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CONSISTENT NONPARAMETRIC REGRESSION!

By CHARLES J. STONE
University of California, Los Angeles

Let (X, Y) be a pair of random variables such that X is Ré-valued and
Y is R¢’-valued. Given a random sample (X, Y1), « + +, (Xu, ¥») from the
distribution of (X, Y), the conditional distriPution PY(.|X) of Y given X
can be estimated nonparametrically by P.Y(4|X) = X1 Wai(X)Ia(Y3),
where the weight function W, is of the form Wai(X) = Wai(X, Xu, « -+, Xu),
1 £ i £ n. The weight function W, is called a probability weAight function
if it is nonnegative and X7 Wai(X) = 1. Associated with P,Y(+|X) in a
natural way are nonparametric estimators of conditional expectations, vari-
ances, covariances, standard deviations, correlations and quantiles and
nonparametric approximate Bayes rules in prediction and multiple classi-
fication problems. Consistency of a sequence {W,} of weight functions is
defined and sufficient conditions for consistency are obtained. When ap-
plied to sequences of probability weight functions, these conditions are
both necessary and sufficient. Consistent sequences of probability weight
functions defined in terms of nearest neighbors are constructed. The results
are applied to verify the consistency of the estimators of the various quanti-
ties discussed above and the consistency in Bayes risk of the approximate
Bayes rules.

1. Introduction. Let (X, Y) be a pair of random variables such that X is R?-
valued and Y is R*-valued. An important concept in probability and statistics
is that of the conditional distribution P¥(.|X) of Y given X and quantities de-
fined in terms of this conditional distribution—conditional expectations, vari-
ances, standard deviations, covariances, correlations and quantiles.

There are simple formulas for these conditional quantities if the joint distri-
bution P*¥ of (X, Y) is a multivariate Gaussian distribution .#7(g, Z) with
known mean p and covariance matrix X. Typically in practice P*¥ is not
known exactly but a random sample (X;, Y;), - - -, (X,, Y,) from P*¥ is available.
In the Gaussian case estimators 2 and & of y and T based on this data can be
obtained and P¥¥ can be estimated as P,¥¥ = _#(4, £). Then P*(+ | X) can be
estimated by £,7(- | X), defined to be the conditional distribution of Y given X
corresponding to the joint distribution P x¥. The various conditional quanti-
ties defined in terms of P¥(.|X) can in turn be estimated by the corresponding
quantities defined in terms of B.Y(+]X).

This paper is concerned with the problem of estimating the conditional
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distribution of Y given X and the various conditional quantities related to it
when the joint distribution of X and Y is not assumed to be Gaussian or, in
fact, to belong to any prespecified parametric family of distributions. In this
context nonparametric methods of estimation are appropriate.

If a number of the X,’s in the random sample are exactly equal to X, which
can happen if X is a discrete random variable, P¥(+ | X) can be estimated by the
empirical distribution of the Y,’s corresponding to X,’s equal to X. If few or
none of the X,’s are exactly equal to X, it is necessary to use Y;’s corresponding
to X,’s near X. This leads to estimators £,Y(+ | X) of the form

pnY(A | X) = Z?:l Wml(X)]A(Yi) ’

where W, (X) = W, (X, X,, ---, X,), | £i < n, weights those values of i for
which X, is close to X more heavily than those values of i for which X is far
from X. Set W, (X) = 0 for i > n. The weight function W, is said to be normal
if 33, W,i(X) = 1, nonnegative if W, = 0, and a probability weight function if it
is both normal and nonnegative. In the last case £,”(+ | X) is a probability dis-
tribution on R¥.

Let g be a Borel function on R* such that E|g(Y)| < co and let E(g(Y)|X)
denote the conditional expectation of g(Y) given X. Corresponding to W, is
the estimator £,(g(Y)| X) of E(g(Y)| X) defined by

E(9(Y)| X) = § 9(»)B,7(dy| X) = T Wl X)9(Y)) -
Note that if 4 is a Borel set in R?, then
PY(A|X) = E(I(Y)] X).

Other conditional quantities defined in terms of P*(- | X) can again be estimated
by the corresponding quantities defined in terms of B,7(- | X).

Observe that the estimators considered here are estimators of function values
at specified points of the domain, not estimators of parameters of the function.
Suppose, for example, that Y is real valued and E|Y| < co. The value
E(Y|X = x) = § yP"(dy| X = x) of the regression function of Y on X at the point
x is estimated by

E(Y|X =x) =y (dy|X = x) = T, W, (x)Y,.
This setup differs from that of nonparametric linear regression models. There
the regression function is assumed to belong to the parametric family of linear
functions on R¢, but no parametric form is assumed for the distribution of the
residuals. For such models the goal is to obtain robust estimators of the re-
gression coefficients (see Adichie (1967), JureCkova (1971), Jaeckel (1972) and
Bickel (1973)).

Let X, X,, X,, - - - be a fixed sequence of independent and identically distrib-
uted (i.i.d.) R?-valued random variables on a probability space Q. It is assumed
that there is a sequence of independent standard normal random variables on Q
which is independent of (X, X, X,, ---) (which fact is required to obtain the
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necessity of (5) in Theorem 1 below). A sequence {W,} of weights is said to be
consistent if whenever (X, Y), (X, Y)), (X;, Y,), -+ - are i.i.d., Y is real valued,
r> 1, and E|Y|" < co; then E,(Y|X) — E(Y| X) in L" (Z, — Z in L" means that
Ez, — Z|" - 0).

In Theorem 1 of Section 2 sufficient conditions for {W,} to be consistent are
stated. If {W,}is a sequence of probability weights, then, as noted in Corollary
1, the conditions simplify and becomes both necessary and sufficient for con-
sistency.

The conditions in Theorem 1 and Corollary 1 involve the unknown under-
lying distribution of X. A sequence {W,} of weights is said to be universally
consistent if it is consistent regardless of the distribution of X. Theorem 2 of
Section 3 shows how to obtain universally consistent sequences of weights de-
fined in terms of the ranks of the distances from X, ..., X, to X. The proof
of Theorem 2 depends crucially on an inequality stated as Proposition 11 in
Section 11. This inequality, which is interesting in itself, is the key to the truly
nonparametric (distribution free) aspect of this paper—i.e., to the fact that re-
sults are obtained which are completely free of regularity conditions on the dis-
tribution of X or the joint distribution of (X, Y).

In Section 4 a method is discussed for modifying a consistent sequence of
weights to obtain another consistent sequence which hopefully yields more accu-
rate estimators. Section 5 discusses “trend removal,” which can take advantage
of a fairly accurate linear approximation to E(Y | X). By definition a consistent
sequence of weights yields consistent estimators of conditional expectations.
Sections 6, 7 and 8 show respectively how to obtain consistent estimators of
conditional second order quantities, conditional quantiles, and Bayes rules. The
results in Sections 4-8 are all based on starting out with a consistent sequence
of weights. They become truly nonparametric if the weights are assumed to be
universally consistent. Related papers in the literature are briefly reviewed in
Section 9. The results from Sections 2-8 are proved in Sections 10-13.

An experimental packaged program is currently being developed in cooper-
ation with the Health Sciences Computer Facility at UCLA, which should make
it easy to determine the performance of the estimators discussed in this paper
on real and simulated data sets. Preliminary experience in using this program
on simulated data sets shows the effectiveness of the modifications discussed in
Sections 4 and 5.

2. Consistent sequences of weights. Let R¢ denote d-dimensional Euclidean
space with the usual inner product x - y and norm ||x||. For x and y in R let
x V y and x A y denote respectively the maximum and minimum of x and y.
For xe Rset x* = x v 0, x™ = —(x A 0) and sign (x) = —1, 0, or 1 according
as x < 0, x=0, or x > 0. Given any set 4, let #(4) denote the number of
elements in A.

