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A MODIFIED ROBBINS-MONRO PROCEDURE APPROXIMATING
THE ZERO OF A REGRESSION FUNCTION FROM BELOW

By DAN ANBAR!
Tel Aviv University

A Robbins-Monro type procedure for estimating the zero of a regres-
sion function is discussed. The procedure is a modification of the Robbins-
Monro procedure which is designed to approximate the zero from below.
An almost sure convergence is proved and it is shown that one can guarantee
that the procedure overestimate the zero only finitely many times with
probability one.

1. Introduction. Let {Y(x): —oo < x < oo} be a family of random variables
defined on some probability space. Assume M(x) = EY(x) and ¢*(x) = Var Y(x)
to be Borel measurable functions. Denote by 6 the solution of the equation
M(x) = 0 which is assumed to exist and be unique. Let X, be a random variable
and let {X,} be defined recursively by

1 X =X —aY n=1,2,...
() n+1 n n ' n

where Y, is a random variable which has conditional distribution given
F ., = F (X, .-+, X,)equal to that of Y(X,)and a, (n = 1,2, -..) isa sequence
of real numbers.

The process (1) is known as the Robbins—Monro (R-M) process and is designed
to approximate 0.

It is known that under some general conditions X, — ¢ a.s. This result was
first proved by Blum (1954). A very elegant proof was provided more recently
by Robbins and Siegmund (1971). It is also known that under fairly general
conditions X, suitably normalized converges in law to a normal random vari-
able. (Sacks, (1958)).

During the last decade procedures related to the R-M process have become
widely used in many fields of application. The simplicity of the iterative re-
lationships, the distribution free nature of the processes and other desirable
properties made them attractive for use in various system control situations.

There are, however, cases in which it is advantageous to use a process which
converges to ¢ from below (in some sense). For example, § may be the optimal
level of operating a system where the costs of operating at a level above § may
be considerably greater than the costs of operating at a level below #. This
situation arises quite frequently in medical and biological applications when
both the desirable effects and the potentially harmful side effects increase with
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the dose. Eichhorn and Zacks (1973) considered this situation. They defined
the optimal dose to be the highest dose for which the toxicity does not exceed
a preassigned value. They constructed a search procedure for the optimal dose
with the property that at each step the probability of overestimating is bounded
by a given number. Eichhorn and Zacks’ results hold provided some fairly
strong conditions are satisfied (e.g., linear dose-response curve, normally and
independently distributed errors).
In this paper it is proposed to modify the R-M procedure by setting

(2) X+l:Xn'_an(Yn+bn) n:1’27"'

n

where the b,’s and a,’s are measurable functions of (X, ---, X,) and X, isa
random variable which is chosen by the statistician. It is proved that if the
b,’s are small enough then the a.s. convergence of the process is preserved.
Furthermore, an iterated logarithm result due to Heyde (1974) makes it possible
to choose the b,’s such that with probability one X, exceeds ¢ only finitely
many times.

2. Convergence of the modified R—M process. In this section, an a.s. con-
vergence of the modified R-M process is proved. The method of proof is a
modification of Robbins and Siegmund’s proof of convergence of the R-M pro-
cess (1971).

THEOREM 1. Let o%(x) and M(x) be measurable functions such that

3) o(x) < ¢ + d|x| for some constants ¢ and d >0,
©) IM(x)| < K|x — 0| for some K >0,
5) inf, . _gpc—1|M(x)] >0 forevery 0<e<1,
(6) (x —OM(x) >0 forall x 0.

Let {a,} and {b,} be & -measurable functions with a, = 0 and
(7) >ar< o and > la.b,] < oo a.s.
(8) Ya,=c on suplX,| < .

Then, the modified R-M process defined in (2) converges to 6 with probability one.

Proor. The theorem is proved by applying Theorem 1 of Robbins and
Siegmund (1971). Let U, = (X, — 6)*. Then
EU,n|# ) = Uy + a0%(X,) + (M(X,) + b,)]
— 2a,(X, — 0)(M(X,) + b,)
= U, + a,[¢%(X,) + M*(X,)] + 2a,b, M(X,)
+ a,’b,} — 2a,|X, — 0||M(X,)| — 2a,b,(X, — 0).

