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A NEW FORMULA FOR k-STATISTICS!

By I. J. Goop
Virginia Polytechnic Institute and State University

A new formula for cumulants was given by Good (1975). A short proof
is now given and the result is used to obtain a new formula for k-statistics.
This formula can be used both for deriving the expressions of k-statistics
in terms of power sums of the observations, and for checking and locating
errors in formulae that are already in the literature.

1. Introduction. A new formula for cumulants was given by Good (1975)
where, however, it was overlooked that the result could be used to prove a
similar formula for k-statistics. We now rectify this and indicate how the result
provides a new method of calculation of the k-statistics. [The method led to
the detection of an incorrect sign in a formula of Zia ud-Din (1954).] In addition
we give an elegant proof of the formula for cumulants since the proof given by
Good (1975) was difficult, though the lemma on permanents is of independent
interest.

As usual, cumulants

K, = K

Ppatgreaty
of an n-dimensional random vector 8 = (6,,0,, ---, 0,)’, are defined by the
identity

2. k. x7rl =log Eexp(0,x, + --- + 0,x,)
where E denotes expectation, x,, x,, - - -, x,, are purely imaginary variables,

X7 = XX, e X T, r! — r1! N rn!

and r, ry, -+, r, run through all nonnegative integers. The identity is valid
when the characteristic function is analytic in the neighborhood of the origin.
We assume this throughout.

2. The theorem for cumulants. Theorem 1 of Good (1975) expressed the
cumulant &, as a moment of another random vector, in fact

2.1) £, = RET[’_; [00," + 0*0,® + - + 00, ®]
where R = |r| = r, + r, 4+ --- + r,, ® is any primitive Rth root of unity, 8,
is the vth component of the vector 8 (v = 1,2, ---,n;p = 1,2, ..., R), and

0, 0%, ..., 0" are i.i.d. random vectors each with the same distribution as 6.
As mentioned in Good (1975), (2.1) can be used for the Monte Carlo evaluation
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of cumulants, and for the expression of cumulants in terms of ordinary moments
by means of programmed algebra.

We now give the new proof of (2.1).

As is well known, for any random vector Y (having requisite moments), the
moment ¢,’(Y) can be expressed as a polynomial in the cumulants of Y of which
one term is £,(Y) and the other terms involve cumulants « (Y) where |q| < |r|.
Therefore

(2.2) 1 (Y) = £,(Y) if £,(Y)=0 whenever |q] <]r|.
Let
0% = D, 00",
where the 8’ each have the same cumulants £,. Then, by the additive property
of cumulants, we have
£ (0%) = LB ko (w°0?)
= L 0/, (6)
= Re, if |q| isa multiple of R

=0 if |q| is nota multiple of R.
Therefore, by applying (2.2) with Y = 6*, we see that « (6*) = y,’(6*), and that
Irle, = £.(6%) = p./(6%)
so that (2.1) is established.

It is curious that the characteristic function of 6* is formally []Z, ¢(wrt)
where ¢(t) is the characteristic function of @; and therefore

2.3) e = T o) T2, d(— o)

where &(u"){- - -} denotes the coefficient of u* in {...}.

3. A formula for k-statistics. Let 8, 8, ..., %’ be N independent obser-
vations of a vector random variable @, where N > R. [The same notation is
used for these observations as for the random variables.] The k-statistic k, is
that symmetric function of these vectors, and which is a polynomial in their
components, whose expectation (when the vectors are regarded as random vari-
ables) is «,: in other words k, is an unbiased estimate of «,. It is known that k,
is unique (for each r); see, for example, Kendall and Stuart (1963), page 278.
Consider the average of the right side of (2.1), without the expectation sign,
averaged over all possible ordered sequences of R of the observations, of which
there are NI¥1 = N(N — 1) ... (N — R + 1). This statistic has #, as its expec-
tation, and is a symmetric function of the observations. Therefore
= e T T 00,50 4 o 4 R )
is an unbiased estimate of «,, where the summation is over all N®] possible se-
quences (ji, jp - -+ Jg) Where jj, j,, - -+, jp are R distinct numbers selected from

(3.1) k

r
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theset 1,2, ..., N. Thus (3.1) is a formula for Fisher’s k-statistic. Since a
cyclic permutation of (jy, j,, « - -, ) leaves the product unchanged, we can sum
over only those sequences in which j, is the smallest of the R numbers j,, - - -, jg,
provided that the factor R in the denominator is omitted.

4. Discussion. The univariate form of (3.1) is

— 1 Gp [N TG}
(4.1) kT_WZ{wﬂ’l + + @70’}
and this confirms that we can subtract any constant from each of 4%, ..., ™

without affecting k, (if 7 > 1). In particular we can subtract the mean § from
all the observations. When k, is expressed as a polynomial in the symmetric
power sums s; = 0¥ + ... 4 0V, 5, = (OV)Y + ... + (') etc., it isadvan-
tageous to force s, = 0, for this greatly simplifies the standard formulae for the
k-statistics, the calculations become better conditioned, and the number of terms
in the standard formula for k, is reduced from p(r) to q(r), where p(r) is the
number of partitions of r and ¢(r) is the number of partitions when no part is 1.
We have q(r) = p(r) — p(r — 1) because the generating function for ¢(r) is

[ =) A =x)d —x) -]
which is 1 — x times that for p(r). [Tait (1882/85) computes the ¢’s less simply.]

