ROBUST TESTS FOR SPHERICAL SYMMETRY

By Takeaki Kariya¹ and Morris L. Eaton²

University of Minnesota

Let R^n be Euclidean n-space and let O(n) be the group of $n \times n$ orthogonal matrices. Consider $\mathscr{F}_0 = \{f \mid f \text{ is a density on } R^n, f(x) = f(gx), x \in R^n, g \in O(n)\}$, and let $Q = \{q \mid q : [0, \infty) \to [0, \infty), q \text{ is nonincreasing, } \int_{R^n} q(||x||^2) dx = 1\}$. If Σ is an $n \times n$ positive definite matrix, set $\mathscr{F}_1(\Sigma) = \{f \mid f(x) = |\Sigma|^{-\frac{1}{2}}q(x'\Sigma^{-1}x), q \in Q\}$. For $\mu \in R^1$ and $a_0 \in R^n$, $||a_0|| = 1$, let

$$\mathscr{F}_2(\mu) = \{ f | f(x) = q(||x - \mu a_0||^2), q \in Q \}$$

and

$$\mathscr{F}_3(\mu) = \{ f | f(x) = q(||x - \mu a_0||^2), q \in Q, \text{ and } q \text{ convex} \}.$$

Uniformly most powerful tests are derived for testing \mathscr{F}_0 versus $\mathscr{F}_1(\Sigma)$ and for testing \mathscr{F}_0 versus $\{\mathscr{F}_2(\mu)\,|\,\mu>0\}$. A uniformly most powerful unbiased test is derived for testing \mathscr{F}_0 versus $\{\mathscr{F}_3(\mu)\,|\,\mu\neq0\}$.

1. Introduction and notation. Throughout, R^n denotes Euclidean n-space and O(n) is the group of $n \times n$ orthogonal matrices. If X is an $n \times 1$ random vector, $\mathcal{L}(X)$ denotes the distribution law of X. A random vector X has a spherically symmetric distribution if $\mathcal{L}(X) = \mathcal{L}(gX)$ for $g \in O(n)$. If X has a spherically symmetric distribution and if P(X = 0) = 0, we write $\mathcal{L}(X) \in S(n)$.

To describe the classes of probability densities (pdf's) treated in this paper, first let

(1.1)
$$Q = \{q \mid q : [0, \infty) \to [0, \infty), \quad q \text{ is nonincreasing, and}$$
$$\int_{\mathbb{R}^n} q(||x||^2) dx = 1\}.$$

Also, let

(1.2)
$$\mathscr{F}_0 = \{ f \mid f \text{ is a density on } R^n,$$
$$f(x) = f(gx), x \in R^n, g \in O(n) \}.$$

If Σ is an $n \times n$ positive definite matrix, let

(1.3)
$$\mathscr{F}_{1}(\Sigma) = \{ f \mid f(x) = |\Sigma|^{-\frac{1}{2}} q(x' \Sigma^{-1} x), q \in Q \}.$$

For $\mu \in R^1$ and $a_0 \in R^n$, $||a_0|| = 1$, set

(1.4)
$$\mathscr{F}_{2}(\mu) = \{ f \mid f(x) = q(||x - \mu a_{0}||^{2}), q \in Q \}$$

and finally, let

(1.5)
$$\mathscr{F}_{3}(\mu) = \{ f \mid f(x) = q(||x - \mu a_{0}||^{2}, q \in Q, q \text{ convex} \}.$$

Received April 1975; revised April 1976.

AMS 1970 subject classifications. Primary 62G10; Secondary 62F05, 62G35.

Key words and phrases. Tests for sphericity, UMP nonparametric tests, robustness, Student's t-test.

¹ Currently at Hitotsubashi University, Tokyo.

² Research was supported in part by a grant from the National Science Foundation, NSF-GP-34482.

The purpose of this paper is to consider the testing problems \mathscr{F}_0 versus $\mathscr{F}_1(\Sigma)$, \mathscr{F}_0 versus $\{\mathscr{F}_2(\mu) | \mu > 0\}$, and \mathscr{F}_0 versus $\{\mathscr{F}_3(\mu) | \mu \neq 0\}$.

In Section 2, the distributions of X/||X||, a'X/||X|| and $X'AX/||X||^2$ are described when $\mathcal{L}(X) \in S(n)$. As an application, the distribution of the sample correlation coefficient is derived under assumptions weaker than the usual normality assumptions. The distribution of $X'AX/||X||^2$ has been derived by Kelker (1970) under the assumption that X has a density $f \in \mathcal{F}_0$.

