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ROBUST TESTS FOR SPHERICAL SYMMETRY

By TAKEAKI KARIYA! AND MORRIS L. EATON?
University of Minnesota

Let R» be Euclidean n-space and let O(n) be the group of n x n or-
thogonal matrices. Consider 5 = { f|f is a density on R, flx) = f(gx),
xe R, geOm)}, and let Q = {g|q: [0, ) — [0, o), g is nonincreasing,
SR,, q(||x||?)dx =1}. IfZisann X n positive definite matrix, set #1(Z) =

AS1fx) = |Z|-tq(x’Z-1x), g€ Q}. For pe R and ap € R*, ||ao|| = 1, let

Fa() = {f1f(x) = q(||x — padl|?), g€ O}
and

Fa(p) = (f1 fix) = q(|x — padll?), g€ Q, and g convex}.

Uniformly most powerful tests are derived for testing &% versus #3(Z)
and for testing %o versus {&3(p)| ¢ > 0}. A uniformly most powerful
unbiased test is derived for testing .7 versus {#3(y) | 1 # O}.

1. Introduction and notation. Throughout, R* denotes Euclidean n-space and
O(n) is the group of n X n orthogonal matrices. If Xisann x 1random vector,
<£(X) denotes the distribution law of X. A random vector X has a spherically
symmetric distribution if < (X) = ~AgX) for g e O(n). If X has a spherically
symmetric distribution and if P(X = 0) = 0, we write £ (X) € S(n).

To describe the classes of probability densities (pdf’s) treated in this paper,
first let

(1.1) Q ={q]q:[0, ) - [0, ), ¢ is nonincreasing, and
Ve q([[x][") dx = 1} .

Also, let

(1.2) Fo={f|f isadensity on R",

f(x) = flgx), x € R*, g € O(n)} .
If £ is an n X n positive definite matrix, let

(1.3) FHAE) = {f1f(x) = [Z[7Hq(x'E7'x), g € Q) -

For pe R*and g, e R*, ||a)|| = 1, set

(1.4) Fe) =1/ = q(llx - rall’), 9 € Q)

and finally, let

(1.5) F 1) = {f1/(x) = q(llx — palP, g€ 0, ¢ convex}.
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The purpose of this paper is to consider the testing problems .7, versus
FUZ), F o versus {(Fy(pn) | ¢ > 0}, and & versus {F ,(p)| 1 # 0}.

In Section 2, the distributions of X/||X||, a’X/||X|| and X"AX/||X||* are de-
scribed when .~{(X) e S(n). As an application, the distribution of the sample
correlation coefficient is derived under assumptions weaker than the usual
normality assumptions. The distribution of X’AX/||X||* has been derived by
Kelker (1970) under the assumption that X has a density fe 5.

A UMP test of & versus & (Z), for Z fixed, is given in Section 3. This
result is then extended to cover the following situations when Z is not fixed:
(i) Z = ¢’Z,, L, known, (ii) £ = 4,( — M) + 2,M, M* = M, M known, where
A > 2, >0 (or 4, > 4, > 0), and (iii) Z-* = 2,1 4 2,4, A known, 4, > 0. In
these cases the UMP test does not depend on the unknown parameters (o, 4,,
2;), so the test is UMP over all the unknown parameters as well as the function
g. In Section 4, a UMP test is derived for testing &, versus { & (¢) | ¢ > 0}.
The basic technique used to derive these tests is a modification of a technique
due to Lehmann and Stein (1949) (henceforth abbreviated L-S). In Lemma 3.1
of Section 3, a result concerning the hypothesis of invariance under an infinite
group is established, whereas the results of L-S (1949) are mainly for the hy-
pothesis of invariance under a finite group. However, L-S (1949) did present
a version of their technique for an infinite group, but it seems to be difficult to
apply.

The alternatives & (Z) and & ,(¢) contain such distributions as the multi-
variate ¢-distribution, the multivariate Cauchy distribution in addition to the
multivariate normal distribution. The reader is referred to Johnson and Kotz
(1972) and Kelker (1970) for further examples of distributions in &, & (2)
and #y(¢). In Section 5, the results of previous sections are applied to the
general linear hypothesis in a regression model.

