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A CHARACTERIZATION OF A BIVARIATE
EXPONENTIAL DISTRIBUTION!

By HENrRY W. BLOCK

University of Pittsburgh and
University of California at Berkeley
The independence of U = min (X, Y)and ¥ =X — Yor W= |X — Y|
is studied where X and Y are not assumed to be independent. The bivari-
ate exponential distribution of Marshall and Olkin is characterized as the
distribution with exponential marginals where U is exponential and inde-
pendent of V.

1. Introduction. For independent and identically distributed nonnegative
random variables X and Y, under appropriate continuity conditions, the inde-
pendence of U = min (X, Y) and W = |X — Y| characterizes the exponential
distribution (see, for example, Basu (1965)). Furthermore if X and Y are not
assumed to be identically distributed, the independence of U and V' = X — Y
imply that X and Y have exponential distributions, again under appropriate con-
tinuity conditions. A result of this type was proven by Ferguson (1964) who
assumed that X and Y were absolutely continuous but not necessarily non-
negative and obtained that X and Y were exponential with the same location
parameter. See Basu and Block (1975) for a discussion of these and other
characterizations of exponential distributions.

When X and Y are not necessarily independent, but are assumed to have a
joint density, Block and Basu (1974) have related the independence of U and V
to a generalized lack of memory property of Marshall and Olkin (1967). In
Section 2, the bivariate exponential distribution of Marshall and Olkin is char-
acterized as the distribution with exponential marginals where U is exponential
and independent of V. This characterization is obtained via a lemma which is
an improvement of the result of Block and Basu mentioned above. The impli-
cations of the independence of U and W when X and Y are not assumed to be
independent are studied in Section 3. '

2. The main result. A characterization of the bivariate exponential distri-
bution of Marshall and Olkin (1967) will be derived in this section and is given
in the following theorem.

THEOREM 2.1. The bivariate random variable (X, Y) has the distribution
(2.1)  PX>x,Y>y}=-exp[—4x — 4,y — 4,max(x,))], x,y>0
‘ where A, Ay Ay =0
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if and only if (X, Y) has exponential marginal distributions, min (X, Y) is exponen-
tial, and min (X, Y) is independent of X — Y.

The proof of Theorem 2.1 makes use of the fact (see Marshall and Olkin
(1967)) that the distribution given in (2.1), which we call the BVE, is the only
bivariate distribution with exponential marginals such that

*) F(s, + t, 8, + 1) = F(s,, 5,)F (2, 1) S5, 858 =0

where F(s, t) = P{X > s, Y > 1}.

Block and Basu (1974) call (*) the loss of memory property (LMP) and use it
to derive a related absolutely continuous distribution called the ACBVE. The
distributional form of the ACBVE is given by (3.3) or (4.1) of Block and Basu
(1974).

The LMP has been characterized in Theorem 8.1 of Block and Basu (1974)
for absolutely continuous bivariate distributions. Since the BVE is not abso-
lutely continuous this characterization does not apply. Lemma 2.1 below is an
improvement of Theorem 8.1 in which the assumption of bivariate absolute
continuity is replaced by absolute continuity of the marginals only. In addition,
it turns out that condition 3 of Theorem 8.1 can also be dropped. Theorem 2.1
is then an immediate consequence of the following lemma.

It should be noted that only one part of the following lemma is really required
for the proof of the theorem, but because of its independent interest we include
the complete lemma.

LemMA 2.1. Let (X, Y) be a nonnegative bivariate random variable with abso-
lutely continuous marginal distributions and let U =min (X, Y)and V =X — Y.
The LMP holds if and only if there is a 6 > O such that

(1) U and V are independent
and

(2) U is exponential with mean 6.

Furthermore if the LMP holds the distribution of V is given by (3) of Theorem 8.1
of Block and Basu (1974).

Proor. Let F(f) and f,(¢) for i = 1, 2 be the marginal distributions and densi-
ties of X and Y. Also let Fy(f) = 1 — F,(?).