A UMP test of \mathcal{F}_0 versus $\mathcal{F}_1(\Sigma)$, for Σ fixed, is given in Section 3. This result is then extended to cover the following situations when Σ is not fixed: (i) $\Sigma = \sigma^2 \Sigma_0$, Σ_0 known, (ii) $\Sigma = \lambda_1 (I-M) + \lambda_2 M$, $M^2 = M$, M known, where $\lambda_1 > \lambda_2 > 0$ (or $\lambda_2 > \lambda_1 > 0$), and (iii) $\Sigma^{-1} = \lambda_1 I + \lambda_2 A$, A known, $\lambda_1 > 0$. In these cases the UMP test does not depend on the unknown parameters (σ^2 , λ_1 , λ_2), so the test is UMP over all the unknown parameters as well as the function q. In Section 4, a UMP test is derived for testing \mathcal{F}_0 versus $\{\mathcal{F}_1(\mu) | \mu > 0\}$. The basic technique used to derive these tests is a modification of a technique due to Lehmann and Stein (1949) (henceforth abbreviated L-S). In Lemma 3.1 of Section 3, a result concerning the hypothesis of invariance under an infinite group is established, whereas the results of L-S (1949) are mainly for the hypothesis of invariance under a finite group. However, L-S (1949) did present a version of their technique for an infinite group, but it seems to be difficult to apply.

The alternatives $\mathcal{F}_1(\Sigma)$ and $\mathcal{F}_2(\mu)$ contain such distributions as the multivariate t-distribution, the multivariate Cauchy distribution in addition to the multivariate normal distribution. The reader is referred to Johnson and Kotz (1972) and Kelker (1970) for further examples of distributions in \mathcal{F}_0 , $\mathcal{F}_1(\Sigma)$ and $\mathcal{F}_2(\mu)$. In Section 5, the results of previous sections are applied to the general linear hypothesis in a regression model.

The problem of testing \mathscr{F}_0 versus $\{\mathscr{F}_3\{\mu\} | \mu \neq 0\}$ is considered in Section 6. Sufficiency, completeness and the generalized Neyman-Pearson lemma are used here to derive a UMPU (unbiased) test for the above problem. We briefly discuss a conjecture concerning the existence of a UMPU test for testing \mathscr{F}_0 versus $\{\mathscr{F}_2(\mu) | \mu \neq 0\}$.

2. The distributions of a'X/||X|| and $X'AX/||X||^2$. An *n*-dimensional normal distribution with mean Δ and covariance matrix Σ is denoted by $N_n(\Delta, \Sigma)$. Let $D(a_1, \dots, a_{n-1}; a_n)$ denote a Dirichlet distribution with pdf

(2.1)
$$p_n(t_1, \dots, t_{n-1}) = \Gamma(\sum_{i=1}^n a_i) [\prod_{i=1}^n \Gamma(a_i)]^{-1} [\prod_{i=1}^{n-1} t_i^{a_i-1}] (1 - \sum_{i=1}^{n-1} t_i)^{a_n-1}$$
 where $0 \le t_i$, $\sum_{i=1}^{n-1} t_i < 1$, and $a_i > 0$. We write $\mathcal{L}(y_1, \dots, y_n) = D_n(a_1, \dots, a_{n-1}; a_n)$ to mean $y_n = 1 - \sum_{i=1}^{n-1} y_i$ and (y_1, \dots, y_{n-1}) has the pdf (2.1). $\mathcal{B}(a_1, a_2) \equiv D_2(a_1; a_2)$ denotes the beta distribution.

Consider $C_n = \{x \mid x \in \mathbb{R}^n, ||x|| = 1\}$ and let U have the uniform distribution on C_n . $\mathcal{L}(U)$ is the unique probability distribution on C_n which is invariant under O(n).

THEOREM 2.1. If $\mathcal{L}(Z) = N_n(0, I)$ and $\mathcal{L}(X) \in S(n)$ then $\mathcal{L}(X/||X||) = \mathcal{L}(Z/||Z||) = \mathcal{L}(U)$.

PROOF. Let $T(X) = X/||X|| \in C_n$. Then T(gX) = gT(X) for $g \in O(n)$ and so $\mathcal{L}(T(gX)) = \mathcal{L}(T(X)) = \mathcal{L}(gT(X))$. The uniqueness of the invariant probability measure on C_n clearly yields the desired conclusion.

THEOREM 2.2. Suppose $\mathcal{L}(X) \in S(n)$ and A is an $n \times n$ symmetric matrix. Then $\mathcal{L}(X'AX/||X||^2) = \mathcal{L}(\sum_{1}^{n} d_j y_j)$ where $\mathcal{L}(y_1, \dots, y_n) = D_n(\frac{1}{2}, \dots, \frac{1}{2}; \frac{1}{2})$ and the d_j 's are the latent roots of A. In particular, if $A^2 = A$ and rank (A) = k, then $\mathcal{L}(X'AX/||X||^2) = \mathcal{B}(k/2, (n-k)/2)$.

