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THE EMPIRICAL CHARACTERISTIC FUNCTION
AND ITS APPLICATIONS
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Certain probability properties of c.(f), the empirical characteristic
_function (ecf) are investigated. More specifically it is shown under some
general restrictions that c,(¢) converges uniformly almost surely to the
population characteristic function c(¢). The weak convergence of ni(cn(t) —
¢(?)) to a Gaussian complex process is proved. It is suggested that the ecf
may be a useful tool in numerous statistical problems. Application of
these ideas is illustrated with reference to testing for symmetry about the
origin: the statistic S [Im c4(2)]2 dG(2) is proposed and its asymptotic distri-
bution evaluated.

1. Introduction. Throughout this paper X, X;, X,, X,, --- represent inde-
pendent random variables with distribution function F(x) and characteristic
function

c(t) = (=, e dF(x) .

Many proposed statistical procedures for sequences of i.i.d. random variables
may loosely be thought of as based on the empirical cdf F,(x) = N(x)/n, where
N(x) is the number of X; < x with 1 < j < n, for example, procedures based on
statistics of a Kolmogorov-Smirnov type. In view of the one-to-one correspon-
dence between distribution functions and characteristic functions, it seems
natural to investigate procedures based on the ecf defined as

c,(t) = § e dF,(x) = % Dira et

The property, for example, that a characteristic function is real if and only if
the corresponding distribution function is symmetric about the origin, suggests
looking at statistics such as

§ [Im ¢, ()] dG(2)

for testing symmetry of F. When the center of symmetry is not specified, a
modified statistic such as

inf, § [Im {e**‘c,(2)}]* dG(?)
may be considered.
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The range of problems to which the ecf seems applicable appears to be quite
wide. This is because Fourier—Stieltjes transformation often results in easy trans-
lation of properties that are important in problems of inference. The charac-
teristic function behaves simply under shifts, scale changes and summation of
independent variables; it allows an easy characterization of independence and
of symmetry. It is therefore not difficult to suggest ecf procedures for areas of
inference such as testing for goodness of fit, testing for independence, parameter
estimation, etc. Further, although it is true that there exist other functionals
in one-to-one correspondence with the distributions, it may be argued that the
characteristic function is a uniquely important concept for which a large body
of theory is available. The ecf retains all information present in the sample and
lends itself conveniently to computation. Finally, there are situations where a
characterization of some property or of a class of distributions exists in terms of
characteristic functions. One example is the problem of inference on the para-
meters of the stable laws. Here traditional methods have not led to a solution
and an ecf approach seems likely to lead to useful procedures. See for example
Paulson, Halcomb and Leitch (1975).

A search of the literature reveals some scattered references to the ecf. Its
definition is given by Parzen (1962) and it is used for statistical inference by
Heathcote (1972) and Press (1972). Work on statistical applications appears to be
impeded because not enough is known about the ecf.

2. Convergence of the ecf. For any fixed 7, c,(¢) is an average of bounded
i.i.d. random variables having means c(#). Therefore it follows by the strong
law of large numbers that c,(f) converges almost surley to ¢(¢). Further:

THEOREM 2.1. For fixed T < oo,
P{lim,,_, sup,, <7 |c,(f) — c(t)] =0} = 1.

Proor. According to the Glivenko-Cantelli theorem (Loéve (1963), page 20)
it follows with probability one that F, converges completely (ibid., page 178)
to F. The result follows upon applying the criteria (ibid., page 191) of com-
plete convergence and uniform convergence. []

Because ¢, (1) is a trigonometric polynomial, it is almost periodic and hence
must approach its supremum value ¢,(0)'= 1 arbitrarily often as |f| — co. (See,
for example Bohr (1947), pages 38, 32, 31.) On the other hand, we may have
¢(f) — 0 as |t] — oo, as for example when F(x) is absolutely continuous (see
Lukacs (1970), page 19). Therefore the conclusion of Theorem 2.1 cannot
generally be true for T = oo. If however F(x) where supported on a lattice
0, +a, +2a, - .-, then both ¢(¢) and c,(¢) will have period 2za~! and the result
would hold with T = co. More generally:

THEOREM 2.2. Let F(x) be purely discrete. Then
P{lim, ., SUP_cicw [€o(F) — c(?)] =0} = 1.
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Proor. This follows from the strong law of large numbers. If X is a discrete
random variable taking values {a,} with probabilities { p,} then in obvious notation

lea(t) — ()] = | Xk (Peyw — Pr)e™ ]
S Zilpen — pl >0 as. 0

The connection (see Parzen (1962)) between the ecf and kernel type estimators
of probability density functions (see for example Wegman (1972)) makes it pos-
sible to apply results in density estimation to the ecf. Consider for example the
following result of Nadarya (1965):