All random variables considered in this paper are assumed to be defined on
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the probability space Q. Let Z,, n = 1, and Z be real valued random variables.
Then Z, — Z in probability if lim, P(|Z, — Z| > ¢) = O foralle > 0. Forr = 1,
Z,— Zin L"iflim, E|Z, — Z|" = 0. Note that Z, — Z in L" implies that Z, — Z
in probability. Finally Z, is bounded in probability if lim,__, lim sup, P(|Z,| =
M) = 0.

The following result will be proven in Section 10.

THEOREM 1. Let {W,} be a sequence of weights. Suppose the following five con-
ditions are satisfied: there is a C = 1 such that for every nonnegative Borel function

fonR?

1) E 3 Wu(X)(X) = CEfLX)  forall nz1;
there is a D = 1 such that

2) P WuX)|ED)=1  forall n=1;

(3) S Wl W yx,- x5y — O in probability for all a > 0;
4) i Wai(X) — 1 in probability; and

&) max, |W,(X)| — 0 in probability.

Then {W,} is consistent.

Suppose, conversely, that {W,} is consistent. Then (4) and (5) hold. If W, = 0
for all n = 1, then (3) holds, and if W, = 0 for all n = 1 and (2) holds, then (1)
holds.

If {W,} is a sequence of probability weights, then (2) and (4) hold automati-
cally and the three remaining conditions are necessary and sufficient for con-
sistency. This result is summarized in the following corollary.

CoROLLARY 1. Let {W,} be a sequence of probability weights. It is consistent if
and only if the following three conditions hold: there is a C = 1 such that, for every
nonnegative Borel function f on R?, E 3, W, (X)(X,) < CEf(X) for all n > 1;
2 Woi(X) - xy>ey — O in probability for all a > 0; and max; W, (X)— 0 in
probability.

The following consequence of Theorem 1 will be used in Section 4.

COROLLARY 2. Let {U,} be a consistent sequence of probability weights, let (W}
be a sequence of normal weights, and suppose that there is an M = 1 such that
|W,| < MU, foralln = 1. Then {W,} is consistent.

3. Nearest neighbor weights. In this section consistent sequences of proba-
bility weights will be constructed. The weights will depend on the distances
from X to X, ---, X, in terms of a suitable metric on JR?.

The obvious metric on R? to use is the Euclidean metric. This metric may
well be appropriate if the various coordinates of X are measured in the same
units, but it is most likely inappropriate otherwise.
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When the individual coordinates are measured in dissimilar units, e.g., grams,
centimeters, and seconds, it makes sense to transform them to be unit free before
applying the Euclidean metric. Let s, be a scale based on X,, - -, X,, that is a
nonnegative function of the forms,; = s,(X, X, - -+, X,), 1 £ j < d. Theran-
dom (pseudo) metric p, corresponding to this scale is defined by

©) patin ) = (2, (B =2))'

Snj
where u = (u, + -+, 4;), v = (v, - - -, V), and the sum extends over all j, 1 <
J £ d, such that s,; > 0.

Let {s,} be a sequence of scales and let {,} be the corresponding sequence of
metrics determined by (6). In order to obtain a consistent sequence of weights,
a number of assumptions need to be imposed on {s,}. First, it is assumed that
if1 < j < dand the jth coordinate of X has a nondegenerate distribution, then
lim, P(s,; > 0) = 1. Secondly, it is assumed that if 1 < j,/ < d and the jth
and /th coordinates of X both have nondegenerate distributions, then s,;/s,, is
bounded in probability. Finally it is assumed that there are positive constants
aand b > aindependent of n such that whenevern > 1,1 S i<n, 1 <j<d,
and the jth coordinates of X}, - - ., X, do not coincide, then

(7) asnj(Xi’ Xl’ ] Xs ] Xn) é S”j(X, Xls R ] Xn)
é bsnj(Xi, Xp "”X9 ""Xn)-

Here (X,, X,, ---, X, - -+, X,) denotes the sequence (X, X, - - -, X,) with X and
X, interchanged. The last condition is obviously satisfied with a =5 =1 if
s,(X, X;, .-+, X,) is a symmetric function of X, X, ..., X,. The condition
allows for a certain amount of asymmetry. If {s,} satisfies these assumptions it
is said to be regular.

If s, = 1 for all n = 1, then {s,} is obviously regular. If E[|X|* < oo and s,;
is the sample standard deviation of the jth coordinate of X, X, .-, X,, then
{s.} is regular. From now on it is assumed that {5} is a regular sequence of
scales and that {p,} is the corresponding sequence of metrics.

For 1 < k < n let I,,(X) denote the collection of all indices i, 1 < i < n,
such that fewer than k of the points X;, .., X, are strictly closer to X in the
metric p, than is X;. Suppose, for example, that n = 4 and that

P Xy, X) < (X5, X) = py( Xy X) < p(Xy5 X) -

Then I,(X) = {3}, Iy(X) = I,(X) = {2, 3,4} and [,(X) = {1, 2, 3, 4}. Clearly
#(1,.(X)) = k, and #(1,,(X)) = k for 1 < k < n if and only if the n numbers
pa(Xy, X), - -+, p,(X,, X) are distinct. The points i in I,,(X) are called the k
nearest neighbors of X. If W, is a weight function such that W, (X) = 0 for
i ¢l (X),it is called a k nearest neighbor (k-NN) weight function.

Let ¢,;, i =1, be such that ¢,, = .- = ¢,, =0, ¢,, =0 for i > n, and

nn =

€ + -+ + ¢, = 1. Associated with c, is the probability weight function W,
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defined as follows: for 1 < i<n

(8) Wo(X) = S T "'Z+ Cnuvtizt

where

v=14+¢{l:1 510 l+#i, and p, (X, X) < p.(X;, X)})
and

A=14 3 1 SIS l+i0, and p Xy X) = py(X; X)}) .

In particular, if X; is the unique vth closest point among X;, - .-, X, to Xin the
metric p,, then 2 = 1 and hence W, (X) = ¢,,. Since W, = 0and 3, W, (X) =
2i €. = 1, W, is indeed a probability weight function.

ExamPLE | (uniform k-NN weight function). ¢,, = 1/k for 1 < i < k and
¢, = 0fori>k.

EXAMPLE 2 (triangular k-NN weight function). c,, = (k — i 4 1)/b, for 1 <
i< kandc, =0fori>k. Here b, = k(k + 1)/2.

ExaMPLE 3 (quadratic k-NN weight function). ¢,, = (k* — (i — 1)*)/b, for 1 <
i< kandc, =0fori> k. Here b, = k(k + 1)(4k — 1)/6.

One expects £,(g(Y)| X) to be a smoother function of X for triangular and
quadratic k-NN weight functions than for uniform k-NN weight functions.
The next result will be proven in Section 11.

THEOREM 2. For n = 1 let W, be the probability weight function corresponding to
¢,. Iflim, 3, ., ¢, = 0 for all a > 0 and lim, ¢,, = 0, then {W,} is consistent.

CoROLLARY 3. Forn > 1, let W, be the uniform, triangular, or quadratic k,-
NN probability weight function. If k, — oo and k,[n — 0 as n — oo, then {W,} is
consistent.

4. Local linear weights. Assume through Section 9 that (X, Y), (X}, 1)),
(X; Yy), - -+ is an i.i.d. sequence, where X is R?-valued and Y is R¥-valued.
In this section it is assumed that &' = 1, so that Y is real valued.