PROOF. By Theorem 2.1, we can assume $\mathcal{L}(X) = N_n(0, I)$. Hence the result is immediate.

Press (1969) considered $\mathcal{L}(X'AX/||X||^2)$ when $\mathcal{L}(X) = N_n(0, I)$.

THEOREM 2.3. For $\mathcal{L}(X) \in S(n)$ and $a \in \mathbb{R}^n$, ||a|| = 1, let W = a'X/||X||. Then $t \equiv (n-1)^{\frac{1}{2}}W/(1-W^2)^{\frac{1}{2}}$ has a t(n-1) distribution—the Student distribution with n-1 degrees of freedom.

PROOF. Since $\mathcal{L}(X) \in S(n)$ we can, without loss of generality, take $a' = (1, 0, \dots, 0)$ and $\mathcal{L}(X) = N_n(0, I)$. If $X' = (X_1, \dots, X_n)$, a bit of algebra shows that $t = (n-1)^{\frac{1}{2}} X_1/(\sum_{n=1}^{\infty} X_n^2)^{\frac{1}{2}}$ and the result follows.

Theorem 2.3 is related to a result due to Efron (1969).

EXAMPLE 2.1. Suppose $u'=(u_1,\cdots,u_n)$ and $v'=(v_1,\cdots,v_n)$ are independent with $\mathcal{L}(u)\in S(n)$ and $P(v\in\{e\})=0$. Here, $e=(1,\cdots,1)'\in R^n$ and $\{e\}$ is the span of e. Consider the sample correlation coefficient

$$r = \sum_{1}^{n} (u_1 - \bar{u})(v_i - \bar{v})/[\sum_{1}^{n} (u_i - \bar{u})^2 \sum_{1}^{n} (v_i - \bar{v})^2]^{\frac{1}{2}}$$
.

Let M=ee'/n so $r=u'(I-M)v/[u'(I-M)uv'(I-M)v]^{\frac{1}{2}}$. Consider y=gu and z=gv where $g\in O(n)$ and $g(I-M)g=\mathrm{diag}\,\{1,\,1,\,\cdots,\,1,\,0\}$ where $\mathrm{diag}\,\{b_1,\,\cdots,\,b_n\}$ denotes a diagonal matrix with diagonal entries $b_1,\,\cdots,\,b_n$. Let \tilde{y} and \tilde{z} be the vectors consisting of the first (n-1) coordinates of y and z respectively. Then $r=\tilde{y}'\tilde{z}/||\tilde{y}||\,||\tilde{z}||$ and it is easy to show $\mathscr{L}(\tilde{y})\in S(n-1)$. Conditioning on \tilde{z} and applying Theorem 2.3, $\mathscr{L}(n-2)^{\frac{1}{2}}r/(1-r^2))^{\frac{1}{2}}=t(n-2)$. Thus, the distribution of r does not depend on either the normality of $\mathscr{L}(u)\in S(n)$ or the distribution of v so long as u and v are independent and $P\{v\in\{e\}\}=0$.

3. UMP tests for testing \mathcal{F}_0 versus $\mathcal{F}_1(\Sigma)$. The first result in this section, designed to cover testing for invariance under infinite groups, is an alternative form of a result due to L-S (1949). Let $(\mathcal{X}, \mathcal{B})$ be a measurable space and let μ be a σ -finite measure on $(\mathcal{X}, \mathcal{B})$. Suppose G is a group acting bimeasurably on the left of \mathcal{X} by $x \to gx$. Let \mathcal{F} be the class of pdf's (with respect to μ) which are invariant under G. Further, suppose $t: \mathcal{X} \to \mathcal{F}$ is a maximal invariant function with range \mathcal{F} .

LEMMA 3.1 (Lehmann and Stein). Suppose that for a given pdf $h \notin \mathcal{F}$, there exists a map s from \mathcal{T} to \mathcal{X} such that h(s(t(x))) is integrable with respect to μ . Then the test φ defined by

(3.1)
$$\varphi(x) = 1 \qquad \text{if} \quad h(x) > kh(s(t(x)))$$

$$\varphi(x) = \gamma(x) \qquad \text{if} \quad h(x) = kh(s(t(x)))$$

$$\varphi(x) = 0 \qquad \text{if} \quad h(x) < kh(s(t(x)))$$

is a MP test of level α for testing \mathcal{F} versus h provided

$$(3.2) \mathscr{E}_{f_0}\varphi = \alpha \text{and} \mathscr{E}_f\varphi \leq \alpha \text{for all} f \in \mathscr{F}$$

where $f_0(x) \equiv I^{-1}h(s(t(x)))$, $I \equiv \int h(s(t(x)))\mu(dx)$ and k is a constant.