The problem of testing &, versus {F {u)| ¢ # 0} is considered in Section 6.
Sufficiency, completeness and the generalized Neyman-Pearson lemma are used
here to derive a UMPU (unbiased) test for the above problem. We briefly
discuss a conjecture concerning the existence of a UMPU test for testing .5,
versus (.7 (z)| ¢ # O}.

2. The distributions of a’X/||X|| and X’AX/||X|]*. An n-dimensional normal
distribution with mean A and covariance matrix X is denoted by N,(A, ). Let
D(ay, ---, a,_;: a,) denote a Dirichlet distribution with pdf

(2.1) Pty -+ o5 tay) = D(ET @)[I13 T(a)] ' [I1i 57 ](1 — D17t g)et
where 0 < ¢, X774, < 1, and a;, > 0. We write £ (y,, -+ -, y,) = D,(ay, - - -,
a,,:a,) to mean y, =1— 31y, and (y,, ---,y,.,) has the pdf (2.1).
B (ay, a,) = Dy(a,: a,) denotes the beta distribution.

Consider C, = {x|x e R", ||x|| = 1} and let U have the uniform distribution
on C,. Z(U) is the unique probability distribution on C, which is invariant
under O(n).



208 TAKEAKI KARIYA AND MORRIS L. EATON

THEOREM 2.1. If £(Z)= N,(0,1) and Z(X)e S(n) then L (X/||X]|]) =
L(Z]||Z|)) = < (U)-

Proor. Let T(X) = X/||X|| e C,. Then T(gX) = gT(X) for ge O(n) and so
A(T(gX)) = -ZL(T(X)) = £ (gT(X)). The uniqueness of the invariant prob-
ability measure on C, clearly yields the desired conclusion.

THEOREM 2.2. Suppose £(X)e S(n) and A is an n X n symmetric matrix.
Then L(XAX[|[X|P) = (St d;y;) where L (pys -1 y) = Dok -+ 41 %)
and the d;’s are the latent roots of A. In particular, if A* = A and rank (A) = k,
then (X' AX]||X|]*) = <Z(k/2, (n — k)/2).

Proor. By Theorem 2.1, we can assume .~(X) = N,(0, 7). Hence the result
is immediate.
Press (1969) considered .~ (X" AX/||X||*) when .<7(X) = N, (0, I).

THEOREM 2.3. For £ (X)e S(n)andac R*, ||a|| = 1, let W = a'X]||X||. Then
t=(n— 12w/ — Wt has a t(n — 1) distribution—the Student distribution with
n — 1 degrees of freedom.

ProoF. Since -#'(X)e S(n) we can, without loss of generality, take a’ =
(1,0, ---,0) and .~ (X) = N,(0,1). If X’ =(X,, ---,X,), a bit of algebra
shows that ¢+ = (n — 1){X,/(X7 X,%)* and the result follows.

Theorem 2.3 is related to a result due to Efron (1969).

ExaMPLE 2.1. Suppose #’ = (4, ---, 4,) and v’ = (v,, - - -, v,) are independ-
ent with .#"(4) € S(n) and P(v e {e}) = 0. Here, e = (1, ---, 1)’ € R* and {e} is
the span of e. Consider the sample correlation coefficient

r= 2% 0 —@)(v, — )[XT (4 — ) It (vi — )]
Let M =ee'/n so r = u'(I — M)v/[u'(I — M)uv'(I — M)v}i. Consider y = gu
and z=gv where geO(n) and g(I — M)g = diag {1, 1, ---, 1,0} where
diag {b,, - - -, b,} denotes a diagonal matrix with diagonal entries b4, ---, b,.
Let y and z be the vectors consisting of the first (n — 1) coordinates of y and z
respectively. Then r = y'z/||p]|||2|| and it is easy to show -~ (p)e S(n — 1).
Conditioning on zand applying Theorem 2.3, 2 (n — 2)¥r/(1 — r?))t = t(n — 2).
Thus, the distribution of r does not depend on either the normality of .<(u) e

S(n) or the distribution of v so long as u and v are independent and
P{ve{e}} = 0.