Conditions (3) and (4) imply that there exist constants a and b such that
o(X) + |[M(X)| < a + b|X|. Theinequalities (¥ + v)* < 2(u® + v?), 2|uv| < u® + v*
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and #* + v* < (|u| + |v])* imply
oH(Xa) + MHX,) = (0(X,) + [M(X,)]) < (a + bLX,|)
< (a + blO] + b|X, — 0))* < 4@ + b0 + 26°U, .
2a,’6,M(X,) £ 24,0, K|X, — 0| < a,’b,* + a,’K*U,, .
2|a, b (X, — 0)| < |a,b,| + |a,b,|U, .
Thus
E(U,a|75) = [1 + (20 + K%a,’ + |a,b,|]U,
+ a,}(4a® + 46°6* + 2b,%) + |a,b,| — 2a,|X, — 0]|M(X,)] .
Setting
B = (26" + K%)a,” + |a,b,|
&, = a,}(4a* + 46°H* + 2b,%) + |a,b,)
Co = 2a,]X, — 0]IM(X,)],
it follows that
> B, < oo as. and

€, < oo as.
Hence by Robbins and Siegmund’s theorem U, converges a.s. to a random
variable and Y {, < oo a.s. This contradicts (5) and (8) unless X,, — 6 a.s.

3. Auxiliary lemmas. In this section, some of the tools which are needed in
later sections are presented. It is assumed without loss of generality that § = 0.

Lemma 1. Let X,, X, - - be a modified R-M process. Assume that conditions
(3), (4) and (6) of Theorem 1 are satisfied, and
9) There exists K, >0 such thar |M(x)| > Ki|x| forall x.
(10) a, = An™? with 24K, > 1.

Let b, be & ,-measurable functions with

(11 Eb,’ < Clog,n/n  for some C >0 andall n>=3 where
log, n = log (log n) .
Then there exists C; > 0 such that for all n = 3
EX,? < C,log,n/n.
Proor. By (2)
X=X+ An?Y,r 4+ An%,? — 24n7'X, Y, — 2An7'b, X, + 24077, Y, .

n+1
Since
E(Y,}|.7,) = o'(X,) + M¥(X,) = (o(X,) + |M(X,)])?
< (a + bX,|) £ 2(a® + b°X,)D),
it follows that :
(12) EY,' < 2a* + 20°EX,?.
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The inequality 2|uv| < u* + v* implies
(13) 24n71b, X, | < (AJ2K,e)n~'b,? + 2AK,en—1X,>?
24n7%), Y, | < An,2 + A*n??, where ¢>0.
Now by (6) and (9)
(14) E(X,Y,) = E(E(X, Y,|.5.)) = E(X, M(X,))
— E|X, M(X,)| = E|X,||M(X,)| = K,EX,? .
Denote ¢, = Eb,’. Let ¢ in (13) be such that 24K,(1 — ¢) > 1. Then com-
bining (12), (13) and (14) one obtains
EX:,, < (1 — 24K,(1 — e)n~! + 4BA*n)EX,? + 4a*A*n~?
+ 2A4n7%c,? + (A[2K,e)n ¢, .
Let ¢, > 0 be such that 24K,(1 — ¢ —¢) > 1.
Let Ny = max (2b°4/e, K,, 44K ¢). Then if n = N,

(15) EX: < (1 —dn)EX,? + din~? + dyn~'c,?
with d = 24K(1 — ¢ — &) > 1, d, = 4a*°4* and d, = A/Ke.
Let

Bun = 1 if m=n
= tem (1 — dj7h) if m<n.
Iterating (15) yields
(16)  EX, < By anEXS 4 dy Dy, Bk + dy Doy, Brnk e,
Now, 8,.. < d;m?n=¢. Hence
EX} . < d;Nin*EXY, + dydyn* D=, k470 4+ dyd,Cn? Dik-n, k7 log, k
<dn?®+ dyn' + dyn'log,n .
This completes the proof since d > 1.
LEMMA 2. Let p > % be a fixed number. Then under the conditions of Lemma 1
17 nPtE Sn krlX2 50 a.s.as n-— oo.
PRrOOF. Let ¢ > 0 be an arbitrary real number. It is sufficient to prove that
Pln=rtt 3n  kP'X2 > e, 1.0} =0.
Pln=2%4 30 kP7X,2 > 6, 1.0} = P{MaXym_jomi1j 2 NI kP7IX2 > 6, Q.0.).
By Chebychev’s inequality and Lemma 1,
P{MaXymejgom1 72 2lio, kP7IXGE > )
< P2-mrh Il pe-1x02 s ¢}
< (Clep2-m=9 I krK(log, k)
< C27™*log (m + 1) if p>1
< C"27™*(m 4 1)log (m + 1) if p=1
<L Cr2mmr=d log (m + 1) if p<l1.