PROOF. By construction, φ is a MP test for testing f_0 versus h. If φ_1 is any level α test for testing \mathscr{F} versus h, then $\mathscr{E}_{f_0}\varphi_1 \leq \alpha$ so $\mathscr{E}_h \varphi \geq \mathscr{E}_h \varphi_1$ and the conclusion follows from assumption (3.2).

The measurability of the maps t and s in Lemma 3.1 is implicitly assumed. In spite of its general form, the existence of the map s and condition (3.2) are rather restrictive. However, if $\mathcal{X} = R^n$ and G is a compact subgroup of G1(n), Lemma 3.1 can ordinarily be applied. In particular, if G is the permutation group or G = O(n), as in our case, the application of Lemma 3.1 is straight-wforard.

Condition (3.2) can be replaced by the condition of similarity,

$$\mathcal{E}_f \varphi = \alpha \quad \text{for all} \quad f \in \mathcal{F}.$$

If $\mathcal{X} = \mathbb{R}^n$ and G is a compact subgroup of G1(n), then (3.3) is implied by

$$(3.4) \qquad \qquad \langle \varphi(gx)\nu(dg) = \alpha$$

where ν is the invariant probability measure on G (see L-S (1949) for the case of a finite group G). L-S (1949) proved that the class of tests satisfying (3.4) forms an essentially complete class.

For the testing problems discussed in Section 1, $\mathcal{X} = R^n$, G = O(n), and μ is Lebesgue measure. A maximal invariant is t(x) = ||x||.

THEOREM 3.1. For a fixed $\Sigma(\Sigma \neq cI, c > 0)$, the test φ , defined by

(3.5)
$$\varphi(x) = 1 \quad \text{if} \quad x' \Sigma^{-1} x / x' x < k$$

$$\varphi(x) = 0 \quad \text{if} \quad x' \Sigma^{-1} x / x' x \ge k ,$$

is a UMP test of its level for testing \mathcal{F}_0 versus $\mathcal{F}_1(\Sigma)$. For a given level α , k can be determined by

$$(3.6) \qquad \qquad (\dots)_A p_n(t_1, \dots, t_{n-1}) \prod_{i=1}^{n-1} dt_i = \alpha$$

where p_n is the pdf of $D_n(\frac{1}{2}, \dots, \frac{1}{2}; \frac{1}{2})$, $A = \{\sum_{i=1}^n d_i t_i < k\}$ with $t_n = 1 - \sum_{i=1}^{n-1} t_i$ and the d_i 's are the latent roots of Σ^{-1} .

PROOF. To apply Lemma 3.1, first consider $h_0 \in \mathscr{F}_1(\Sigma)$, $h_0(x) = |\Sigma|^{-\frac{1}{2}}q_0(x'\Sigma^{-1}x)$ and assume q_0 is strictly decreasing. Define $s:[0,\infty)\to R^n$ by $s(t)=t\Sigma^{\frac{1}{2}}a$ where $a\in R^n$ is fixed, ||a||=1. Then

$$I = \int h_0(s(t(x))) dx = \int |\Sigma|^{-\frac{1}{2}} q_0(||x||^2) dx < +\infty$$
.

Since q_0 is strictly decreasing, it follows that φ given by (3.1) (with $\gamma(x) \equiv 0$), is exactly φ given by (3.5). Since (3.2) holds (Theorem 2.2) and since the test does not depend on h_0 , we see that φ in (3.5) is UMP for testing \mathscr{F}_0 versus $\mathscr{F}_1(\Sigma)$; here, $\mathscr{F}_1(\Sigma) \subseteq \mathscr{F}_1(\Sigma)$ consists of those h's with strictly decreasing q's. For an arbitrary $h \in \mathscr{F}_1(\Sigma)$, consider $h_0 \in \mathscr{F}_1(\Sigma)$ and let $h_m = (1 - 1/m)h + (1/m)h_0$ so $h_m \in \mathscr{F}(\Sigma)$. If φ is any level α test, then

$$\int \varphi h_m \geq \int \psi h_m$$
, $m = 1, 2, \cdots$.

Letting $m \to \infty$ and applying Scheffè's lemma, $\int \varphi h \geq \int \psi h$ for all $h \in \mathscr{F}_1(\Sigma)$. Thus φ is UMP for testing \mathscr{F}_0 versus $\mathscr{F}_1(\Sigma)$. The assertion concerning the calculation of k follows immediately from Theorem 2.2.

The following examples provide some slight extensions of Theorem 3.1 in that Σ is not fixed but depends on some parameters. However, the test φ is shown not to depend on the parameters so φ is UMP over the class $\mathscr{F}_1(\Sigma)$ as well as over the unknown parameters.