3. UMP tests for testing 5 versus & (X). The first result in this section,
designed to cover testing for invariance under infinite groups, is an alternative
form of a result due to L-S (1949). Let (-2, <%) be a measurable space and let
v be a o-finite measure on (27, &#). Suppose G is a group acting bimeasurably
on the left of 27 by x — gx. Let & be the class of pdf’s (with respect to )
which are invariant under G. Further, suppose t: 27— 7 is a maximal
invariant function with range 7.
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Lemma 3.1 (Lehmann and Stein). Suppose that for a given pdf h ¢ &, there
exists a map s from 7 to 2 such that h(s(t(x))) is integrable with respect to p.
Then the test ¢ defined by

o(x) = 1 it h(x) > kh(s(t(x)))
3.1 e(x) = 7(x) if h(x) = kh(s(1(x)))
o(x) =0 if h(x) < kh(s(t(x)))

is a MP test of level a for testing F versus h provided
(3.2) Ep=a and o< a foral feF
where fi(x) = I7'h(s(t(x))), I = | h(s(t(x)))u(dx) and k is a constant.

PROOF. By construction, ¢ is a MP test for testing f, versus . If ¢, is any
level a test for testing . versus h, then &, ¢, < a 50 &, ¢ = &, ¢, and the
conclusion follows from assumption (3.2).

The measurability of the maps ¢ and s in Lemma 3.1 is implicitly assumed.
In spite of its general form, the existence of the map s and condition (3.2) are
rather restrictive. However, if 27= R" and G is a compact subgroup of G1(n),
Lemma 3.1 can ordinarily be applied. In particular, if G is the permutation
group or G = O(n), as in our case, the application of Lemma 3.1 is straight-
wforard.

Condition (3.2) can be replaced by the condition of similarity,

(3.3) Lo =a forall fe 7+ .
If = R* and G is a compact subgroup of G1(n), then (3.3) is implied by

(3.4) § o(9x)v(dg) = a

where v is the invariant probability measure on G (see L-S (1949) for the case
of a finite group G). L-S (1949) proved that the class of tests satisfying (3.4)
forms an essentially complete class.

For the testing problems discussed in Section 1, -2”= R", G = O(n), and ¢
is Lebesgue measure. A maximal invariant is #(x) = ||x||.

THEOREM 3.1. For a fixed Z(Z + cl,'c > 0), the test ¢, defined by
(3.5) p(x) =1 if x'Zx/x'x < k
p(x) =0 if XZ7'x/x'x =k,

is a UMP test of its level for testing .7 versus % (X). For a given level a, k can
be determined by

(3.6) oo Supalty, s ) II070dl =

where p, is the pdf of D (%, - -+, 3: 1), A= {2rd;t; < k}witht, =1 — 3171t
and the d;’s are the latent roots of -1,
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Proor. Toapply Lemma 3.1, first consider 4, € & (Z), hy(x) = |Z[1g,(x'Z7x)
and assume ¢, is strictly decreasing. Define s: [0, co) — R" by s(f) = rZ*a where
ae R~ is fixed, ||a|| = 1. Then

1= § h(s(t(x))) dx = § [Z|4q|[x|[}) dx < o0

Since ¢, is strictly decreasing, it follows that ¢ given by (3.1) (with y(x) = 0),
is exactly ¢ given by (3.5). Since (3.2) holds (Theorem 2.2) and since the test
does not depend on 4, we see that ¢ in (3.5) is UMP for testing .5, versus
Z(2); here, 7 (Z) C .7 4(Z) consists of those 4’s with strictly decreasing ¢’s.
For an arbitrary ke .5 (Z), consider hye.% (L) and let &, = (1 — 1/m)h +
(1/m)hy s0 h, € Z(Z). If ¢ is any level « test, then

S@hm§§¢hm, m=1,2,...'