From Euler’s identity (Hardy and Wright (1938), page 282), or as the case a =
—x of a series for J] (I + ax") due to Sylvester (1882, page 282), we have

(42) (1 —x) (1 —x) (1l —x) ...
= Z;‘::O(_])mx&(amum)(l X4y,

a fact that can be used to verify a table of values of ¢(r). Similarly, in say the
trivariate case, if p(r) denotes the number of tripartite partitions of r, and ¢(r)
the number having no part p with |p| = 1, we have

(4.3) Zgmxt = (I —x)(I = x)(1 — x;) T p(r)x*,
from which ¢(r) can be expressed as a linear combination of eight p’s.

When N is large, it is impracticable to use (3.1) directly for numerical calcu-
lation. But it is known that NU"lk, is a polynomial in s,, s,, - - - with integral
coefficients, after forcing s, = 0; for example,

NUik, = a(000001)s, + a(1001)s,s, + a(011)s,s, + a(21)s.2s,

where a(m,, m,, - ..) denotes the coefficient of s,™s;™s ... and is a polynomial
in N, divisible by N and of degree };7_, min (0, m; — 1). By fixing N and giving
X3, Xy, « -+, Xy special values (with s, = 0) in four different ways, we could obtain
four linear equations from which the coefficients ¢(000001), etc. could be found
numerically, when the equations for the coefficients are linearly independent.
Knowing that the coefficients are integers makes this process easier. If the coef-
ficients were thereby obtained for several values of N, they could be expressed as
explicit polynomials in N, again by solving sets of simultaneous linear equations.
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Instead of carrying out these calculations completely, we may be content to
verify or question published formulae for k, by taking N = r and then taking

special values for 6, %, ..., 6. For example, by taking ' = —(r — 1),
0 = 0% = ... = 60" =1, we find easily that
(4.4) kr = __(__r)r-l .

I have used this special formula to check all the general formulae for k, given,
for example, by Kendall and Stuart ((1963), pages 280-281), for r = 1(1)8, and
by Zia ud-Din (1954) for r = 9. These are good checks when s, = 0. This check
revealed that when r = 10 the sign of 65N? in the coefficient of —37800s,’s,? in
Zia ud-Din (1954) was printed as a plus when it should be a minus. Although
this sign is only one of thousands of symbols the misprint multiples the answer
by about —5000. The present check says nothing about the (less important)
terms that involve s,.

As already mentioned, the calculation of (4.1) when N =r, for arbitrary
values of 8%, 8, ..., 8, requires only (r — 1)! permutations of the r “obser-
vations.” In fact only (r — 1)!/2 permutations need be used, because a “reflec-
tion” (8, - .., 6~V replaced by 6", ..., ¥ respectively) replaces Y 00"
by its complex conjugate. The permutations can be elegantly generated to take
advantage of this complex conjugacy property, in the following manner. [See
also Ord-Smith (1971).] We give a recipe for generating the mth permutation
(m=0,1,2,...). First write m in the form }}!Z}a,s! (a, =0, 1, ---,s). Then
operate on the string [A4, 4, 4; - - -] with the product of cyclic permutations
(s+1—a,5+2—a, ---,8s+1)(s=1,2,...,¢r — 1), where the cycles
are applied in the order s = 1,2, ..., t — 1. The cycles refer to the positions
of the objects in the string, which is more convenient than when they refer to
the names of the objects. For example, if m = 11 we have a, =0, a;, =1,
a, =2,a, = 1,and (3, 4)(1, 2, 3)(1, 2)[4, 4,4, 4,] = (3, H)(1, 2, 3)[4,4, 4, A4,] =
(3, 4)[A4,A4,4,4,] = [4;A4,A4,A4,]. This method of generating permutations is con-
venient for a computer program and happens to give a neat pattern of permu-
tations that is easy to write out by hand.

A program to carry out this calculation was written by Mr. Byron Lewis. It
was run (for N = r) with 0 =0, 0% = 1,0 =2, ...,0" " =r — 2,07 =
—(r — 1)(r —2)/2; r = 4(1)8; and obtained further checks of the published
formulae for k, with s, = 0.

For multivariate k-statistics there are again cases that can be usefully worked
out by hand. For example, in the bivariate case, n = 2, we can take N = R,
and “observations”

(c —R,¢),(c,c — R),(c,¢),(c,¢), -+, (¢, )
for which
4.5) 5,, = (¢ — R)"c? 4 ¢?(¢ — R)? 4 (R — 2)c?*?,

where s5,, denotes as usual the sum of a”b? over all N observations (a, b). Then
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formula (3.1) shows that
(4.6) k, = (—R)* (R = 1)(r,+0,r, # R) .

Using (4.5) and (4.6) we can check any formula that expresses k, in terms of
the s,,, and this check was applied to the bivariate formulae for |r| < 4, given,
for example, by Kendall and Stuart (1963), page 308.
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