THEOREM 2.3. Let F(x) be absolutely continuous with uniformly continuous deriva-
tive f(x). Let K(x) be a probability density of bounded variation and {a(n)} be a
sequence of nonnegative numbers converging to zero and satisfying

e et oo foreach y > 0.
Let f,(x) = (1/na(n)) S, K((x — X,)/a(n)). Then
P{lim, . SUP_e.cce [foul¥) — f(¥)]| = 0} = 1.
As a consequence of Nadarya’s result we can prove:

THEOREM 2.4. Let F(x) have characteristic function c(t) — 0 as |t| — co. Let
K(x), a(n), f,(x) be as in Theorem 2.3, let K be the Fourier transform of K, and
denote by ,(t) = K(a(n)t)c,(t) the characteristic function of f,(x). Then

P{lim,,_,, SUP_o,cpcw |Go(2) — c(f) =0} = 1.

We need the following lemma which may be proved by standard arguments:
LemMMA 2.5. Let W, be a sequence of random variables. Then W, — 0 a.s. if
and only if there exists a sequence 0 < 0; — O such that

PN [IW;] = 0,1} — 1 as n-— oo.
ProoF oF THEOREM 2.4. First suppose F is absolutely continuous with uni-

formly continuous derivative f(x). Now

sup, [ea(t) — e()| = 4, + B, + C,
where
Ay = {25 1f2(0) = f9)l dx
By = oo, [ dx s G = o, [fu(x)] dx .
To choose M, apply Lemma 2.5 to Theorem 2.3 with W, = sup, |f;(x) — f(%)|
to obtain a sequence 0 < 9; — 0 and set M, = ¢~¢. Then B, —»0; C, — 0 a.s.
(by the strong law of large numbers); and finally 4, — 0 a.s. by Lemma 2.5 and
PIN5a 4] = 2M;6;} =2 PN [V, = 0,1 — 1.

The restriction on F may be removed by a convolution argument: Replace
X; by X;* =X, + U;, j=1,2, ..., n where the U; are i.i.d. with density
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function
01— 07l), |x| £
0, otherwise

and characteristic function ¢,(f). Let ¢*, ¢, * be the ch.f., ecf corresponding to
the X, * and choose S(¢) so that [K(f)] < ¢ when |f| > S(¢). The result follows
from the inequality

sup, |&,(1) — ¢(r)| = sup, [K(a(n)t)(c,(t) — ¢,*(1))|
+ sup, [K(a(m)t)e,*(1) — ¢*(1)] + sup, [e*(t) — ¢(7)] -
The last term may be bounded, say by ¢, by taking ¢ sufficiently small because
c*(1) = ¢,(t)e(r), ¢(t) — 0 as |1| — oo, and ¢,(#) — 1 as § — 0 uniformly in bounded
intervals. The middle term converges a.s. for fixed 6 > 0 because the convolu-
tion X;* has uniformly continuous density. Finally the first term is bounded by

A 1 ) v g
SUP iz s [K(a(m))(c, (1) — ¢,*(1))] + SUpy s o 1op (e — eMTitls)
<24 LS 331U < 3¢
n

provided that ¢ < ¢/S(¢). [
We have also:

THEOREM 2.6. Let F be an arbitrary distribution function whose singular part has
characteristic function vanishing at the extremities. Let T, = 0((n/log n)}). Then

P{lim,_, sup, <, |c,(f) — ()] =0} = 1.
ProOF. Assume first that F has no discrete part so that it satisfies the condi-
tion of Theorem 2.4.
According to a result of Mureika (1972), if {u(n)} is a sequence of nonnegative
numbers then
DieeTtM? oo, if x>2
= 400, if x<2
where 2 = lim sup (u~'(n) log n). Choose {a(n)} so that a(n)(n/log n)} — co and
a(n)T, — 0. It follows that this sequence will satisfy the condition of Theorem
2.3.
Set é,(t) = K(a(n)t)c,(t) as before, and consider the inequality
SUPy<r, el (1) — e(n)] = SUPy<r, [Ca(t) — E(n] + Sup|t|sT7,|6n(’) — ()] .
The last term on the right converges according to Theorem 2.4. The first is
bounded by
sup sz, |1 — k(a(n)t)l
and K is continuous, K(0) = 1, and |a(n)?| < a(n)T, — 0.
When F has a discrete component, ¢, () — ¢(f) may be decomposed in a natural
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way into its discrete and continuous parts. The result follows on applying
Theorem 2.2 to the discrete part. []

The following theorem gives another type of convergence result for the ecf:

THEOREM 2.7. Let F be any distribution function. Let T, = 0(n?”*) where 0 <
p=2. Then
Vi = (57 |c.(t) — c(t)|Pdt — 0 in probability.