Letting m — oo and applying Scheffé’s lemma, § ok = § ¢k for all he F ().
Thus ¢ is UMP for testing .%, versus .% (Z). The assertion concerning the
calculation of k follows immediately from Theorem 2.2.

The following examples provide some slight extensions of Theorem 3.1 in .
that X is not fixed but depends on some parameters. However, the test ¢ is
shown not to depend on the parameters so ¢ is UMP over the class & () as
well as over the unknown parameters.

ExampLE 3.1. £ = 1%, 2 > 0, I, known. By absorbing 2 into ¢, Theorem
3.1 is directly applicable with X, replacing X.

ExampLE3.2. Z = A(I — M) + 2,M, A, > 2, > 0, M* = M, M known. Since
=27 — M) + 2,7'M, x'Z7x/x'x = A7+ (A7 — 47X’ Mx/x’x. Thus
the test with critical region (c.r.) x’Mx/x'x < k is UMP for testing ., versus
(D)4 > 2, > 0}

The cutoff point, k, for the test is determined from 7(x'Mx/x'x) =
H(m[2, (n — m)[2) where m = rank (M). For the case at hand, it is also possi-
ble to compute the power function of the test ¢. Let 6 = 4,/2, s0 0 < 6 < 1.
The power function of ¢, say =(¢, d), has the form

3.7) (¢, 0) = {» F(ul; m,n — m)du

where 0* is a function of k and ¢ (and not of ¢). Here, F(u; m, n — m) is the
pdf of an F(m, n — m) distribution. The details of this are left to the reader.

Consider 4, = ¢*%(1 — p), 2, = ¢%(1 — p + np) where p > 0, 0> > 0,and M =
ee'[nt. The test ¢ with c.r. ¥’ Mx/x'x > k provides a test of sphericity versus
positive intraclass correlation.

ExAMPLE 3.3. X' = A, ] 4 4,4, A known, A, > 0. Here, 1, takes values for
which Z-1is positive definite. Theorem 3.1 shows that ¢ with c.r. x’Ax/x'x < k
is UMP when 4, > 0 and .£(x’Ax/x'x) is given in Theorem 2.2. As a special
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case, consider X of the form

0 1 07
1
=+ M-z - - - |, JoI<I.
: 1
0 1 0

This form for XZ-! arises in serial correlation problems. In this case, rejecting
for 317 x,x,_,/x'x > k is UMP for p > 0. This test coincides with the test under
normality (see Anderson (1948)).

4. UMP tests for testing .5 versus & ,(u).
THEOREM 4.1. For testing 7, versus {F (1) | p > 0}, the test defined by
(4.1) p) =1 if a/x/||x|]| > k
o) =0 if a/x/lx|| = k
is UMP of its level. For a given a, the cutoff point can be calculated by
(4.2) (o t(wsn — 1)ydu =a (K = (n— 1)k/(1 — k)
where t(u; n — 1) is the pdf of a t(n — 1) distribution.

Proor. Fix g > 0. Consider ke .7 (1), hy(x) = qo(||x — pa,||’) where g, is
strictly decreasing. To apply Lemma 3.1, choose s: [0, co) — R to be s(f) = tb
where be R, ||b|| = 1 is fixed. Then the test ¢ defined by (3.1) (with y(x) = 0)
is equivalent to the test given in 4.1. That (3.2) holds follows from Theorem
2.3. Noting that the test does not depend on g, or ¢ > 0, and arguing as in the
proof of Theorem 3.1, ¢ defined by (4.1) is UMP of its level for testing %, versus
{& «(p)| > 0}. The calculation of the cut-off point follows from Theorem 2.3.
This completes the proof.

