by Huber and Strassen (1973), but
is simpler and more constructive in this special situation.

1. Introduction. In their famous paper Huber and Strassen (1973) generalized
the classical Neyman-Pearson lemma to 2-alternating capacities v,, v, on a polish
sample space Q by proving the existence of a minimax test statistic ~ and an LFP
(Qys Q,). The Neyman-Pearson tests between Q, and Q,, based on x, then con-
stitute a minimal essentially complete class of minimax tests for all fixed sample
sizes between B, and %, the classes of all probability measures (p.m.’s) setwise
dominated by v, and v,, respectively.

Due to the generality of the admitted capacities, however, their proofs are
nonconstructive and mere existence proofs. Furthermore, because of a conti-
nuity property of their capacities, Q has to be compact metric in order that the
required assumptions are fulfilled for neighborhoods of p.m.’s P,, P, in terms of
e-contamination and total variation.

On the other hand, under somewhat shifted assumptions, Huber (1965), (1968)
just wrote down a minimax test statistic and an LFP for these special neighbor-
hoods and an arbitrary sample space.

We treat this case in a constructive way by means of special capacities (with-
out the mentioned continuity property; see Section 3 below). The minimax test
statistic is obtained by explicitly solving a minimization program (Theorem 5.1).
Then all LFP’s can be characterized by their (P, + P,)-densities (Theorem 5.2).
Huber’s LFP turns out to be a canonical choice, but another LFP can be given
explicitly (Section 6). For middle values of dP,/dP,, however, the densities are
unique.

Beforehand, in Section 2, we restate in a slightly generalized and strengthened
form the role of LFP’s for minimax test problems and a uniqueness property of
the minimax test statistic—independently of any structure of the classes of
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910 HELMUT RIEDER

distributions. The uniqueness property reappears in a sharpened version when
the special neighborhoods are considered.

2. Minimax test problems and least favorable pairs. Let It denote the set of
all p.m.’s on an arbitrary sample space Q, endowed by the o-field B, and let 0]
be the set of all tests on Q. Then a minimax test problem (MTP) is formally de-
scribed by a hypothesis 3, C M and an alternative P, C I, the set of all ad-
mitted tests and a risk function. Whereas the classes P;, j = 0, 1, are not yet
further specified, we confine ourselves from the first to risk functions R that can
be derived from the errors of the first and second kind by assigning to each test
¢ between Q' ¢ P, and Q" € P, the risk

2.1y R(p; 0, Q") = r(§ ¢ dQ', § (1 — ) "),

where r: [0, 1] X [0, 1] — [0, oo] is a continuous function increasing in each
argument.
Accordingly, for a € [0, 1], the class @, of all admitted tests is defined by

(2.2) O, ={pecD:supg.y | ¢d0" < a}.

Then ¢* ¢ @, is a solution of the MTP (B, P,, 7, ), called a minimax test, iff it
minimizes sup {R(¢; Q', Q") : Q' € Py, Q" € B,} for ¢ € @,. This setup obviously
includes the MTP’s considered by Huber (1965) as simple special cases.

Such MTP’s can be reduced to simple test problems if there is a pair (Q,, Q,) €
B, X B, which has the following property:

(2.3) Oy > 1) =sup{Q'(x > 1): Q" e P},
0,(r > 1) = inf{Q"(x > 1): Q" e By} 0< 1< oo

where 7 is a suitable version of the Radon-Nikodym derivative dQ,/dQ,,

do {q . do; ;
24) Sa-lhige i 4.>0,j=0,1,4+ >0}.
e w0, o a0 ray P J % + 4
(Qo» Q) is called a least favorable pair (LFP) for (%, PB,). If the special version
= should be stressed, we also write (Q,, Q,| 7).

If follows at-once that each Neyman-Pearson test ¢* between Q, and Q,, based
on 7, satisfies

(2.5) R(p*; Q', Q") = R(¢*; Qs Q1) , V(Q', Q") ePy X Py .

Now the simple MTP ({Q,}, {Q,}, r, ) is easily seen (by the weak compactness
of @ and the continuity and isotony of r) to be solved by a Neyman-Pearson
test ¢* which automatically lies in ®@,. In view of (2.5), ¢* is also a solution
of the MTP (3, By, 7, ).