Let U, be a probability weight function. A related weight function, corre-
sponding to a different method for estimating E(Y | X), will now be constructed.

Choose d, € R and b, e R? to be values of @ and b which minimize

Zi Up(X)(Y; —a—b- X))
and set £,(Y|X) = d, + b, - X, where - denotes the usual inner product on R*.
This local linear regression estimator, in effect, uses weighted least squares, with

the ith case having weight U,,(X), to fit a linear regression function to the data
and then evaluates this function at X. It can be written in the form

) E”(Y|X)= 2 VmZ(X)Yi’
where
Va(X) = Up(X)(1 + (X — X) - CHX)(X; — X)) .
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Here _
X = Zi UM(X)Xi >
ClM(X) = Zi Um’(X)(*Xil - Xl)(Xim - Xm) ’ 1 é la m é d’

and, for simplicity, the matrix (C,,(X)) is assumed to be nonsingular with prob-
ability one (in implementing this procedure, a ““tolerance” is used to avoid piv-
oting on small elements). The weight function ¥, is called the (untrimmed) local
linear weight function corresponding to U,. It is normal but generally not a prob-
ability weight function.

Let {U,} be a consistent sequence of probability weights. The corresponding
sequence {V,} of local linear weights is not necessarily consistent. It will now
be shown how to trim ¥, to obtain consistency.

Choose A < 1and B > 1 and set W,» = (V, v AU,) A BU,. Then AU, <
w," < BU,. Now W,? is not necessarily normal. To guarantee normality
one more trimming is necessary: if )}, W& (X) < 1, set

Wu(X) = W(X) Vv (A(X)Un(X))  for iz,
where 4,(X) e (4, 1] is chosen so that 3}, W,(X) = 1; if 3, W (X) > 1, set
Wu(X) = WRIX) A (B(X)Up(X))  for iz1,

where B,(X) e[1, B) is chosen so that Y, W, (X) = 1; and if 3, W@(X) = 1,
set W, (X) = WQ(X) for i > 1. The weight function W, so defined is called
the trimmed local linear weight function corresponding to U, and the parameters
Aand B. By construction, W, is normal and AU, < W, < BU,. If 4 > 0, then
W, is a probability weight function. If U, is a k,-NN weight function, then so
is W,.

The following result follows immediately from Corollary 2.

COROLLARY 4. Let {U,} be a consistent sequence of probability weights, let A <
1 < Band, for n > 1, let W, be the trimmed local linear weight function corre-
sponding to U, and the parameters A and B. Then (W} is consistent.

5. Trend removal. In this section it is assumed that Y is real valued. The
untrimmed local linear weight function defined in the previous section yields an
estimator of E(Y | X) which, in effect, extrapolates a local linear trend in each
direction out to infinity (this is most easily seen when d = 1). It may be more
reliable to extrapolate a global linear trend out to infinity. This can be done by
first removing the global linear trend, then applying a suitable estimator £,(+ | X)
to the residuals, and finally adding back the global linear trend.

Specifically suppose that E||X||? < oo, EY? < oo, and that the covariance ma-
trix of X is nonsingular. Let a,c R and b, € R* be the values of @ and b which
minimize E(Y — a — b- X)’. Let d,c R and b, ¢ R* be the values of a and b
which minimize

2ia(Yi—a—0b-X).

It follows easily from the normal equations corresponding to this minimization



602 CHARLES J. STONE (AND DISCUSSANTS)

problem that 4, — a, and b, — b, in probability and hence that
d, + b, - X—a,+ b,- X in probability.

Let {W,} be a consistent sequence of weights. The estimator £,(Y | X) corre-
sponding to W, obtained by trend removal is given by

Eﬂ(YlX) = d,‘ + Bn' X+ Zi WM(X)(Yi - ﬁn - Bn ¢ Xi) .

Since }}; W,,(X) — 1 in probability and each coordinate of Y, W, (X)X, con-
verges in L? to the corresponding coordinate of X, it follows that

S Wal(X)(@, + b, - X}) > a, + b,- X in probability.
It also follows from the consistency of {¥,} that
| 2 W.u(X)Y, — E(Y|X) in probability.
By the above four displayed results
E(Y|X)—- E(Y|X) in probability.

Thus trend removal results in estimators of E(Y | X) which are consistent in
probability. It is not such an easy matter to determine when these estimators
are consistent in L* or even to determine when the usual linear regression esti-
mator d, + b, - X converges to a, + b, - X in L.

6. Estimation of conditional second order quantities. Let g and % be Borel
functions on R* such that Eg*(Y) < oo and ER*(Y) < co. For example, g(Y)
and A(Y) could be two of the &’ coordinates of Y. The conditional covariance
Cov (9(Y), h(Y)| X) of g(Y) and A(Y) given X is defined as

Cov (9(Y), (Y) | X) = E(9(Y)h(Y) | X) — E(9(Y)| X)E(R(Y)| X) .
The conditional variance Var (g(Y)| X) of g(Y) given X is defined as
Var (9(Y)| X) = Cov (9(Y), 9(Y) | X) .
The conditional standard deviation Std (9(Y) | X) of g(Y) given X is defined as
std (9(Y) | X) = (Var (¢(Y)| X))t .

The conditional correlation Cor (g(Y)h(Y)|X) of g(Y) and A(Y) given X is de-
fined as

Cov (g(¥), H(Y)|X)
Std (9(Y) | X) Std (n(Y) [ X)

Cor (g(Y), h(Y) | X) =

if the denominator of the right-hand side is positive and by Cor (g(Y), A(Y) | X)=
0 otherwise.

Let W, be a weight function and let £,(+ | X) be the corresponding estimator
of E(- | X). The above conditional second order quantities can be estimated as
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follows:
IS A
Cov, (9(Y), H(Y)| X) = £(a(V)A(Y) | X) — E(9(Y) | X)E(h(Y)| X) ;
A N
Var, (9(Y)| X) = Cov,* (9(Y), g(Y)| X) ;
A~ N
Std,, (9(Y) | X) = (Var, (¢9(Y) | X))*;
2N
Cov, (9(Y), h(Y)| X)
N\ A\ H
Std, (9(Y)| X) Std, (A(Y) | X)
if the right-hand side is well defined and lies in [ —1, 1], and
N LN
Cor, (9(Y), h(Y)| X) = sign (Cov, (9(Y), A(Y) | X))
otherwise. Suppose W, is a probability weight function. Then these estimators
equal the corresponding second order quantities of the probability distribution
BY(+|X). Consequently C/o\v,, (9(Y), 9(Y)| X) = 0 and Schwarz’s inequality

(Cov, (9(Y), h(Y) | XY < Vat, (g(Y) | X) Var, (h(Y) | X)

P
Cor, (9(Y), k(Y)| X) =

holds.
Suppose now that {W,} is consistent. Then

P
Eov, (g(Y), h(Y)| X) — Cov (g(Y), h(Y)|X)  in L,
Var, (¢(Y)| X) — Var (9(Y) | X) in L,
and
$td, (9(Y) | X) — Std (9(Y) | X)  in L.
If Std (9(Y) | X) Std (A(Y) | X) > 0 with probability one, then
Cor, (g(Y), h(Y)| X) — Cor (g(Y), h(Y)| X) in probability
and hence in L” for all r > 1.

7. Estimation of conditional quantiles. In this section Y is real valued.
The conditional distribution function F¥(.|X) is defined by FY(y|X) =
PY((—o0, y]| X). Let 0 < p < 1. The lower pth quantile L*(p|X), upper pth
quantile U*(p| X), and pth quantile Q*(p| X) of F¥(+|X) are defined by

L¥(p| X) = inf [y: F(y|X) 2 p],
U(p|X) =sup[y: F'(y| X) < p],
Q"(p[X) = (L¥(p|X) + U'(p| X))/2.

