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CLASSIFICATION BY MAXIMUM POSTERIOR PROBABILITY

By C. P. SHAPIRO!
Michigan State University

The problem of classifying each of n observations to one of two sub-
populations is considered. The classification rule examined chooses that
classification with maximum posterior probability. Limiting behavior of
the rule is given and several examples are presented which show that the
.rule can lead to classifying all observations to the same subpopulation.
Three simulation studies are reported to indicate that this extreme behavior
may occur in small samples.

1. Introduction of the problem. We take a Bayesian approach to the problem
of classifying each of n observations to one of two subpopulations. Let 0 be a
random variable in [0, 1] with distribution function A. LetZ = (Z,, - - -, Z,) be
a random vector with P(Z = z|0) = [[r, 0*(1 — 0)'~*. Let G and H be known
univariate distribution functions and suppose random vector X = (Xj, - -+, X,)
can be observed where

P, < 5y o Xy £ 5,0, 2 = 2) = [T G i)™

The problem is to classify each observed X, to G or to H, where the Z above is
the true classification of X. This problem differs from the usual 2-choice mul-
tivariate classification problem in that X; and X; can come from different dis-
tributions if i  j. The problem is a special case of the n-variate classification
problem with 2" classes. The criterion for classification will be maximum pos-
terior probability.

Without loss of generality, assume G and H have densities g and & with respect
to a sigma finite measure. Then using Bayes’ theorem, the posterior probability
of the classification z is

P(Z = z|X = X) = cE(0™«(1 — 0)"~*) []r, g(x;)*th(x,)' =%

where ¢ is the normalizing constant. Let a = (a,, -- -, a,) denote the action
vector where a, = 1 indicates classifying x, to g and a, = 0 indicates classifying
x, to h. The maximum posterior probability (m.p.p.) rule chooses the action a
which maximizes P(Z = a|X = x). .

Throughout the paper assume that g and 4 are mutually absolutely continuous
so that the m.p.p. rule chooses the action a which maximizes

(T2 (90eo)/(x))JE(1 — By—2o:

Several properties of the rule above become obvious with the introduction of
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new notation. Let W, < ... < W, be the ordered values of the likelihood ratios
9(X;)/h(X;), and let Z,* = Z; and a,* = a; when g(X,)/h(X,;) = W,. Then the
m.p.p. rule chooses the action a* which maximizes

(T WeE@G>(1 — oy} .

The action a* with maximum posterior probability always has the form
©, --.,0,1, ..., 1) since W, increases in i. Thus, the rule makes one cut in
the ordered values of the likelihood ratios, g(x)/h(x), and classes to g any X;
yielding a ratio value above that cut. A rule with this property is completely
determined by the number of observations classed to g. If k, observations are
classed to g, these observations must give the top k, values of the likelihood
ratio. The limiting properties of such a rule can also be studied in terms of k,.

2. Limit results. For ¢ in [0, 1], define

Pu(t) = D1a(1) + P2u(?)
where
¢1n(t) = n_l Z?:n—[nth—l log W‘L‘ ’ t 2 l/n
=0, t< 1n,
Gan(t) = n7? log E{0(1 — gy}

and [.] is the greatest integer function. The m.p.p. rule classifies k, observa-
tions to g (corresponding to the top values of the likelihood ratios) where k,, = nt,
and 1, = inf {t: ¢,(t) = ¢,(¢") for all #}. Note that ¢, is simply the proportion
of observations classed to g, and k, is the number of observations classified to
g (k, is an integer). The limiting form of the rule is given by the limit of 7,
which will be derived from the limit of ¢,(7).