Thus we get the following generalization of Huber (1965), Theorem 1:

ProrosiTiON 2.1. A4n LFP (Q,, Q,|x) is least favorable for any MTP (L3, PB,,
r, a).
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There is some ambiguity about the notion of an LFP. Whereas definition (2.3)
as stated underlies Huber’s and Strassen’s respective papers, the original defi-
nition of a least favorable pair of a priori distributions by Lehmann (1959), page
328, involves power functions only (denoted by § subsequently). Restricting a
priori distributions to one point measures in his definition and requiring inde-
pendence of the level a we arrive at the following condition for (Q,, Q,) to be
an LFP:

(2.6) Biagap(@) = Bror, (@) forall a, (Q',Q")e®P, X P,.

Obviously, property (2.3) implies (2.6). The converse holds if there exists an
LFP in the sense of (2.3). This is the reason why we need not differ in the sequel
and can work with condition (2.3).

PROPOSITION 2.2. Let (Qy, Qy) be an LFP in the sense of (2.6). If there exists
an LFP (Q,,, Q., | n,) in the sense of (2.3), then (Qy, Q4| m;) too is an LFP in the
sense of (2.3).

ProOF. Both pairs have the same (minimal) power function 5. But then r,
and =, € dQ,,/dQ,, are equally distributed:

(2.7) LagTo = Loy, M1 and 8oy = Loy, 1 -
For one has, for example,
(2.8) Qu(m, > 1) = inf{a: ta — p(a) = inf,, ta’ — B(')}, 0<t< oo,

since /. -, has minimum level among all Bayes tests at the a priori distribution
/(1 4+ 1), 1/(1 + 1)) for (Qy, Qy). It follows that

(2'9) Qu(my > 1) = Qy(my > 1 = Qu(m, > 1),
Qu(my > 1) = Qu(m, > 1) = Q(my > 1) 0<1< o0,

showing that the real measures 7 - Gy, — Qy, Which are obviously minimized by
{my > 1}, are also minimized by {r, > ¢}. Hence one must have

(2.10) Ty =1 (Qu+ Qu)-a.e.

and in particular: 7y € dQy,/dQg,-
Finally, by (2.10), (2.9) and (2.3),

(2.11) Qu(m; > 1) = Qu(m > )= Q'(m, > 1),
Qu(m, > 1) = Ou(ry > 1) < Q"(my > 1),
holds for (Q’, Q") e Py X Py, 0 < t < oo, which is the assertion. 0

By the way, in view of (2.10), we have proved the following uniqueness
property of the likelihood ratio of LFP’s.

PROPOSITION 2.3. Let (Qy, Qyo| 7o) and (Qqys Qi1 | 71) be LFP’s. Then
(2.12) mo =1 (Qu + Qu + @ + Qu)-a.e.
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This proposition generalizes Theorem 5.1 of Huber and Strassen (1973), whose
proof is bound to capacities.

3. Special capacities. In the sequel we investigate neighborhoods 8 — IR of
P e M of the following structure:
(3.1 P={QecM: (1 —e)P(B) —0=0B) =< (1 —¢)P(B) + ¢+ 9,
Y Be®},
where

(3.2) 0<e,d<1, O<eceto<l.

For 6 = 0 one has the e-contamination model, for ¢ = 0 the total variation
model. P can also be described by

(3.3) B={QecM: Q(B) < v(B), VBeB},

where v: 8 — [0, 1] is defined by

(3-4) o(B) = (1 — 9P(B) + ¢+ AL, if B+
=0, if B=g.

One immediately verifies:

(3.5) v(@)=0, v(Q) =1,

(3.6) B' c B" =v(B') < v(B"),

(3.7) B, 1 B=v(B,) 1 u(B),

(3.8) v(B' U B") + v(B' n B") < v(B') + v(B").

Hence v has all properties of a 2-alternating Choquet-capacity except for the
continuity property (4) in Huber and Strassen (1973), page 252, which would
require a compact Q.

The conjugate u to v satisfies #(B) = 1 — v(Q\B), and is given by

(3.9) u(B) = (1 — ¢)P(B) — 9) v 0, if B+ Q
‘ =1, if B=Q.
For the following definition let v,, v, be induced by P;eM, ¢;,0;(j=0,1)ac-
cording to (3.2), (3.4). Generalizing the Radon-Nikodym derivative of two
probability measures, the RND dv,/dv, is defined as the set of all measurable
m: Q — [0, co], such that
(3.10) wy(4,) = infw,(B) Ve (0, ),
where w, =tv,—u,, A,={z>1}.
4. Technicalities.