Let W, be a weight function. The above conditional quantities can be esti-
mated by

and

EX(y1X) = BY (=00, 11 X) = T Wl Xy
L¥(p|X) = inf[y: £X(y| X) = p],
0,7(p| X) = sup[y: £,7(y| X) < p],

0.7 (p1 X) = (L¥(p| X) + U, (p| X))/2.

and
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The next result will be proven in Section 12.

THEOREM 3. Let {W,} be a consistent sequence of probability weights and let 0 <
p < 1. Then

) (LY (p| X) — L¥(p| X))~ — O in probability
and
(10) (UX(p| X) — U*(p| X))t — O in probability.

If r = 1 and E|Y|" < oo, then in (9) and (10) convergence in probability can be re-
placed by convergence in L".

COROLLARY 5. Let {W,} be a consistent sequence of probability weights, let 0 <
p < 1, and suppose that L¥(p| X) = U¥(p| X) with probability one. Then

(11) 0.5 (p| X) — Q¥(p| X) in probability.

If r = 1 and E|Y|" < oo, then in (11) convergence in probability can be replaced by
convergence in L.

COROLLARY 6. Let {W,} be a consistent sequence of probability weights, let 0 <
P < ps < 1, and let J(p), p; £ p < p,, be a continuous function. Then

(12) 22 J(p)0.Y(p| X) dp — {22 J(p)Q¥ (p| X) dp in probability.

If r = 1 and E|Y|" < oo, then in (12) convergence in probability can be replaced by
convergence in L.

8. Approximate Bayes rules. In this section Y is real valued. Let .© be a
measurable space of “actions” and let #”: R x % — R be a jointly measur-
able nonnegative loss function. In each model considered in this section
EA(Y,a) < oo forall ae 7.

Let d: R? — %7 be a (measurable) decision rule for choosing ae .. after
having observed X but before having observed Y. The Bayes risk associated
with such a rule is ESAY, d(X)) = EE(Z(Y, d(X))| X). In the specific models
discussed below there will be a minimum Bayes risk R associated with a (not
necessarily uniquely determined) Bayes rule & which satisfies

E(A(Y, 8(X))| X) = inf,, ,, E((Y, a)| X) .

a€ o7

Then
R = EA(Y, §(X)) £ EZ(Y, d(X))
for all decision rules d.
The Bayes rule is defined in terms of E(41(Y, a)| X) forae /. If this is un-
known it can be estimated by

E(AY, a)| X) = T, W (X)A(Y,, a),

where W, is a weight function. The Bayes rule d can in turn be approximated
by 4, chosen so that

E(A(Y,5,(X)X) = inf,

a€

E(AY, a)| X).
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Such a (not necessarily uniquely determined) decision rule 4, is called an ap-
proximate Bayes rule. A sequence {4,} of such rules is said to be consistent in
Bayes risk if )

lim, ESAY, 0,(X)) = E&A(Y, 6(X)) = R.
Consistency in Bayes risk will be obtained in three important models.

MopEeL 1 (prediction with squared error loss). % =R, EY? < oo, and
Ay, a) = (y — a)’. In this model 6(X) = E(Y|X) and R = E(Y — E(Y| X))
Let W, be a normal weight function. Then 6,(X) = £,(Y|X). The Bayes risk
of 4, is given by

E(Y — E(Y| X)) = E(Y — E(Y| X)) + E(E(Y|X) — E(Y| X))’

MobpEL 2 (prediction with weighted absolute error loss). % = R, E|Y| <
o, and Ay, a) = ¢(p(y — a)* + (1 — p)(y — a)~) for some constants ¢ > 0
and p e (0, 1). In this model 6(X) is any value in [L¥(p|X), U*(p| X)], e.g.,
0(X) = Q¥(p| X) (see Problem 3 on page 51 of Ferguson (1967)). Let W, be a
probability weight function. Then §,(X) is any value in [£,Y(p| X), U, (p| X)),
e.g., 0,(X) = 0,%(p| X). This model can be applied to prediction problems with
absolute value loss by setting ¢ = 2 and p = .5, so that &y, a) = |y — a|. In
this case 6(X) = Q¥(.5| X) is the conditional median of Y given X and 6,(X) =
0.,¥(.5|X) is an estimate of this conditional median.

MopEeL 3 (multiple classification). % = R and <y, a) = 0 or 1 according
as y = a or y # a. In this model 6(X) is any value of y ¢ R such that

PY({0(X)}| X) = max, P'({y}|X).
Let W, be a weight function. Then §,(X) is any value y ¢ R such that
B,Y({8(X)}| X) = max, P,¥({y}| X) .
This model is applicable to multiple classification problems. Here Y takes values

from some finite set and §(X) and 4,(X) take values from this set.
The following result will be proven in Section 14.

THEOREM 4. Let Model 1, 2 or 3 hold. Let {W,} be a consistent sequence of
weights which are normal if Model 1 holds and probability weights if Model 2 holds.
Then {5,)} is consistent in Bayes risk.

9. Related work. Nearest neighbor procedures were first studied in the con-
text of nonparametric classification by Fix and Hodges (1951). They verified
the consistency in Bayes risk of {3,} in the simple classification problem under
some regularity conditions when W, is the uniform k,-NN weight function,
k,— oo and k,/n — 0 as n — oo.

A probability weight function W, is called a unit weight function if there is a
function i,(X) =i,(X, X,,---,X,) ranging over {1, .. ,n} such that W, ; ,(X)=1
with probability one. Let 6,%(X) be the approximate Bayes rule corresponding
to such a unit weight function. If P(i,(X) e I,;(X)) = 1, 6,(X) is called the
nearest neighbor (NN) rule. In Models 1-3, §,(X) = Y, (X).



606 CHARLES J. STONE (AND DISCUSSANTS)

Cover and Hart (1967) and Cover (1968) studied NN rules and rules corre-
sponding to uniform k-NN weights under some regularity conditions. The first
paper considered Model 1 and the second paper cc*nsidered Models 2 and 3.
Their results for NN rules can be extended to the level of generality of the
present paper as follows (the proofs combine their arguments with the results of
this paper in a straightforward manner): let {W,} be a sequence of unit weights
satisfying the first two conditions of Corollary 1 (according to the proof of
Theorem 2 this allows W, to be the sequence of 1-NN weights if P(#(1,,(X)) =
1) = 1 foralln > 1). Let4,™ be the NN rule corresponding to W,. In Model 1

lim, ESAY, 6,"(X)) = 2R ;
in Model 2
lim sup, EA(Y, 6,Y(X)) < 2R;
and in Model 3

lim, ESAY, §,7(X)) = 1 — E%,, (P(Y = y| X))’ < R(2 — aR) < 2R,

where a = M/(M — 1) if the support of the distribution of Y is a finite set hav-
ing M points and « = 1 otherwise. Thus in Models 1-3 there is no decision
rule which for large n has a Bayes risk noticeably less than one-half that of 0,0,
This point was emphasized in Cover and Hart (1967) and Cover (1968). Fritz
(1975) studied the NN rule for Model 3. The geometrical arguments use«. 0
prove Proposition 12 below are similar in part to those used by Fritz to prove
his Lemma 3.