Example 3.1. $\Sigma = \lambda \Sigma_0$, $\lambda > 0$, Σ_0 known. By absorbing λ into q, Theorem 3.1 is directly applicable with Σ_0 replacing Σ .

Example 3.2. $\Sigma = \lambda_1(I-M) + \lambda_2 M$, $\lambda_1 > \lambda_2 > 0$, $M^2 = M$, M known. Since $\Sigma^{-1} = \lambda_1^{-1}(I-M) + \lambda_2^{-1}M$, $x'\Sigma^{-1}x/x'x = \lambda_1^{-1} + (\lambda_2^{-1} - \lambda_1^{-1})x'Mx/x'x$. Thus the test with critical region (c.r.) x'Mx/x'x < k is UMP for testing \mathscr{F}_0 versus $\{\mathscr{F}_1(\Sigma) | \lambda_1 > \lambda_2 > 0\}$.

The cutoff point, k, for the test is determined from $\mathcal{L}(x'Mx/x'x) = \mathcal{B}(m/2, (n-m)/2)$ where $m = \operatorname{rank}(M)$. For the case at hand, it is also possible to compute the power function of the test φ . Let $\delta = \lambda_2/\lambda_1$ so $0 < \delta < 1$. The power function of φ , say $\pi(\varphi, \delta)$, has the form

(3.7)
$$\pi(\varphi, \delta) = \int_{\delta^*}^{\infty} F(u; m, n - m) du$$

where δ^* is a function of k and δ (and not of q). Here, F(u; m, n - m) is the pdf of an F(m, n - m) distribution. The details of this are left to the reader.

Consider $\lambda_1 = \sigma^2(1 - \rho)$, $\lambda_2 = \sigma^2(1 - \rho + n\rho)$ where $\rho > 0$, $\sigma^2 > 0$, and $M = ee'/n^2$. The test φ with c.r. x'Mx/x'x > k provides a test of sphericity versus positive intraclass correlation.

EXAMPLE 3.3. $\Sigma^{-1} = \lambda_1 I + \lambda_2 A$, A known, $\lambda_1 > 0$. Here, λ_2 takes values for which Σ^{-1} is positive definite. Theorem 3.1 shows that φ with c.r. x'Ax/x'x < k is UMP when $\lambda_2 > 0$ and $\mathcal{L}(x'Ax/x'x)$ is given in Theorem 2.2. As a special

case, consider Σ of the form

This form for Σ^{-1} arises in serial correlation problems. In this case, rejecting for $\sum_{i=1}^{n} x_i x_{i-1} / x' x > k$ is UMP for $\rho > 0$. This test coincides with the test under normality (see Anderson (1948)).

4. UMP tests for testing \mathscr{F}_0 versus $\mathscr{F}_2(\mu)$.

THEOREM 4.1. For testing \mathcal{F}_0 versus $\{\mathcal{F}_2(\mu) | \mu > 0\}$, the test defined by

(4.1)
$$\varphi(x) = 1 \quad \text{if} \quad a_0'x/||x|| > k$$
$$\varphi(x) = 0 \quad \text{if} \quad a_0'x/||x|| \ge k$$

is UMP of its level. For a given α , the cutoff point can be calculated by

where t(u; n - 1) is the pdf of a t(n - 1) distribution.

PROOF. Fix $\mu > 0$. Consider $h_0 \in \mathscr{F}_2(\mu)$, $h_0(x) = q_0(||x - \mu a_0||^2)$ where q_0 is strictly decreasing. To apply Lemma 3.1, choose $s: [0, \infty) \to R^n$ to be s(t) = tb where $b \in R^n$, ||b|| = 1 is fixed. Then the test φ defined by (3.1) (with $\gamma(x) = 0$) is equivalent to the test given in 4.1. That (3.2) holds follows from Theorem 2.3. Noting that the test does not depend on q_0 or $\mu > 0$, and arguing as in the proof of Theorem 3.1, φ defined by (4.1) is UMP of its level for testing \mathscr{F}_0 versus $\{\mathscr{F}_2(\mu) \mid \mu > 0\}$. The calculation of the cut-off point follows from Theorem 2.3. This completes the proof.

To test \mathcal{F}_0 versus $\{\mathcal{F}_2(\mu) | \mu < 0\}$, one simply changes a_0 to $-a_0$ and uses the test defined by (4.1). In the case that $a_0' = (1, 1, \dots, 1)/n^2$, the test φ is clearly equivalent to the one-sided *t*-test for testing $\mu = 0$. Thus, Theorem 4.1 establishes a robustness property of the one-sided *t*-test.