LemMa 4.1. The function t — w,(A,), see (3.10), is absolutely continuous on
(0, o0), with derivative (in measure) t — v,(A,).
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Proor. Take 0 < s < t < oo. Then by (3.10):
0= (t — 5)vy(4,) = w(4,) — w(4) < wy(A4) — w(4,) < wi(4,) — w(4,)
= (t — 5)vy(4,) ,

and absolute continuity follows, as well as the expression for the (right-hand)
derivative, if we let 7 | 5, and observe (3.7). ]

The second lemma corresponds to Huber and Strassen (1973), Lemma 2.5.
LemMA 4.2. VBeBIQeP: Q(B) = v(B). (See (3.3), (3.4).)

Proor. If B= @ or P(B) =1 take Q = P. If B+ @ and P(B) = 0 take
Q = (1 — (¢ 4 9))P 4 (¢ + 0)d,, where J, denotes the one point mass in x € B.

Now 0 < P(B) < 1. Then also 0 < Q,(B) < 1, where Q, = (1 — ¢)P + &4,,
and we can take

Ay="B ounp+ =B 5B (4eB).
o= g0 o B+ 1=k o) (e D
LemMMA 4.3. Let %B; (j = 0, 1) be defined according to (3.1), (3.2). Then
(4.1) BB+ D
is equivalent to
(4.2) (1 — &)P(B) + & + 6, = (1 — &)P(B)—3d, VBeB.

PrOOF. One direction is trivial. For the other one, take y e IN dominating
P, and P, with respective densities p, and p,. Then, by (4.2), if 6 = J, + 0,,

(4.3) S (A —e)po— (1 —e)p)rdp<e + 4.
Therefore: 7, = 0, where

1
(4.4) n=1- § (1 —e)py — (1 — e)p))*dpe .
&+ 0
Hence
1
(4.3) hy = (1 = e)po — (1 —e)p)* + 1
&+ 0
defines the p-density of a H, e It with the property
(4.6) s H(B) = (1 — )P(B) — (1 — )P(B) — & VBe®.

In the same way (after taking complements in (4.6)) we manufacture a H,ec I
such that

4.7 (1 —e)P, + e, H, + 0, = (1 — )P, + &, H, — 9, on B.
Finally, a suitable convex combination of the thus contaminated P;’s is seen to
lie in By N By [0

In the last lemma we summarize some facts essentially contained in Huber
(1965), (1968). Given 0 < ¢; 4-9; <1, P,e M, j= 0,1, Ae dP,/dP,. Define
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new parameters
[

(4.8) I

1 — e, 1 —e.

and functions ¢, ¢,: (0, co) — [0, c0) by

1
(4.9) $ul(r) = (t- P(A <1)— P(A <),
v, + w,t
1
(4.10) $ulr) = (P(A>1) —1-P(A>1).
Yol + o,
Furthermore, two equations in A, A, € (0, o) are given by
(4.11) Ay - P(A < A) — P(A < D) = v, + @A,
(4.12) P(A, < A) — A, - P(A, < A) = pA, + o,.

LeMMA 4.4. ¢, is strictly increasing on {¢, > 0}, ¢, is strictly decreasing on
{¢, > 0}, and ¢ ; characterizes the solution A;, which uniquely exists, by ¢ (A;) = 1
(j=0,1). ,

5. Main theorems. These technical preparations enable us to construct now
the RND dv,/dv, and to characterize all LFP’s for the special capacities intro-
duced in Section 3.

The following notation is used: P;e I, B, ¢;, d;, v;, ,; according to (3.1),
(3.2), (3.4), (3.9), A; according to (4.11), (4.12), j = 0, 1. Let p, denote the
density of P; with respect to some dominating, o-finite ;2. Furthermore, we may
assume that 5, N P, = @ since otherwise the problem of LFP’s becomes trivial.

Now, if (Q,, Q,|x) is an LFP for {3, and $3,, Lemma 4.2 shows that we must
necessarily have

(5.1) Qu(r > 1) = vz > 1), O(r >t)=u(zr >1t) Yte(0, ).
Since 7 € dQ,/dQ, and Q, < v,, Q, = u, one concludes
tev(m > 1) — uy(r > t)
(5-2) | =1-0yr > 1) — Ot > 1) < 1-Qy(B) — Qy(B)
St-v(B)—u(B) YBe®B.