To test &, versus {F ()| ¢ < 0}, one simply changes g, to —a, and uses
the test defined by (4.1). In the case that a/ = (1, 1, ---, 1)/n?, the test ¢ is
clearly equivalent to the one-sided -test for testing # = 0. Thus, Theorem 4.1
establishes a robustness property of the one-sided #-test. '

5. An application to linear models. Consider a regression model y = X + u
where y e R, X: n X k with rank (X) = k < n. Ordinary least squares theory
is applicable if Z(#) = 0 and &'(uu’) = o’1. Customarily, it is thought that
a normality assumption for # must be made to carry out tests of linear hy-
potheses on g e R*. In this example, we assume <"(u) € S(n), Z(||u||’) < + oo
so &(u) = 0 and Zuu’ = ¢*I, ¢* > 0. Consider the problem of testing A8 = 0
where A:r X k has rank r. (See Scheffé (1959), Lehmann (1959) or Eaton
(1972).) After the usual reduction to canonical form, the model is
(1) (Z0, 2/ Z0 ) = (i 0 + (v v 00

k—rr n—k
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where (Z//, Z,, Z)Y = Z = Py for some Pc0(n). The 7/’s and v,’s have the
orders of the corresponding Z,”’s. Clearly, .*(v) € S(n). The null hypothesis
is Hy: 7, = 0. Applying a standard invariance argument to this problem (see
Lehmann (1959) or Eaton (1972), Chapter 4) yields the usual F-ratio Q =
(n — k)Z,Z,/rZ/Z, as a maximal invariant. From Theorem 2.2, 2~ (Q) =
F(r, k — r). Thus, if attention is restricted to invariant tests, the standard F
ratio arises and has (under H;) the F-distribution as long as ..#"(u) € S(n). The
robustness of the F-test has been studied by Box and Watson (1962) when the
error vector 4 = (uy, - - -, u,)’ is a random sample from a symmetric distribution.
The assumption of independence of u,, - - -, u, together with _~(u) € S(n) implies
that .~#"(u) is normal. In the situation treated by Box and Watson, Q no longer
has an F-distribution.

If it is assumed that the pdf of u is in ..s"(Z), then one can test H,: £uu’ =
a*l versus H,: &uu’ = o*(1 — p)I 4 o’pee’, p > 0. Interms of the above canoni-
cal form, H, remains the same and H, becomes H,: & (vv') = ¢*(1 — p)I + d*pad’
where @ = Pe. In this case, the structure of the design matrix X affects the test
(see Anderson (1948).) Applying an invariance argument, a UMP invariant test
with c.r. (Z/a,)}/Z/Z, < k is obtained, provided a, + 0, a = (a/, a,/, a,/)’. The
cutoff point and the power function are calculated as in Example 3.2.

6. Testing 7, versus {.&7(p) | £ # 0}. For a pdf fe > y(p), fx) = q(||x —
rao|*) = q(||x|[* — 2pa,'x + p?), where g is nonincreasing. If X has pdf fe
o p), let T = a/X and W = ||X|".

LEMMA 6.1. The pair (T, W) is a complete sufficient statistic for the family
{“Ap) | peRY. Further, W is a complete sufficient statistic for the family . .

Proor. Both of the sufficiency assertions follow from the factorization theo-
rem. The completeness of (T, W) follows by noting that: (i) if £ (X) =
N,(pay, 0°), then the density of X is in .57 (n); (ii) (T, W) is complete for the
set of distributions in (i); and (iii) the joint distribution of (T, W), under any
distribution in {.% (y) | € R} is absolutely continuous with respect to the
distribution of (T, W) under (i). The completeness of W under .5, follows
similarly.

If fe &, it is clear that f{x) = g(||x|[*) for some function ¢ on [0, co).

LemMA 6.2. Under >, T has a density on [—1, 1] given by

(6.1) ro(t) =2 [%(; , 2%,-,1,>T1 (1 — pym-or
and W has a density on [0, co) given by

Further, under =#",, T and W are independent.
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Proor. Under %, X/||X|| has a uniform distribution on C, so X;*/||X||* has
a Z(4, (n — 1)/2)) distribution. That T has the density (6.1) is now clear. The
density of W is derived by changing to polar coordinates. Since the density of
T does not depend on fe.%, and since W is a complete sufficient statistic for
&, the independence of T and W follows from a result due to Basu (1955).
Define the probability measure 4, on [—1, 1] by