5. An application to linear models. Consider a regression model $y = X\beta + u$ where $y \in R^n$, $X: n \times k$ with rank (X) = k < n. Ordinary least squares theory is applicable if $\mathcal{E}(u) = 0$ and $\mathcal{E}(uu') = \sigma^2 I$. Customarily, it is thought that a normality assumption for u must be made to carry out tests of linear hypotheses on $\beta \in R^k$. In this example, we assume $\mathcal{L}(u) \in S(n)$, $\mathcal{E}(||u||^2) < +\infty$ so $\mathcal{E}(u) = 0$ and $\mathcal{E}uu' = \sigma^2 I$, $\sigma^2 > 0$. Consider the problem of testing $A\beta = 0$ where $A: r \times k$ has rank r. (See Scheffè (1959), Lehmann (1959) or Eaton (1972).) After the usual reduction to canonical form, the model is

(5.1)
$$(Z_1', Z_2', Z_3')' = (\gamma_1', \gamma_2', 0)' + (v_1', v_2', v_3')'$$

$$k - r \quad r \quad n - k$$

where $(Z_1', Z_2', Z_3')' \equiv Z = Py$ for some $P \in O(n)$. The γ_i ''s and v_i ''s have the orders of the corresponding Z_i ''s. Clearly, $\mathcal{L}(v) \in S(n)$. The null hypothesis is $H_0: \gamma_2 = 0$. Applying a standard invariance argument to this problem (see Lehmann (1959) or Eaton (1972), Chapter 4) yields the usual F-ratio $Q \equiv (n-k)Z_2'Z_2/rZ_3'Z_3$ as a maximal invariant. From Theorem 2.2, $\mathcal{L}(Q) = F(r, k-r)$. Thus, if attention is restricted to invariant tests, the standard F ratio arises and has $(under\ H_0)$ the F-distribution as long as $\mathcal{L}(u) \in S(n)$. The robustness of the F-test has been studied by Box and Watson (1962) when the error vector $u = (u_1, \dots, u_n)'$ is a random sample from a symmetric distribution. The assumption of independence of u_1, \dots, u_n together with $\mathcal{L}(u) \in S(n)$ implies that $\mathcal{L}(u)$ is normal. In the situation treated by Box and Watson, Q no longer has an F-distribution.

If it is assumed that the pdf of u is in $\mathcal{F}_1(\Sigma)$, then one can test $H_0: \mathscr{E}uu' = \sigma^2 I$ versus $H_1: \mathscr{E}uu' = \sigma^2 (1-\rho)I + \sigma^2 \rho e e', \, \rho > 0$. In terms of the above canonical form, H_0 remains the same and H_1 becomes $\tilde{H}_1: \mathscr{E}(vv') = \sigma^2 (1-\rho)I + \sigma^2 \rho a a'$ where a = Pe. In this case, the structure of the design matrix X affects the test (see Anderson (1948).) Applying an invariance argument, a UMP invariant test with c.r. $(Z_3'a_3)^2/Z_3'Z_3 < k$ is obtained, provided $a_3 \neq 0$, $a = (a_1', a_2', a_3')'$. The cutoff point and the power function are calculated as in Example 3.2.

6. Testing \mathscr{F}_0 versus $\{\mathscr{F}_3(\mu) \mid \mu \neq 0\}$. For a pdf $f \in \mathscr{F}_2(\mu)$, $f(x) = q(||x - \mu a_0||^2) = q(||x||^2 - 2\mu a_0'x + \mu^2)$, where q is nonincreasing. If X has pdf $f \in \mathscr{F}_2(\mu)$, let $T = a_0'X$ and $W = ||X||^2$.

LEMMA 6.1. The pair (T, W) is a complete sufficient statistic for the family $\{\mathscr{F}_2(\mu) \mid \mu \in R^1\}$. Further, W is a complete sufficient statistic for the family \mathscr{F}_0 .

PROOF. Both of the sufficiency assertions follow from the factorization theorem. The completeness of (T,W) follows by noting that: (i) if $\mathscr{L}(X) = N_n(\mu a_0, \sigma^2 I)$, then the density of X is in $\mathscr{F}_1(\mu)$; (ii) (T,W) is complete for the set of distributions in (i); and (iii) the joint distribution of (T,W), under any distribution in $\{\mathscr{F}_2(\mu) \mid \mu \in R^1\}$ is absolutely continuous with respect to the distribution of (T,W) under (i). The completeness of W under \mathscr{F}_0 follows similarly.

If $f \in \mathscr{F}_0$, it is clear that $f(x) = q(||x||^2)$ for some function q on $[0, \infty)$.