This means (remember (3.10)) that

dv
5.3 Te L,
(5.3) v,

In order to derive the form of = we determine dv,/dv,.

THEOREM 5.1.

dv 1 —e¢ dP
5.4 _£={ LA, VAAAY: A _1}
(5.4) o, l_60( 0 N edPo

Then all LFP’s can be characterized by (P, 4 P,)-densities.
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THEOREM 5.2. If (Qy, Q,|7) is an LFP for (B, B,) then it has the following
properties:

(5.5) ¢ dominates Q,, Q, — with densities q,, q,, say.
(56)  @lge=LTSAVAAA)  (Q+ Q)ae. for some Ae9Pr
1 — ¢, dP,
5.7 7 = (1 — &)p, pae. on {A<A<A}.
(5-8) (- <qs—ap pae on (A<A).
0 .
(5.9) (I —e)pp =9 = (1 — &) % pra.e. “on {A; < A},
1
(5.10) QA < A) = (1 — g)Py(A < A) — 6, .

On the other hand, if (5.5)—(5.10) are satisfied by Q,, Q. € M, then (Q,, Q,|x) is
an LFP for (,, P,) exactly with each = = ((1 — &,)/(1 — ¢))(4, VA A A), Ae
dP,/dP,. ,

REMARKs. At first glance these conditions seem to be asymmetric in Q, and
Q,. But in view of (5.6), condition (5.7) is equivalent to

(5.11) ;=1 —¢)p, pae on {A;<AZAY,

and the first respective second inequality in (5.8) respective (5.9) mean
(5.12) g, = (1 —¢&)p, p-a.e. on {A <Ay},

(5.13) 7, = (1 —¢)p, p-a.e. on {A < A}.
Similarly, by (4.11), (4.12), condition (5.10) is equivalent to

(5.14) QA <A) =1 —e)P(A<A) + ¢ +3,

(5.15) Qu(A; < B) = (1 — )Py (8, < B) + & + 8y,

(5.16) QA <A =1 —¢)P (A, <A) -3, .

ProOF OF THEOREM 5.1. Take a 7 € dv,/dv,, w, and A4, as in (3.10). At first
we show the equivalence of

(5.17) wy(d) =1t—1 and

(5.18) ‘< i = :: A,, A, given by (4.11).
But (5.17) is equivalent to

(5.19) t“gsup{%: Be®B, B+ @}

and this sup is not smaller than

(1 — &)Py(B) — 4,
¢-20) P { (I — &)Py(B) + ¢, + 4,

. BeB, B - @}.
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By (4.9) and Lemma 4.4, (5.20) equals

(5.21) L— & p-r,

1 — ¢

Now, the assumption, that the sup in (5.19) is strictly greater than (5.21) implies
the existence of a Be®B, B #+ ¢, such that

5.22 uf(B) o 1= & g
(5.22) a1
and therefore
(5.23) u(B) > (1 — €)Py(B) — 8y, _
or
(5.24) v,(B) < (1 — &)Py(B) + ¢, + 0,,
and in either case
(5.25) v,(B)=1.
Because of B, N P, = @ we conclude from Lemma 4.3, that
(5.26) w(1=2)>1,
1 — ¢

where ¢, is given by (4.9); hence by Lemma 4.4,
(5.27) A< L=

1 —¢

Together with (5.22), (5.25) this leads to the contradiction: #,(B) > 1. The same
chain of arguments proves the equivalence

(5.28) MMQ:Oat;i_?A“
]

where A, is given by (4.12).

Define

(5.29) =L T8, =L

— & 1 — ¢

Now Lemma 4.1 and (3.7) come into play and show, by differentiating (5.17):

(5.30) v(4) =1 Vi<, hence also
(5.31) wA) =1 ve<y,, therefore
(5.32) 4 =9 Vi<y,.

Since w,(A,) =t — 1, for t > t, we have, on the other hand,
(5.33) A, #=Q Vi>t,.