Liggett (1976) has obtained an extension of the Erdés-Ko-Rado combinato-
rial theorem and applied it to obtain the following nontrivial result: let Y, Y,
Y, --+, Y, be i.i.d. and take on only finitely many values, let w,, - .-, w, be
nonnegative numbers adding up to one and let the estimator ¥ of Y be chosen
randomly from among the values of y which maximize Y7 w,l,(Y;). Then
P(f = Y) = P(Y, = Y). Liggett’s result can be used to show that in Model 3
if {W,} is a sequence of probability weights satisfying the first two conditions
of Corollary 1 and {6,} is the corresponding sequence of approximate Bayes
rules, then under a variety of mild additional conditions

lim sup, ESAY, 6,(X)) £ lim, ESAY, 3,(X)) .

Thus these rules all do asymptotically at least as well as the rule §,%.

Watson (1964) mentioned the possibility of estimating E(Y| X) using uniform
k-NN weights. Royall (1966) obtained some asymptotic results for estimators
E,(Y|X = x)of E(Y| X = x) for fixed x determined by weights W, correspond-
ing to ¢, as in Section 3. Stone (1975) discussed results of applying nearest
neighbor estimators to some simulated data.

Kernel weights are of the form

' W,(X) = LACACERY) ,
Zi Kn(pn(Xi’ X))
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where K, is a positive nonincreasing function on [0, o) and p,, is an appropriate
metric on R?. It follows from Proposition 11 below that if p, is given by (6)
and f is a nonnegative Borel function on R?, then

E T W (0f(X) < 6 (4 %) Zo, 1+ Er).

Since Y7 i~' = oo, this result does not quite show that the first condition of
Corollary 1 holds. Thus it is not clear when a sequence of kernel weights is
consistent. Of course one can always trim kernel weights (as was done for local
linear weights in Section 4) and use Corollary 2 to obtain a consistent sequence
of weights. For work on kernel estimators see Watson (1964), Nadaraya (1964),
(1970), Schuster (1968), (1972), Rosenblatt (1969), Benedetti (1974), (1975), and
Butler (1975). For a related method based on Fourier series expansions see
Raman (1971). For other related methods see Priestley and Chao (1972) and
Major (1973). These methods were suggested by work of Rosenblatt (1956),
Parzen (1962) and others on kernel methods of nonparametric density estimation.

Some other approaches to nonparametric regression are potential functions
(Aizerman, Braverman and Rozonoer (1970) and the references cited therein,
Yakowitz and Fisher (1975), Fisher and Yakowitz (1976)); stochastic approxi-
mation (Révész (1973)); splines (Wold (1974) and the references cited therein,
Wahba and Wold (1975)); AID (Morgan and Sonquist (1963), Sonquist and
Morgan (1964)); SMOFIT (Beaton and Tukey (1974)); and random piecewise
linear functions (Breiman and Meisel (1976)).

In the multiple classification problem Van Ryzin (1966) obtained rules which
are consistent in Bayes risk under various regularity conditions. Recently, after
the original version of this paper was written, Gordon and Olshen (1975) showed
that a variation of a procedure of Friedman (1976) yields rules which are con-
sistent in Bayes risk under no regularity conditions.

Beaton and Tukey (1974) used “running medians,” which is a special case of
the estimator 0,7(.5|X) discussed in Section 7. Trend removal, discussed in
Section 5, was suggested by similar techniques used in their paper. Estimators
closely related to those analyzed in Corollary 6 of Section 7 were used success-
fully by Cleveland and Kleiner (1975). The numerical example they considered
shows the need for handling ties properly, as was done in (8).

10. Proof of Theorem 1. In this section X, X,, X,, --. are i.i.d. R¢valued
random variables and {W,} is a sequence of weights.

ProrosITION 1. Suppose that (1)—(3) hold. Let r = 1 and let f be a Borel func-
tion on R such that E|f(X)|" < oo, Then

lim, E 3, W (X)||f(X) — fAX)]"=0.

Proor. Choose ¢ > 0. Let / be a continuous function on R? having compact
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support and such that E|f(X) — h(X)|" < e. By (1)

E X W (XN f(X) — X" = CE|f(X) — hX)I" = Ce.
It follows from (2) that

E 3 Wi XN f(X) — MX)I" = DE|f(X) — h(X)|" = De.

Thus to prove that the conclusion of Proposition 1 holds for f, it suffices to
prove that the conclusion holds with f replaced by . In other words, without
loss of generality it can be assumed that f itself is continuous and has compact
support. Let this be the case and let M be an upper bound to |f|. Choose
¢ > 0. Thereisan a > 0 such that |f(x;) — f(x)|" < ¢ if xe R%, x,eR% and
[|¥, — x|| < a. Then by (2)

E 3 WnMIfX) — X" = CMYE T3 IWaiX) 12,150 + De -
It follows from (2) and (3) that
lim, E ¥, le(X)llmxi-xn») =0.
Thus '
lim sup, E 37, |W,.(X)|| f(X)) — f(X)|" < De.

Since ¢ can be made arbitrarily small, the conclusion of Proposition 1 holds.

PROPOSITION 2. Let {W,} be a sequence of nonnegative weights. Suppose that
(1)—(3) hold and that there are sequences {M,} and {N,} of nonnegative constants
such that

lim, P(M, < 5, Wo(X) S N,) = 1.

Let f be a nonnegative Borel function on R? such that Ef(X) < oco. Then

lim inf, E 3, W,(X)f(X,)  (lim inf, M,)Ef(X)
and
lim sup, E Y3, W,(X)f(X;) < (lim sup, N,)Ef(X) .

Proor. Set 4, = {M, < ¥, W,(X) < N,}. Without loss of generality it can
be assumed that M, < D for alln = 1. Then

M, — DI, . < ¥ W.(X) < N, + DI,
and hence

M, Ef(X) — DEI, .f(X) < E 3, W.(X)f(X) < N, Ef(X) + DEI, . f(X) .
Now lim, P(4,°) = 0 and hence lim, EI, .f(X) = 0. Consequently

lim inf, E 3}, W,(X)f(X) = (lim inf, M,)Ef(X)
and
lim sup, E 3, W,(X)f(X) < (lim sup, N,)Ef(X) .

Since by Proposition 1

lim, (E 3; W.(X)f(X)) — E L, Wau(X)f(X)) =0,

the desired conclusion holds.
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PrOPOSITION 3. Suppose that (1)—(3) hold and that there are sequences {M,} and
{N,} of nonnegative constants such that
lim, PM, < X Wi (X)SN,)=1..
Let f be a nonnegative Borel function on R® such that Ef(X) < oo. Then
lim inf, E 3, W2,(X)f(X;) = (lim inf, M,)Ef(X)
and
limsup, E 3}, W2,(X)f(X,) < (lim sup, N,)Ef(X) .

Proor. This result follows by applying Proposition 2 directly to {W,’}, noting
that this sequence of weights satisfies (1)—(3) if C and D are replaced by CD
and D’ respectively.

PROPOSITION 4. Suppose that (1)—(3) hold and let f be a Borel function on R*.

Then for every ¢ > 0
2 WWai O px - ran>ey — O in probability.

Proor. Let ¢ > 0 be given. Choose M > 0. Set h = (f A M) V (—M), so
that |h| < Mand h(x) = f(x) whenever |f(x)| < M. It follows from Proposition
1 that

lim, E 35 [Wu(X)[|h(X)) — h(X)| =0
and hence that
i WXz p-nan>e — 0 in probability.
Since {A(X,) # f(X,)} C {|/(X,)| > M}, it follows from (1) that

E i Wad X nxpssxpn = CP(fX)] > M) .
By (2)
E XWX nx 2ran = DP(f(X)] > M) .

Since P(|f(X)| > M) can be made arbitrarily small by choosing M sufficiently
large, the conclusion of the proposition follows from the last three displayed
equations.

PROPOSITION 5. Suppose {W,} satisfies (1)—(4). If r = 1 and f is a Borel func-
tion on R? such that E|f(X)|" < oo, then 3, W, (X)(X,) — f(X) in L".