ROBBINS—MONRO APPROXIMATING FROM BELOW 233

Hence by the Borel-Cantelli lemma
P{MaXym jcgme1j 7 2 kP7X,2 > 6, 0.} =0
LEMMA 3. Let 0,(x) be a measurable function such that lim,_, §,(x)/x* = 0. Then
under the conditions of Lemma 2
norti 3 kro5(X,) — 0 as.as n— oo.

Proor. This is an obvious consequence of Lemma 2 since the conclusion of
Lemma 3 holds for every fixed » for which the conclusion of Lemma 2 holds
and for which X, (0) — 0 as n — oo.

4. An approximation procedure approaching from below. In this section, the
results of the previous sections are used to construct a modified R-M process
which converges to 0 a.s. from below. The b,’s are taken to be constants.
Assume the following:

(18) M(x) = ax + 0(x) where 0(x) = a,x* + 0,(x),
0(x)=0(x* as x—>0, and a>0.
(19) (a) sup, E|Y(x) — M(x)"*? < o0 for some 17 > 0.

(b) lim,_,d*(x) = o*.
Consider the modified R-M procedure defined by

(20) Xop1 = X, — A7 Y, + b,), n=1,2,...
where X, is an arbitrary random variable. Let Z, = M(X,) — Y,. Clearly
E(Z,|.%,) = 0 so that the Z,’s are martingale differences. Substituting (18)
in (20) yields

Xn+l = X'n - An_l(aXn + 5(Xn) - Zn + bn)

= (1 — adn™)X, — An7'9(X,) + An~'Z, — An~'b, .
By iteration
(21) Xn—l—l = IBOnXl - A Z;nn=l m_lﬁ’mn(;(X’m) + A Z’fn=l m_lﬁngm
— A Z?n:l m_lﬂmnbm ’

where
ﬁmn = H}’::m-{-l (1 - C(Ak_l) lf m < n
=1 if m=n.
LetD, =AY _ m*B,,b,.
Thus

P{X,,, >0, i.0.}
= P{A an:l m-ltgngm > A Z?n:l m_lﬁmna(Xm) + Dn - ‘BOnXD i'o'} N

As was shown by Heyde (1974), under Conditions (4), (6), (9) and (19) with
24K, > 1

lim sup, ., {ri(log, n)~t 33n_,mB,,Z,} = 6(Qa4d — 1)"t a.s.
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Now there exists a constant C such that |8,,,| < Cn~*4m*4 for all m and n. Thus
from Lemmas 2 and 3 it follows that
me1 M7 B, 0(X,) = o(n7Y) .
Clearly
Bou Xy = 0(n7%) .
Hence
P{X,,, >0, i.o}=PA4y"_mB,.Z, > D, + o(n?), i.o.}.
Thus if the b,’s are chosen so that
(22) D, = Dn¥(log, n)! + o(n~¥(log, n)})
with D > Ao(2a4 — 1)~% then
P{X, >0, i.o}=0.
This is summarized in the following

THEOREM 2. Let X}, X,, - - be a modified R-M process given by (20). If the
conditions of Theorem 1 together with (9), (10), (19) and (22) hold with 24K, > 1
then X, — 0 a.s. and with probability one X, > 0 only finitely many times.

For example if one chooses
(23) b=0b,=0 and b, = h(k) for k=3
where

h(x) = D'x~}(log, x)}[1 + 1/(log x)(log, x)] [x = 3]
with
D' > 1lo(2ad — 1)},
a simple calculation shows that D, satisfies (22).

REMARK. It is easy to see that the asymptotic normality result of Sacks (1958)
applies to the process(2) with a very minor modification, i.e., n¥(X — 6 + D,)—
N, ¢ ,% where ¢, = A%*(2aAd — 1)7.
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