Define ¢(1, 0) = ¢,(1, 0) + ¢,(f) where

(1, 0) = E[log YI{Y = F,7X(1 — n}]

$o(1) = log [|6°(1 — 0)~|, -
Above, F, is the distribution of ¥ = g(X)/h(X) when X is distributed F,, |{+} is
the set indicator function, E,[.] is expectation under distribution F,, and

is the essential sup norm.
The main limit theorem is given below.

oo

THEOREM 1. Fix 0 in [0, 1] and assume the prior distribution A puts zero prob-
ability on the points 0 and 1. Assume that F, is continuous and strictly increasing
with  |log y| dF,(y) < co. Then, given 6,

(1) @1.(5) — &.(2, 0) a.s. and uniformly in t.
(i) @5,(r) — Py(t) uniformly in t, and hence $,(t) — ¢(t, 0) a.s. and uniformly
int.
(iii) Furthermore, if for fixed 6, $(t, 0) assumes a unique maximum at t, = t,(6),
then t, — t, a.s. given 0,
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Part (iii) of the theorem follows in the usual way from parts (i) and (ii) and
the assumption of a unique maximum. Parts (i) and (ii) require some work and
each part will be considered separately.

For part (i), Lemmas 1 and 2 are needed. Lemma 1 is a standard result and
will be stated without proof.

LeMMA 1. LetY,, ..., Y, bei.i.d. with continuous distribution F. LetW,, --., W,
be the corresponding order statistics. Let Q(y) be a nonnegative measurable function
of y such that EQ(Y) < co. Define 3 r_,. ., Q(W,) equal to zero. Then for all t in
[0, 1],

7 Tt QW) — EQ(Y)[ A} as.
where A, = {Y = F~'(1 — 1)}.

LEMMA 2. Let X, X,, - - - be random variables and let X,, = (X}, ---, X,). Let
Q.(X,, t) be a measurable function of X, for each t in [0, 1] and increasing in t for
each x,,. Let Q(t) be a continuous function of t. Then

0.(X,., 1) — Q1) a.s. foreach t in [0,1]
implies
SUPogi1 | (X, 1) — Q(1)] — 0 aus.
Proor. The proof is the same as that for nonrandom Q,. See Breiman (1968).

ProoF oF THEOREM 1, PART (i). Recall that F, is the distribution of Y.

Fix 6 in [0, 1]and let 4, = {Y = F,"(1 — t)}. Given 6, the random variables
Y, ---, Y,arei.id. Fyand W,, ..., W, are the corresponding order statistics.
Let («)* = max{(+), 0}. Lemma 1 implies that for every ¢ in [0, 1],

nt Yt (log W)t — Ey(log Y)T|{A,} a.s. given 0.

This limit function is continuous in ¢ by the assumptions on , and the function
is strictly increasing. Also, the function involving the summation is increasing
in t. Thus, the convergence is uniform in by Lemma 2. Applying the same
argument to

n_l Z?:n—[nt]+l (log Wi)_ ’

where (+)~ = max {—(+), 0}, concludes the proof of part (i).
For part (ii), note that ¢,,(¢) is not random and write

) = 108 (E0(1 — =)

Ignoring the [+ ] function, the above is equal to log||¢,||, where ¢,(0) = 6*(1 — 6)'~*
with ¢,(0) = 1 = ¢,(0) and where [|+||, is the n-norm with respect to the prior
measure on [0, 1]. The convergence of ||g,||, will be studied first. By properties
of norms, ||¢,||, — |/9¢|| @8 n — oo, and thus, uniform convergence in ¢ is the
main problem.

LEMMA 3. If the prior distribution puts zero probability on the points 0 and 1,
then for t in [0, 1]
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(1) 119.||» is continuous in t,
(1) ||9||w is continuous in t.

Proor. See Shapiro (1972).
The lemma above allows use of Dini’s theorem (Lemma 4) to prove uniform
convergence of ||g,/|,-

LemMaA 4 (Dini’s theorem). If {K,}> is a sequence of real-valued continuous
functions converging pointwise to a continuous limit function K on [0, 1] and if
K,(1) = K,4.(t) for each t in [0, 1] and all n, then K, tends to K uniformly on [0, 1].