Proor. It follows from (2) that |3, W,(X) — 1|" < (1 + D). Thus by (4)
lim, E|(Z; W.(X) — DAX)I"=0.

It follows from (2) and Proposition 1, together with Holder’s inequality for
r > 1, that

lim, E|3; W (X)(f(X) — f(X)"=0.
The conclusion of the proposition follows easily from the last two displayed
results.

PROPOSITION 6. Suppose that {W,} is a sequence of nonnegative weights and that
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for every bounded and continuous function f on R
20 Wa(X)f(X,) — f(X) in probability.
Then {W,} satisfies (3).

Proor. Let a > 0 be given. Choose x, € R* and let / be a bounded and con-
tinuous nonnegative function on R* such that f(x) = 0 for ||x — x,|| < a/3 and
f(x) = 1for |[|x — x|| = 2a/3. Then on {||X — x)|| < a/3}, f(X) = 0 and

2 Wal X)f(X5) 2 2 Wad X)Lz~ xie) -
Consequently
I(”X_%HSWS, > Woi(X)x,- x>0y — O in probability.
Thus for every compact subset B of R?
I5(X) 22 WoiX) 1 ,— x50y — O in probability.
Therefore (3) holds as desired.

ProrosITION 7. Let {W,} be a sequence of nonnegative weights satisfying the fol-
lowing property: for every nonnegative Borel function f on R* such that Ef(X) < oo,
limsup, E 37, W,(X)f(X,) < co. Then there is a positive integer n, and a positive
constant C such that for every nonnegative Borel function f on R?

E 3 W.(OAX,) < CEf(X) forall nz=n,.

Proor. Suppose the conclusion of the proposition is false. Then there is an
increasing sequence {n,} of positive integers and a sequence {f,} of nonnegative
Borel functions on R* such that Ef,(X) = 2> and

EX W, (XNfX)=v.
Set f = >1,.,f,- Then fis a nonnegative Borel function on R, Ef(X) = 1 < oo,
and
E LW, (X0f(X) Z E S W, (X)f(X) = v

Thus lim sup, E 33; W, (X)f(X;) = oo and hence the hypothesis of the proposi-
tion is false. Thus the proposition is valid.

PROPOSITION 8. Let {W,} be a sequence of weights satisfying the following prop-
erty. there is a sequence {Y;} of independent standard normal real valued random
variables such that {Y} is independent of (X, X,, X,, ---) and 3, W,(X)Y, — 0 in
probability. Then 3, W?2(X) — 0 in probability.

Proor. The conditional distribution of };, W,(X)Y, given X, X, X,, --., X,
is normal with mean zero and variance ), W2,(X). Thus for ¢ > 0

KIS W0V > 9 2 (207 s € dy ) A W2(06) > €)
T
and hence lim, P(};; W3,(X) > ¢’) = 0. The conclusion of the proposition now
follows easily.
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Theorom 1 will now be proven. The various necessity results follow easily
from Propositions 6, 7, and 8. To complete the proof of Theorem 1 it suffices
to show that if {W,} is a sequence of weights satisfying (1)—(5), r = 1, (X, Y),
(X Y)), (X,, Y,), - - - arei.id., Y is real valued, and E|Y|" < oo, then
(13) lim, E| 3, W, (X)Y, — EQY|X)I = 0.

Consider first the case r =2. Set Z=Y — E(Y|X), Z, =Y, — E(Y,| X)),
f(X) = E(Y|X), and h(X) = E(Z*|X). Then E(Z,|X,) = 0, Ef(X) < oo, and
ER(X) = E(Y — E(Y|X))? < EY* < co. Write

ZiWalX)Y: — E(Y[X) = (Z: WauOf(X)) — f(X)) + L Wl X)Z, .
By Proposition 5, Y}, W, (X)f(X;) — f(X) in L’. Now
E(ZWu(0)Z)' = EE(Zc Wal9)Z:) | X5 - -+, Xy)
=E Y, Wi(x)E(Z?| X))
= E 3, Wi(x)h(X;) .
Thus
E(XWuX)Z,)' = E 3 Wa(X)h(X)) .
By (2) and (5) X3, W3(X) — 0 in probability. Proposition 3 now implies that
lim, E(X, W, (X)Z)* = 0
and hence that (13) holds for r = 2.

Consider now the general case r > 1. Given a positive number M set Y’ =
(Y A M)V (—M)and Y, = (Y, A M)V (—M). Thenlim,__ E|Y — Y| =
0. It now follows from (1) and (2) (and Hdélder’s inequality for » > 1) that

lim,,_, E|>; W, (X)(Y;, — ;") =0 uniformly in n.
Observe also that
EIE(Y|X) — E(Y® | X)[" = E|[E(Y — Y")| X)|" < E[Y — Y“oI,
which approaches zero as M — co. Thus to prove that (13) holds for Y, it is
enough to show that it holds for Y. In other words, without loss of generality
it can be assumed that Y is bounded. But if Y is bounded, then to prove that

(13) holds for all r > 1, it is enough to show that it holds for r = 2. Since this
has already been done, the proof of Theorem 1 is complete.

11. Proof of Theorem 2. In this section the notation and terminology from
Section 3 is used. In particulars,;, 1 < j < d, is the scale based on X, - - -, X,,.
Alsoset I (X)) =¢ and I, (X) =1, (X)fort >0and k <t < k + 1.

PROPOSITION 9. For every a > 0
lim, , (lim sup, P(maxie,”,“(x, [|X; — X|| >a)=0.

ProOF. Choose a > 0 and ¢ > 0. It suffices to show that there is an a € (0, 1)
such that °

(14) lim sup,, P(maxie,”,‘m(x) X, — X|| >a) < e.
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In proving this result it can be assumed, without loss of generality, that each
coordinate of X has a nondegeherate distribution. It can also be assumed that
s, = 1 on the set whete s,, > 0; for dividing all the numbers s,; by a positive
random variable (s,, if s5,, > 0 and 1 otherwise) does not affect /,,(X) or the
regularity of {s,}. It now follows from the definition of regularity that there
are positive numbers ¢ and T such that for n sufficiently large
P<i§s. 1 for 1§j§d>_>__1__5_;
T 2

ny = P
t

and hence for n sufficiently large, the random metric p, satisfies

(15)  P(t|ju — v|| £ pu(u, v) < T|ju — v|| forall u,veRY) =1 — —;_ .

Let S denote the support of the distribution of X, that is, the set of all xe¢ R*
such that P(|X — x| < d) > 0 for every 6 > 0. Then S is a closed subset of
R? and P(Xe S) = 1. For xe R? let N,(x) denote the number of points X,
1 £i < n,such that || X; — x|| £ at/T. If xe S, then P(lim, N,(x)/n > 0) =1
by the strong law of large numbers. Therefore P(lim, N,(X)/n > 0) = 1 and
hence there is an a € (0, 1) such that for n sufficiently large

(16) POV(X) Zan) z 1 — =

Suppose that N,(X) = an and that f|ju — v|| < p,(u, v) < T|ju — v|| for all
u,ve R If||X, — X|| < at/T, then p,(X;, X) < at. Thus there are at least an
values of i such that p,(X;, X) < at and hence p,(X;, X) < at for all i e I, ,,,(X).
Therefore

=X 7 oK X) S @ forall el (X)

and hence max;.;, ., [|[X; — X|| = a. It now follows from (15) and (16) that
for n sufficiently large

P(maxe,, .o llXi — X|| < a) 2 l—e.

Thus (14) holds as desired.