LEMMA 6.2. Under \mathcal{F}_0 , T has a density on [-1, 1] given by

(6.1)
$$r_0(t) = 2 \left[\mathscr{B}\left(\frac{1}{2}, \frac{n-1}{2}\right) \right]^{-1} (1-t^2)^{(n-3)/2}$$

and W has a density on $[0, \infty)$ given by

(6.2)
$$r_1(\omega) = q(\omega) \frac{\left(\Gamma(\frac{1}{2})\right)^n}{\Gamma(n/2)} \omega^{n/2-1}.$$

Further, under \mathcal{F}_0 , T and W are independent.

PROOF. Under \mathscr{F}_0 , X/||X|| has a uniform distribution on C_n so $X_1^2/||X||^2$ has a $\mathscr{B}(\frac{1}{2}, (n-1)/2))$ distribution. That T has the density (6.1) is now clear. The density of W is derived by changing to polar coordinates. Since the density of T does not depend on $f \in \mathscr{F}_0$ and since T is a complete sufficient statistic for T of the independence of T and T follows from a result due to Basu (1955).

Define the probability measure λ_0 on [-1, 1] by

$$\lambda_0(dt) = r_0(t) dt$$

and define the measure ν_0 on $[0, \infty)$ by

(6.4)
$$\nu_0(d\omega) = \frac{(\Gamma(\frac{1}{2}))^n}{\Gamma(n/2)} \, \omega^{(n/2)-1} \, d\omega .$$

LEMMA 6.3. If X has a density $f \in \mathcal{F}_2(\mu)$, then the joint density of T and W with respect to $\lambda_0 \times \nu_0$ when $f(x) = q(||x - \mu a_0||^2)$ is

(6.5)
$$g(t, \omega; \mu) = q(\omega - 2(\omega)^{\frac{1}{2}}t\mu + \mu^{2}).$$

PROOF. This follows from Lemma 6.2 and an application of Proposition 7.39 in Eaton (1972).

Now, set

(6.6)
$$k(t; \mu, \omega) = \frac{g(t, \omega; \mu)}{\int g(t, \omega; \mu) \lambda_0(dt)}.$$

Thus, $k(t; \mu, \omega)$ is the conditional density of T given W with respect to λ_0 and $k(t; 0, \omega) = 1$. We want to find a UMPU test for testing \mathscr{F}_0 versus $\{\mathscr{F}_3(\mu) \mid \mu \neq 0\}$. For $0 < \alpha < 1$, let \mathscr{D}_{α} be the class of test functions which are unbiased. Let \mathscr{E}_0^T denote expectation under \mathscr{F}_0 with respect to λ_0 .

LEMMA 6.4. If $\varphi \in \mathcal{D}_{\alpha}$, then

(6.7)
$$\mathscr{E}_0^T \varphi(T, W) = \alpha$$
 a.e. $(W)(\mathscr{L}(W) \in \mathscr{F}_3(0))$

and

(6.8)
$$\mathscr{E}_0^T T \varphi(T, W) = 0 \quad \text{a.e.} \quad (W)(\mathscr{L}(W) \in \mathscr{F}_3(0)).$$

PROOF. Since $\varphi \in \mathcal{D}\alpha$, $\mathcal{E}_h \varphi \geq \alpha$ for all $h \in \{\mathcal{F}_3(\mu) \mid \mu \neq 0\}$ and $\mathcal{E}_h \varphi \leq \alpha$ for all $h \in \mathcal{F}_0$. Hence $\mathcal{E}_h \varphi = \alpha$ for all $h \in \mathcal{F}_3(0)$ by a continuity argument. Thus

$$\mathscr{E}_{W}[\mathscr{E}_{0}^{T}(\varphi(T, W) - \alpha) | W] = 0.$$

The completeness of W under $\mathscr{I}_3(0)$ implies (6.7). Assuming $\mathscr{L}(X) = N_n(\mu a_0, \sigma^2 I)$ and arguing as in Lehmann (1959), Chapter 4, shows that (6.8) holds. Let $\widetilde{\mathscr{D}}_{\alpha}$ denote the set of test functions which satisfy (6.7) and (6.8). Define $\varphi_0 \in \mathscr{D}_{\alpha}$ by

(6.9)
$$\varphi_0(T) = 1 \quad \text{if} \quad |T| > c$$
$$= 0 \quad \text{if} \quad |T| \le c$$

where c is chosen so that $\mathscr{E}_0^T \varphi_0 = \alpha$.

THEOREM 6.1. If $\varphi \in \widetilde{\mathscr{D}}_{\alpha}$, then

$$(6.10) \mathcal{E}_h \varphi_0 \ge \mathcal{E}_h \varphi$$

for all $h \in \{ \mathscr{F}_3(\mu) \mid \mu \in R' \}$.