(6.3) 2(dty = ri(1) dt

and define the measure v, on [0, o) by

(6.4) v(dw) = E@)" yom-1 gy
L'(n/2)

LEMMA 6.3. If X has a density fe * (), then the joint density of T and W with
respect to 2, X v, when f(x) = q(||x — pa||®) is

(6.5) o(t, @5 1) = gl — 20)Hp + 7).
Proor. This follows from Lemma 6.2 and an application of Proposition 7.39

in Eaton (1972).
Now, set
. 9(1, @3 )
(6.6) e
§ gt @3 p)Adr) |
Thus, k(f; ¢, @) is the conditional density of T given W with respect to 4,
and k(1; 0, w) = 1. We want to ﬁnd a UMPU test for testing &, versus
{(F(p) |+ 0}). For 0 < a< 1, let &, be the class of test functions which
are unbiased. Let & " denote expectatlon under &, with respect to 4,.

LEMMA 6.4. If o € Z,, then

6.7) Zo(T, W) = «a a.e. (W)(L(W)e F40))
and
(6.8) ESTe(T, W) =0 a.e. (W)L (W)e F40)).

PRrOOF. Since o ¢ Za, &,¢ = a for all he {7 y(#)| 1 + 0} and &, ¢ < a for
all he .7,. Hence &,¢ = a for all h ¢ .7 ,(0) by a continuity argument. Thus
& (e(T, W) — )| W] =0.

The completeness of W under .»7,(0) implies (6.7). Assuming (X) =
N, (pa,, ¢*) and arguing as in Lehmann (1959), Chapter 4, shows that (6.8) holds.
Let &7, denote the set of test functions which satisfy (6.7) and (6.8). Define
¥, € Z, b)’
(6.9) o) =1 if |T|>c¢
=0 if |T|<Zc¢

where ¢ is chosen so that & 7¢, = a.
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THEOREM 6.1. Ifgpe éa, then
(6.10) Enpg Z E4p
forall he {& (n)|pneR'}.

Proor. If he & ,(0), then equality holds in (6.10). Fix h(x) = g(||x — pa||’)
where ¢ is convex and nonincreasing so he & (p). For a fixed value of W,
consider the problem of testing H,: # = 0 versus H,: u = p, + 0. Applying
the generalized Neyman-Pearson lemma (Lehmann (1959)), the supremum of
& (0(T, W)| W) over the set S, is achieved by test functions of the form

(6.11) () =1 if  k(t; po, @) > € + 4t
=0 if  k(t; o ©) < €1 +

where k is given by (6.6) and ¢, and c, are chosen so that ¢, € ,. Since q is
convex, k(f; py, @) — ¢,t is a convex function of t. Thus ¢, can be written as

(6.12) (1) =0 if ag<t<b
=1 otherwise

where a and b are chosen so that ¢, € 52;. However, the only values of a and
b such that ¢, € &7 are —a = b = ¢ where c is defined by (6.9). Thus, ¢, maxi-
mizes &, (¢(T, W)| W) over F,,. I pe T, &, (pT)| W) = &, (e(T, W)| W)
a.e. (W). Integrating on W then yields &, ¢, = &, ¢ for all ¢ € &,. Since ¢,
did not depend on the particular & € 5 4(#,) or on g, (6.10) holds.

THEOREM 6.2. The test ¢, in (6.9) is UMPU for testing Hy: he F, versus
Hy: fe {53 | e # 0).

Proor. Since &, C gﬂ, the result follows from Theorem 2.1.

Theorem 6.1 is substantially stronger than Theorem 6.2; i.e., ¢, actually
maximizes the conditional power (for W fixed) over all tests in &,. When
a’ = (1,1, --., 1)/(n)}, then ¢, is just the two-sided t-statistic. Thus, we have
another robustness property of the r-test. '

Originally, we had set out to prove that ¢, was UMPU for testing .5, versus
{& ()| # 0}, and we conjecture that this result is true. A main difficulty
in attempting to establish this conjecture is obtaining a reasonable analytic des-
cription of what unbiasedness means.
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