For 0 < ¢ < 1 let 74, c) denote the collection of all subsets ¥ of R¢ such
that if # and v are twbo notnizero elements of ¥, the cosine of the angle between
them is greater than (1 — ¢*/2), i.e.,

c2
wev> (1= Sl ol

Since the unit sphere in R? is compact, R? can be covered by a finite subcol-
lection of 27(d, ¢) (only cones in 2(d, c) need be considered). Let f(d, c) denote
the minimum cardinality of subcollections of 2{(d, c¢) which cover R*. Then
B(d, c) is a positive integer valued function which is nondecreasing in d and
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nonincreasing in c¢. It is easily seen that (1, ¢) = 2 and that 3(2, 1) = 6. The
explicit determination of 3(d, c) for d > 3 is a difficult combinatorial geometry
problem. Fortunately it is not necessary in the present context.

ProPOSITION 10. Ler 0 < a< b, <b for 1 <j<d. Let Ve 7(d, alb) and
let u= (uy, -++,u) and v = (vy, - - -, v,) be in V and such that 0 < |[u|| < [|v]|
Let @ and v be determined by 4; = b,u;andv; = b;v; for1 < j < d. Then|[3| >
|10 — al].

Proor. Suppose first that ||u|| = |[v||. Then

u-v _ u-v 2 — a*
el {lal]]|v]] 26

and hence
@l — v — u|]* = (a* — B)|[v||* — &||u|[* + 2b% - v
= (@ — 2b%)||u||* + 2b*u-v > 0.

Consequently |[9]| 2 alfvl| > bllv — ul| = |15 — |

Consider now the general case. Set ¢ = ||v||/|[4|| = 1, v, = t'v and 9, = ¢7'0.
Then [|u]| = [[vll, © = v, and & = 13, Now |[i|| > [[3, — @]| by what has
already been shown. It follows easily from the formula |ju — v|* = ||u||" —
2u - v + ||[v|* that

1911 — 1|9 — &l = [[#%l[* — [|rv, — &l
= 1(|[%l[* — [I% — al[’) + ¢ — Djal* > 0

and hence that |[9|| > |[9 — || as desired.

PROPOSITION 11. Let W, be the probability weight function corresponding to c,

and let a and b = a satisfy (7). If f is a nonnegative Borel function on R® such that
Ef(X) < oo, then

E T WouX)fX) S 6 (dr ) EFX).
Proor. Now W, (X) = W, (X, X,, ---, X,), where X, X|, ..., X, are i.i.d.
Thus X and X, can be interchanged to obtain
EW,(X, X, - - -, X)f(X) = E(W (Xss Xy -, X, -0, XL)f(X)
for 1<i<n.

Set Up(X) = Up(X, Xy -, X,) = Wos(Xiy Xy -+, X, -+, X,) for 1<i<n
and U,(X) = 0 for i > n. Then E(W,(X)f(X;)) = E(U,(X)f(X)) and hence

(a7) E 3 Wau(X)f(X)) = E(fiX) X Upi(X)) -
Proposition 11 follows immediately from (17) and the next result.
ProrosiTION 12. 3, U,(X) < B(d, a/b).
Proor. Think of X, X, .- ., X, as fixed points in R*. Write o, = p, z,x,,....x,
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and set
Pni = P, x; Xy, X, Xy for 1<iZn.

It follows from the definitions of W, and U, that U,(X) = (c,, + --- +
cn,v+2—l)/l’ Whel'e

v= 1+ 4 IS IS mli, and po(X, X) < pulXs X))
and
A=14+3{l: 11 n1+i, and p,(X,, X)) = p.(X, Xp)}) .

Assume first that (7) holds and that s,; > 0for 1 <j<d. Set,={i:1<
i<nand X; = X} and ¢t = §(I,). If iel, then v =1 and 2 =1, so that
U (X)=(cpy + -+ + c,)/t. Thus
(18) Diiery Uni(X) = Xlici Cps -

For 1 <i<nandl < j< ddefine s,;, by

Snji = snji(X’ Xy, o0 X,) = snj(Xia Xy, oo X, -0, X))
Consider the transformations 7', T;, - - -, T, from R? to itself defined as follows:

Uj; u

and (Tu); == for 1<j<d,

ny nji

(Tu); =

where u = (uy, ---,u;). Observe that p,(u,v) = ||Tu — Tv|| and p,,(u, v) =
||T;u — T;v||. Observe also that (T,u); = b,,(Tu);, where b, = s,,/s,;;. It fol-
lows from (7) thata < b;;, < bfor 1 < j< d.
Choose V e 7(d, a/b). Set
I={i:15i<nX,#X, and TX, — TXeV}

and p =4#(I). Then I={i, --,i}, where 0 |TX, —TX||<.-- =<
ITX;, — TX||. Letl <¢<r=<p. ThenTX, —TXeV,TX, —TXeV, and
0 < ||TX;, — TX|| < ||TX, — TX||. It now follows from Proposition 10 that
T, X;, — T X, || < ||T;, X, — T; X|| or equivalently that p, (X;,X;) <
s, (X> X; ). Thus U,; (X) = (¢, + 4+ Cppyz0)/A, Wherey = rand 2 = 1 + 1.
Sincec,, = -+ = ¢, it follows that U,; (X) < (¢4, + -+ + €4 ,4)/(t + 1) and
hence that

1
Ztel UM(X) é t_:i-—_l_ Z:=l Z;‘ttr cﬂm *
Since R? can be covered by B(d, a/b) elements V € 7(d, a/b), it now follows that

‘B(d, a/b) » r+t
(19) Diier, Uni(X) = H_—IZ =1 2 Com -

It follows from (18) and (19) and elementary algebra that

T UndX) < Dicyu + B ("’ %) <t i 1

To verify the inequality of Proposition 12, it is necessary to show that the right

2i=1iCn + 2t cm‘,) .
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side of the above inequality is bounded above by B(d, a/b). By elementary alge-
bra and the formula ;7 ¢, = 1, this reduces to showing that

z:=1[19 <d, %) (t+1—i)— (1 + 1)]% >0.
The last inequality follows easily from the observation thatc,; = --- > ¢,, = 0,
B(d, a/b) = 2, and X!, [2(t + 1 — i) — (¢t + 1)] = 0. This shows that the in-
equality of Proposition 12 is valid whenever (7) holdsand s,; > Ofor1 < j < d.

Consider now the general case. Let J denote the collection of all j such that
1 <j<d,s,; >0, and the jth coordinates of X;, - - -, X, do not coincide. Set
d = 4(J).

Suppose first that d = 0. Then p,(X,, X;) = 0 for 1 <i,! < d. It follows
easily that U,(X) = c,, if p,i(X, X;) > 0and U,,(X) = 1/nif p,(X, X;) = 0. In
any case U, (X) < l/nfor 1 <i < nand hence }}, U,(X) < 1 < B(d, a/b).

Suppose next that d > 0. Let g, be the pseudometric obtained by setting

— N 2
p’,’n(u,v)z ZjeJ(ui va) ,

nji

where u = (u,, - -+, u;)and v = (v,, - - -, v,;). Note that g,,(X;, X,) = p,(X;, X;)
and §,,(X, X;) < p.(X, X;)for 1 <i,1 < n. Set

s= 1+ $({: 1S IS l#1, and p(X, X)) < fo(X, X))
and
I=1l4g{l: 11 nl£i0, and g (X, X,) = pulX, X)) -

Thends <vand ¥ + A <v + A Set U,(X) = (¢,s + -+ + €, ;47-1)/4. Then
U (X) £ U, (X)for1 £i<n. Thus

T UnlX) S B 0uX) < 6(d 5 ) < 8(d %),

Thus Proposition 12 holds in general, and hence Proposition 11 is valid.