PROOF. If $h \in \mathscr{F}_2(0)$, then equality holds in (6.10). Fix $h(x) = q(||x - \mu a_0||^2)$ where q is convex and nonincreasing so $h \in \mathscr{F}_3(\mu)$. For a fixed value of W, consider the problem of testing $H_0: \mu = 0$ versus $H_1: \mu = \mu_0 \neq 0$. Applying the generalized Neyman-Pearson lemma (Lehmann (1959)), the supremum of $\mathscr{E}_{\mu_0}(\varphi(T, W) | W)$ over the set $\widetilde{\mathscr{D}}_{\alpha}$ is achieved by test functions of the form

(6.11)
$$\varphi_{1}(t) = 1 \quad \text{if} \quad k(t; \mu_{0}, \omega) > c_{1} + c_{2}t$$
$$= 0 \quad \text{if} \quad k(t; \mu_{0}, \omega) \leq c_{1} + c_{2}t$$

where k is given by (6.6) and c_1 and c_2 are chosen so that $\varphi_1 \in \widetilde{\mathcal{D}}_{\alpha}$. Since q is convex, $k(t; \mu_0, \omega) = c_2 t$ is a convex function of t. Thus φ_1 can be written as

(6.12)
$$\varphi_{\mathbf{i}}(t) = 0 \quad \text{if} \quad a \le t \le b$$
$$= 1 \quad \text{otherwise}$$

where a and b are chosen so that $\varphi_1 \in \widetilde{\mathcal{D}}_{\alpha}$. However, the only values of a and b such that $\varphi_1 \in \widetilde{\mathcal{D}}$ are -a = b = c where c is defined by (6.9). Thus, φ_0 maximizes $\mathscr{E}_{\mu_0}(\varphi(T,W) \mid W)$ over $\widetilde{\mathcal{D}}_{\alpha}$. If $\varphi \in \widetilde{\mathcal{D}}_{\alpha}$, $\mathscr{E}_{\mu_0}(\varphi_0(T) \mid W) \geq \mathscr{E}_{\mu_0}(\varphi(T,W) \mid W)$ a.e. (W). Integrating on W then yields $\mathscr{E}_{k} \varphi_0 \geq \mathscr{E}_{k} \varphi$ for all $\varphi \in \widetilde{\mathcal{D}}_{\alpha}$. Since φ_0 did not depend on the particular $h \in \mathscr{F}_3(\mu_0)$ or on μ_0 , (6.10) holds.

THEOREM 6.2. The test φ_0 in (6.9) is UMPU for testing H_0 : $h \in \mathscr{F}_0$ versus H_1 : $f \in \{\mathscr{F}_3(\mu) \mid \mu \neq 0\}$.

PROOF. Since $\mathscr{D}_{\alpha} \subseteq \widetilde{\mathscr{D}}_{\alpha}$, the result follows from Theorem 2.1.

Theorem 6.1 is substantially stronger than Theorem 6.2; i.e., φ_0 actually maximizes the conditional power (for W fixed) over all tests in \mathcal{D}_{α} . When $a_0' = (1, 1, \dots, 1)/(n)^{\frac{1}{2}}$, then φ_0 is just the two-sided t-statistic. Thus, we have another robustness property of the t-test.

Originally, we had set out to prove that φ_0 was UMPU for testing \mathscr{F}_0 versus $\{\mathscr{F}_2(\mu) \mid \mu \neq 0\}$, and we conjecture that this result is true. A main difficulty in attempting to establish this conjecture is obtaining a reasonable analytic description of what unbiasedness means.

REFERENCES

Anderson, T. W. (1948). On the theory of testing serial correlation. Skand. Aktuarietidskr. 31 88-116.

Basu, D. (1955). On statistics independent of a complete sufficient statistic. Sankhyā 15 377-380.
Box, G. E. P. and Watson, G. S. (1962). Robustness to nonnormality of regression tests.

Biometrika 49 93-106.

EATON, M. L. (1972). *Multivariate Statistical Analysis*. Institute of Math. Statist., Univ. of Copenhagen.

EFRON, B. (1969). Student's t-test under symmetry conditions. J. Amer. Statist. Assoc. 64 1278–1302.

JOHNSON, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions. Wiley, New York.

Kelker, D. (1970). Distribution theory of spherical distributions and a location scale parameter generalization. Sankhyā A 32 419-430

LEHMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

LEHMANN, E. L. and Stein, C. (1949). On the theory of some nonparametric hypotheses. *Ann. Math. Statist.* 20 28-45.

PRESS, S. J. (1969). On serial correlation. Ann. Math. Statist. 40 188-196.

Scheffè, H. (1959). The Analysis of Variance. Wiley, New York.

SCHOOL OF STATISTICS
270 VINCENT HALL
UNIVERSITY OF MINNESOTA
MINNEAPOLIS, MINNESOTA 55455