From (5.28), Lemma 4.1 and (3.7) we similarly derive the equivalence

(5.34) A= =t=t,.
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Next, we observe that for 7, < ¢ < ¢t;:

(5.35) Vy(A4) = (1 — €)Py(A) + & + 055
(5.36) u(4,) = (1 — e)Py(4,) — 0, .

Indeed, Lemma 4.1, (5.17), (5.18) show that

(5.37) tev(A4) —u(4)—>t,—1, as t]¢,.

Therefore, the assumption v,(4, ) = 1 implies u,(4,) — 1 as ¢ | 1,, contradicting

(3.2) and (5.33). inf,_, u(4,) = O can be excluded by the same argumentation.
Since w, (4,) = t, — 1 and v,(4,)) < 1 we furthermore must have u,(4,) < 1.

Finally: 4, = @ YVt < t,, by (5.34), completes the proof of (5.35), (5.36).
These equations now imply that

(5.38) A, minimizes g, Lttt

where
po=1-(1 — )Py — (1 — )P, .

If we take a A € dP,/dP, and define B, = {((1 — ¢,)/(1 — &))A > ¢}, (5.38) remains
true with B, instead of A4,, therefore

(5.39) (A, A B) =0 h<t<t
(where |p,| denotes the total variation of y,), hence also
(5.40) (P0+Pl)<n§t<1_—iA or ngt>1_—iA>=o
1 — ¢ 1 — ¢
LSttt
In view of (5.32) and (5.34) we conclude
(5.41) r= LT A VAL

if we modify A suitably within (P, 4 P,)-equivalence.

The other inclusion follows by (5.1)—(5.3), since in Section 6 each ((1 — ¢,)/
(1 — &))(A, vV A A A), AedP/dP,, turns out to be a suitable version of the RND
of some LFP. []

PROOF OF THEOREM 5.2. Suppose first that (Q,, Q,) has the properties (5.5)—
(5.10). In order to show that Q, € %3, we consider the decomposition

Qu(B) = Qu(B, A < A)) + Qy(B, A = A < A) + Qy(B, A, < A) (Be®).

By (5.8)

(5.42) Qu(B, A < A) £ (1 —¢)Py(B, A <A,

and by (5.7)

(5.43) OB, Ay = A< A)=(1 — )P (B, A, SAZA),
and by (5.9)

(5-44) Qu(Q\B, A; < 4) = (1 — &)P(Q\B, A, < 4,
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which in combination with (5.15) gives
(5.45) OQy(B, A, < A) S (1 — e)Py(B, Ay < B) + ¢ + G -
Adding up yields: Q, € B,. Q,€ P, is obtained similarly.

Next by (5.15), (5.7) we have
(5.46) QA>0)=(1—¢)P(A>1)+e+3d VYie[A,4),
and by (5.16), (5.11)
(5.47) Q(A>0)=(1—¢)P(A>1t)—0, Yte[A,4).

Now, in view of (5.6), # = ((1 — &)/(1 — &))(4, V A A A)), AedP,/dP,, is a
version of dQ,/dQ,. Therefore, (5.46) and (5.47) establish (Q,, @, | z) as an LFP.
By (5.3), (5.4), this version = of dQ,/dQ, is also necessary. Note that in general
these 7’s do not constitute all possible versions of dQ,/dQ,!

On the other hand, let (Q,, Q,|z) be an LFP. By (5.3), (5.4) we have

L—e (A VAAA) with some A ¢ 4P
— & ‘ dP,

0

(5.48) 7=

such that especially Q,(A < Ag) = ((1 — ¢)/(1 — &))A Qy(A < A;). Now, astrict
inequality either in
(5.49) Qu(A < Ay) = (1 — e)Py(A < A) — 3, orin
(5.50) 0 (A<A) =1 —¢e)P(ASA) + ¢+ 0
would imply: ¢,(4,) < 1, contradicting Lemma 4.4. Thus (5.10) and (5.14) must
hold, as well as (5.15), (5.16), which are proved by the same argumentation.

Using (5.10) and Q, € P, again, we have for B C {A < A}

Qy(B) = QoA < A)) — Qu(\B, A < Ay)

< (1 — )Py (A < A) — 8, — (1 — &)P(Q\B, A < A)) — J,), hence

(5.51) Q)(B) < (1 —)P(B) VB C{A<A}.
The same argumentation, using (5.14)—(5.16), yields

(5.52) 0,(B) = (1 —¢)P(B) VBC{A<A}

(5.53) Q)(B) = (1 — g)P(B) VY BC{A <A}

(5.54) 0,(B) = (1 —¢&)P(B) VBC{A <A}.