Assume the LMP holds. It follows that there is a § > 0 such that P{min (X,
Y) > s} = exp(—0s), s > 0. Furthermore it can be shown that

PX > x|Y =y} = exp(=00)fy(y — )[iN]7  if x<y,

= [0F\(x — y) — filx = P exp(=LL:I7 i x =y,
for all y such that f,(y) > 0, and
PY > y| X = x} = exp(=O))flx — LA iy <,

= [0F(y — x) — folly — 0] exp(=0)[fi(x)]7  if y=x,
for all x such that f;(x) > 0.
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Partitioning the event {min (X, Y) < s, X — Y < } into three parts according
totheevents {X > Y}, {X = Y} and {X < Y}and using the preceding conditional
probabilities it is not hard to show that for s > 0

P{min (X, Y) <5, X — Y < 1}
= [1 — exp(=0s){F:(1) + 671(1) + 1 — 67'[£i(0) + £:(0)]}
+PX=Y <5} if t=0
= [1 — exp(—09)][1 — Fy(—1) + 07 (—1)] if t<0.
Letting t — oo gives that for s = 0

PX =Y < s} = {07[£(0) + fu(0)] — 1}[1 — exp(—b5)] .
Substituting this into the preceding expression gives (1) and (2).
To prove the lemma in the other direction assume that (1) and (2) hold. Par-
titioning as in the first part of the proof gives that for 0 < x < y

F(x,y) = exp(—0y) + {¢ P{V < u — y}0 exp(—6u) du,, x,y=0

so that for fixed y > 0 and for all 0 < x < y at which P{V < x — y} is con-
tinuous (i.e., all but at most a countable number of x’s)

2.2) | aii(x,y) = —P(V < x — y}0 exp(—0x).
x
With s, > 0 and ¢ > 0 fixed, (2.2) can be used to obtain

9 F‘(sl+t,s,+t)=F(t,t)_;_—F'(sl,s,) for 0<s,<s,, 0<1
S

5, 1

(2.3)

except at most a countable number of 5,. Integrating (2.3) gives the LMP for
all 0 < 5, <5, 0 < ¢. Similar computations give the result for the remaining
s, S; and ¢.

In the preceding lemma only the assumption that the marginal distribution
functions are continuous (as opposed to absolutely continuous) is used in the
second part of the proof. Even in the first part of the proof, the assumption of
absolutely continuous marginals is not overly restrictive since it can be shown
that the LMP implies that the marginals cannot be discrete.

Condition (2) of Lemma 2.1 cannot be dropped since as in the second part of
the proof of Lemma 2.1 for 0 < x < y

F(x,y) = P{U >y} + {2 PV < u — y} dP{U < u}.

A nonexponential choice of distribution for U implies that F(x, x) = P{U > x}
is not exponential, so that the LMP cannot hold. For example, if

fo) =ue ™, uz=0, fr(v) = exp(=|v)),
then
f(x, y) = } min (x, y) exp(—max (x, y)) , xyz0,

a distribution which does not have the LMP.
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3. The independence of min (X, Y) and |[X — Y|. Under the assumption of
Lemma 2.1 it follows immediately that if U = min (X, Y) and W = |[X — Y|
where (X, Y) has the LMP, then there is a § > 0 such that

(1) U and W are independent,

(2) U is exponential with mean 6%,

(3) P(W < w} = 07{fy(w) + f(w)} + Fuw) + F(w) — 1 for w 2 0,
where for i = 1, 2, F,(f) and f,(¢) are respectively the marginal distributions and
densities of X and Y.

It might be conjectured that (1) and (2) characterize the LMP, but this is
not the case as can be seen by the following example which was provided by
T. Savits. Let a > 0 and P{Z > z} = exp(—0z), z = 0. Then define

X, "=(Z,Z+1) if a<Z
=(Z+ 1,2 if 0Z<a.
Clearly U = Z and W = 1 are independent. It is not hard to show (X, Y) does
not satisfy the LMP.

Conditions (1) and (2) do imply that a related distribution has the LMP. This
result is given in the following theorem.

THEOREM 3.1. Let (X, Y) have a bivariate distribution with absolutely continuous
marginals such that

(1) U=min(X,Y)and W = (X — Y) are independent
and
(2) U is exponentially distributed. Then the distribution

G(x,y) =27P{X > x, Y >y} + 27'P{X > », Y > x}
has the LMP.
ProoF. It is not hard to show that for 0 < x <y

G(x,y) = 2P{U >y} + P{U + W >y, x < U < 3}
= exp(—0x)G(0, y — x) .

Similarly for 0 < y < x, G(x, y) = exp(—0y)G(x — y, 0). This gives that G(x, y)
has the LMP.

Acknowledgment. The author would like to thank T. Savits for the example
of Section 3.
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