Proor. See Apostol, page 425 (1957).

PROOF OF THEOREM 1, PART (ii). By properties of norms, ||g,||, — ||¢.||. and
[19ella = ||9||ns: for each 7in [0, 1]. By Lemma 3, all of these functions are con-

tinuous in 7. It is easy to show that
inf{llg|,: 0=t 1 <n<< o0} >0

when the prior distribution puts zero probability on points 0 and 1. Thus,
log [|g,||, is 2 monotone sequence of continuous functions converging pointwise
to a continuous limit, log ||¢,||., on [0, 1]. Dini’s theorem thus implies the
convergence is uniform in ¢.

To prove ¢,,(t) converges uniformly on [0, 1], it suffices to show that if
t,' — 1y then ¢(t,) = log||g, |l. Lett,” = [nt,/]/n. Thent,” — tyand ¢,,(1,) =
log|lg, ..||,. This last expression tends to log||g, ||, by the uniform convergence
of log ||g,||, proven above.

ol |

3. Examples. Assume the prior distribution has support [0, 1] and that the
conditions in Theorem 1 hold. Then

#(1,0) = ¢(r) = (i, log F, " (u) du + tlogt 4+ (1 — f)log (1 — 1)

and
t ~
(1) = _— (1 —1).
#'() = log (') F, (1 — 1)
Hence,
(3.1) #'()=0  ifandonlyif Fy(l —t)=1—1.

The classification rule is said to be degenerate in the limit, or degenerate, if
t,, the proportion classified to g, tends to 0 or 1 a.s. for each 6. If density g is
assumed decreasing and % is assumed uniform, sufficient conditions for degen-
eracy and nondegeneracy can be given (Shapiro, 1972). However, most densities
of interest are not of this type and hence most problems must be considered
individually.

Three examples follow.

EXAMPLE 1. Nondegenerate rule. Letg(x) = a,[x7(2 — x)"? — 1],0 < x < I,
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and let A(x) = 1, 0 < x < 1. If $ < p < 1, then it can be shown that ¢’(r) > 0
in the neighborhood of 0 and < 0 in the neighborhood of one.

EXAMPLE 2. Degenerate rule. Let g(x) = 2(1 — x)and A(x) = 2x,0 < x < 1.
Then

W) =0 if 0<

=1 if 6>

when 0 = 4, ¢(t, ) is constant.

S and

= N

EXAMPLE 3. Mixture of exponentials. Let g(x) = ae~** and h(x) = fe~#*, with
0<pB<a 0< x. Lety=a/pand express (3.1) as

(3.2) Ol — 1)+ (1 — O)ypr = (1 — 0)yr=2r=Yyryr/r-1,

If y < 2,0and | are the only local maxima since ¢(r) assumes a unique minimum
in (0, 1) for each ¢ in (0, 1). Thus, the rule is degenerate.

Suppose y > 2. Then examination of (3.2) yields the following conclusion:
#(t) has two local maxima, one at + = 0 and another at ¢, > 2. Such behavior
occurs even when the two exponentials are widely separated since y = «/8 can
be as large as desired.

Given below are the results of three simulations for selected a and 3 values.
Samples of size n = 10 with 8 = 1 and 6 = } were generated for values a = 2,
5, and 10. The table gives the percentage of samples in which k, observations
were classified to g. When a = 2, the m.p.p. rule is degenerate in 989, of the
samples. With a = 5, the rule is degenerate in 689, of the samples.

Number of - - k, - -
samples " o 1 2 3 4 5 6 7 8 9 10
100 266000 0 0 0 0 0 0 0 29 329
100 5624 0 0 0 29 69 99 69 79 4% 49

165 10 32.9 0 6.1 6.7 11.0 14.0 14.6 7.9 4.3 2.5 0.0%

Thus, the maximum probability rule may behave badly for small samples and
may not be a “wise” rule in certain multivariate situations.
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