For B C {A, < A < A} define B = BU {A < A}, B” = B U {A; < A}, then by
(5.10) and Q, € L:
Oy(A < Ag) 4+ Qy(B) = Qu(B') = (1 — &)Py(B') —
= (1 — )Py(A < A) — 6, 4+ (1 — &)Py(B)
= Qu(A < Ay) + (1 — &)Py(B) .
Using (5.15) and B” instead, yields Qy(B) < (1 — &)Py(B), such that
(5.55) Qu(B) = (1 —)Py(B) VBC{A, <A<A}
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and analogously
(5.56) 0\(B)=(1 —¢)P(B) VBC{A <AZA}.
In any case, Q, and Q,, which are equivalent measures, are dominated by
(P, + P,), hence by p. If we express (5.51)—(5.56) by p-densities, we get
(5.7Y—(5.9), (5.11)—(5.13). O

6. Construction of LFP’s. In order to construct LFP’s one has to solve the
system of inequalities (5.8), (5.9), (5.12), (5.13) under the side conditions (5.10),
(5.14)—(5.16). Because of (5.6) we may confine ourselves to the construction
of a Q,, hence to the solution of (5.8), (5.9), (5.10) and (5.15).

One way to fulfill (5.8) is to try a convex combination with a constant co-
efficient € [0, 1]:

6.1) go=(1—¢) ((1 — ap, + a%) on {A<A).
0
In view of (5.10), a should satisfy
(6.2) (1 — @)Py(A < Ay) + ab P (A < A) = Py(A < A) — @, .
Because of (4.11)

(6.3) o= @B
v + 0,4,
does it.
After a similar argument for g, on {A, < A} we arrive at

1 — ¢
=_- "% A< A
9o o+ oA, (120 + @y py) on {A <Ay}
(6.4) = (1 — ¢)p, on {A)<A<A}
1 — ¢
= % A Al.
WA t o, (@, py + vop) on {A <A}

This is Huber’s definition of an LFP, see Huber (1965), (1968).

Another definition is possible if, instead of a convex combination, we essen-
tially take the bounds themselves in (5.8), (5.9). Determine A e (0, A,) and
Ay e[A,; o) by
(6.5) Au - Py(A < Ay) — Py(A < Ay) =
(6.6) P(A, < A) — A, - P(A; < A) =y,

Note that only the parameters of §3, enter here, such that our Q, will be inde-

pendent of ¢,, d,. (6.5) is equivalent to

A
6.7 A,) = —Pn
( ) ¢0( ) v + @ Ay

or

(6.8) Jo(Dy) = 1
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where ¢, is defined as ¢, according to (4.9) but with parameters 5, = 0, @, = @,.
(6.6) is equivalent to

— voAy
(69) ¢1(A11) - m
or
(6'10) 92;1(A11) =1

where ¢, is defined as ¢, according to (4.10) but with parameters 5, = v, @, = 0.

It follows from (6.7), (6.9) and the monotonicity of ¢, ¢, that such solutions
must satisfy Ay, < Ay, A, = A, As lim,_, §,(1) = oo, lim,_,, §,(r) = 0, A,; exists
uniquely by the intermediate value theorem and the continuity and monotonicity
properties of ¢,, according to Lemma 4.4. As lim,_,§(f) = 1/w, - Py(A = 0),
lim,_,, §o(f) = 1/w,, we obtain the unique existence of A, € (0, A;) under the as-
sumption

(6.11) P(A =0) < w,.
In this case we define

go= (1 — eo)_Ali on {A < Ay}

00

(6.12) = (1 — &)p, on {Ap, <A <A
=U—®%L on {A, < A}

11

and (5.8), (5.9), (5.10), (5.15) are easily seen to be satisfied.

If

(6.13) P(A=0)=0,>0

we take
q0:<1—eo—WA5‘l:—0;>po on {A =0}

(6.14) = (1 — ¢)p, on {0<AZLA}
‘:U_w%_ on {A, < A}.

And if ’

(6.15) 0w, =0

it suffices to take

(6.16) o= —c)p  on (A=A

=(1—¢) P on {A,<A}.
Ay
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