Proor oF THEOREM 2. Let W, be the probability weight function correspond-
ing to ¢, and suppose that lim, 37, ,, ¢,; = 0 for all « > 0. Proposition 11 im-
plies that the first condition of Corollary 1 holds. To show that the second
condition of Corollary 1 holds, choose a > 0 and ¢ > 0. For given & > 0 let
A, denote the event that

MaX;cr, .0 |[|[Xi — X|| > a.

It follows from Proposition 9 that « can be chosen so that lim sup, P(4,) < e.
Now

2 Wni(X)I(IIXi—XII>a) S DlivanCu + I, .

Since ¢ can be made arbitrarily small, the second condition of Corollary 1 is
valid. Suppose also that ¢,, — 0. Since max, }/,,(X) < c,,, the third condition
of Corollary 1 holds and hence {W,} is consistent.
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12. Proof of Theorem 3. In this section Theorem 3 of Section 7 will be
proven using the notation of that section. Also, in various proofs, the abbrevi-
ated notations L(X) for L¥(p|X), L,(X) for L,7(p|X), etc., will be used.

PROPOSITION 13. Let {W,} be a consistent sequence of probability weights and let
0 < p < 1. Then for every e > 0 :

lim, P(L,*(p| X) = L*(p| X) — ¢) = 1
and
lim, P(U,7(p| X) < U*(p|X) + &) = 1.

Proor. Only the first result will be proven, the proof of the second result
being similar. Define the function f on R* by
X).

Then 0 < f < p. It follows from the consistency of {W,} that
lim, E| 2 Wil X) iy srxpy-em — X)) =0

fX) = P(Y < LX) -+

and hence that
(20) lim, P (S WX nixgmm 2 EEJE) = 0.

It follows from Proposition 4 that
> W,,i(X)I(L(Xi,SL(X,_e,z, — 0 in probability
and hence that

. — (X
(21) lim, P(Zz Wl X)Lz psron-em = %M) =0.

Equations (20) and (21) together imply that
lim, (3, Wl X) iy spx-0 < P) =1
and hence that lim, P(L,(X) = L(X) — ¢) = 1. Thus the first result of Propo-
sition 13 is valid, as desired.
PROPOSITION 14. Let 0 < p < landr > 1. Then
ElY|
pA(d—p)

E|Y|
pA1—p)

Proor. Only the first result will be proven, the proof of the second result
being similar. If L(X) < 0, then E(|Y|"|X) = p|L(X)|". If L(X) = 0, then
E(JY|"|X) = (1 — p)|L(X)|". Thus in general E(|Y|"|X) = p A (1 — p)|L(X)|"
and hence

E|ILY(p|X)| =
and
EUY(p| X)I" =

EE(Y|"|X) _  E|Y
pA(l—=p) pA(l—p)

EIL(X)I" =

as desired.
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PROPOSITION 15. Let W, be a probability weight function satisfying (1) and let
O<p<land M>0. Then

r c T
E|L,f’(p|X)[ Lt Y pimizm = )El YLy iz m

pr(l—p
and the same inequality holds with L,¥(p | X) replaced by U,¥(p | X).

Proor. It is easily seen that

1
an(X)I'Iui,.mgm = m 2 Wm(X)|Yi|'I(|Yilam .
Thus by (1)
c .
Eli’n(X)ITI(II':n(X)IZM) = m E\Y|"Lyizu -

The same argument works if £,(X) is replaced by U,(X).

Proor oF THEOREM 3. Let {W,} be a consistent sequence of probability
weights and'let 0 < p < 1. It follows from Proposition 13 that (9) and (10)
hold. It now follows from Propositions 14 and 15 thatif r > 1 and E|Y|" < oo,
then in (9) and (10) convergence in probability can be replaced by convergence
in L*. This completes the proof of Theorem 3.

13. Proof of Theorem 4. When applied to Model 1, Theorem 4 follows im-
mediately from the consistency of {W,} and the formula for the Bayes risk of
4, given in the discussion of Model 1. When applied to Model 2, Theorem 4
follows immediately from Theorem 3 and the inequality
|<AY, 6,(X)) — <Y, 5(X))|

< ol — p)(L(p1X) = L¥(p| X))~ + ep(UF(p| X) — U (p| X))* .
Consider now Model 3 and let {I¥,} be a consistent sequence of weights. Set
en(X) = max, |[E(L(Y, y) | X) — E(Y, )| X)|
= max, [P,7({y}| X) — P"({y}| X)| .
It will be shown that
(22) lim, Ee (X) =0.
Observe that
E(AY, 6,(X)) | X) < E(LAY, 5,(X))| X) + e,(X)
< E(AY, 5(X)) | X) + e,(X)
= E(AY, 8(X)) | X) + 2e,(X)
and hence that
ESAY, 5,(X)) < R + 2Ee,(X) .

Thus it follows from (22) that {,} is consistent in Bayes risk.
In the important special case that the distribution of Y has finite support,
(22) follows immediately from the consistency of {W,}. To prove the result in
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general set 4, = {y: P(Y = y) = 0}. Then with probability one, no value of
Y € 4, occurs more than once among Y,, Y,, - - - and hence

ma’xyeAl lﬁny({y} l X) g ma’xi IWM.(X)I ¢
It now follows from (2) and (5) that
lim, E max, ., |2, {y}| X) — P*({}| X)| = 0.

Set 4, = {y: P(Y = y) > 0}. Choose e > 0 and let 4, and A4, be disjoint sets
whose union is 4, and such that 4, is finite and P(Y € 4,) < e. It follows from
the consistency of {W,} that

lim, Emax,. ., |2,({y}| X) — P"({y}| X)| = 0.
Clearly
Emax”e“ PPyl X)) < e.

It follows from (1) that
Emax,. ,, |P,((}| X)| < Ce.

Since ¢ can be made arbitrarily small, (22) follows from the last four displayed
results. This completes the proof of Theorem 4.
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DISCUSSION

PETER J. BICKEL
University of California at Berkeley

As Professor Stone has pointed out, over the years a large variety of methods
have been proposed for the estimation of various features of the conditional dis-
tributions of Y given X on the basis of a sample (X}, Y}), - -+, (X,, Y,). The
asymptotic consistency of these methods has always been subject to a load of
regularity conditions. In this elegant paper, Professor Stone has given a unified
treatment of consistency under what seem to be natural necessary as well as
sufficient conditions.

His work really reveals the essentials of the problem. He has been able to
do this by defining the notion of consistency properly from a mathematical point
of view in terms of L, convergence. However, the notions of convergence that
would seem most interesting practically are pointwise notions. An example is
uniform convergence on (x, y) compacts of the conditional density of Y given
X = x. The study of this convergence necessarily involves more regularity
conditions. At the very least there must be a natural, unique choice of the
conditional density. However, such a study and its successors, studies of speed
of asymptotic convergence, asymptotic normality of the estimates of the density
at a point, asymptotic behavior of the maximum deviation of the estimated
density from its limit (see [1] for the marginal case), etc., would seem necessary
to me and to Professor Stone too! (He informed me, when I raised this question
at a lecture he recently gave in Berkeley, that a student of his had started work
on such questions.)

One important question that could be approached by such a study is, how
much is lost by using a nonparametric method over an efficient parametric one?
If density estimation is a guide, the efficiency would be 0 at the parametric
model for any of the nonparametric methods surveyed by Professor Stone.
However, even if this is the case, it seems clear that one can construct methods
which are asymptotically efficient under any given parametric model and are
generallywconsistent in Stone’s sense. This could be done by forming a convex
combination of the best parametric and a nonparametric estimate, with weights