Proor. For nonnegative random variables V' we have the inequalities P{V >
¢} < e'EVand EV? < (EV?*)?2,0 < p < 2. (See for example Loéve (1963), Sec-
tion 9.3.) Then

EV, < i {E|c,(t) — c()}}P?* < n7??T, -0
and the result follows. []

3. The ecf as a stochastic process. Let c,(f) = (1/n) }1%_, e**i and consider
Y,(t) = n¥(c,(t) — c(r)) as a random complex process in r. It may be seen that
EY, (1) = 0 and EY, (1) Y,(t,) = c(t, + 1,) — c(t,)c(t,), this latter term fully deter-
mining the covariance structure of Y, (r). Define Y(r) to be a zero mean complex
valued Gaussian process satisfying Y(r) = Y(—¢) and having the same covariance
structure as Y, (7). Note that
Cov (Re Y(1,), Re Y(1,)) = $[Rec(t, + 1,) + Rec(t, — 1,)] — Rec(t) Re c(1,) ,
Cov (Re Y(1)), Im Y(1,)) = §[Imc(t, + t,) + Ime(r, — 1,)] — Re c(t) Im (1) ,
Cov [Im Y (1)), Im Y(1,)) = }[—Rec(t, + 1,) + Re (1, — 1,)] — Im¢(,) Im ¢(1,) .

For finite collections 7, ,, - - -, 1,,, application of the multidimensional cen-

tral limit theorem implies convergence in distribution of Y,(t,), Yo(t), - -+, Yo(tn)
to Y(1,), Y(1,), - - -, Y(t,). More generally:

THEeOREM 3.1. Let Y, (1), Y(t) be as defined above. The process Y,(t) converges
weakly to Y(t) in-every finite interval.

Proor. According to Corollary 7 of Whitt (1970), measures P,, n > 1 and
P on C7[0, 1] satisfy the weak convergence P, — P if and only if (i) the finite
dimensional distributions of P, converge weakly to the finite dimensional distri-
butions of P and (ii) the two marginal measures on C[0, 1] are tight.

Now,

E[Y,(t) = Yy(n)]* = 2[1 — Rec(t, — 1,)]
=2{2,[1 — cos x(t, — 1,)] dF(x)
< 2§, [x(t, — 4)[* dF(x)
= 2|t, — n"ME| X"+, 0ot
Hence tightness of the real and imaginary parts follow from Theorem 12.3 of
Billingsley (1968) in the case that E|X|'*°. The moment condition is removed
by a truncation type argument using Theorem 4.2 of Billingsley (1968). []



EMPIRICAL CHARACTERISTIC FUNCTIONS 93

An interesting and related weak convergence result for the ecf is proved by
Kent (1975).

4. Application to testing for symmetry. In this section an application of the
ecf to the problem of testing for symmetry about the origin is outlined. Although
the ecf does lead to reasonable procedures here, no attempt is made at compari-
son with other results in the area of symmetry testing.

The statistic proposed is

T, = 2. [Im ¢,()] dG(1)
=277 Yias Lk [9(X; — Xo) — 9(X; + X))

Here G is taken to be a distribution function symmetric about the origin and
having characteristic function g(x). Concerning the distribution of 7, we have:

THEOREM 4.1. Let I = § [Im c(?)]* dG(¢) and

o' = {{Imc(t) Ime(,){2 Re [—c(t; + 1) + c(t; — 1,)]
— 41Im c(t)) Im c(1,)} dG(t)) dG(1,) .

Then when o > 0, n¥(T, — I) is asymprotically normal with mean 0 and variance a*.
When ¢* = O the asymptotic distribution is degenerate at 0.

Proor. Consider the equality

n—1

m(T, = 1) = gt T3 (1 — 9QX)] + 3" ni(U, — 20) — i

where U, = (3)7' 2. [9(X; — Xi) — 9(X; + X,)], this sum being over the ()
combinations. The first and third terms on the right converge to 0. Regarding
the middle term, U, is a Hoeffding U-statistic and is asymptotically normal with
mean

E[g(X, — X)) — 9(X, + Xp)] = 21
and variance
ntVar {Ey [g(X; — X,) — g(X, + X,)]} = n7'0*.
(See Fraser (1957), Section 6.5 for example.) []
The inequalities 0 < 7 < 1 and 0 < ¢* < 4 may be noted. Under symmetry
I = ¢* = 0. Because there exist nonsymmetric characteristic functions that are
purely real in a finite neighbourhood of the origin, it is possible to have ¢ = 0

for a nonsymmetric F.
Concerning the distribution of 7', under the null hypothesis we have:

THEOREM 4.2 Let F be symmetric about the origin. Let W, (1) = n* }1"_, sin tX;
and let W(t) be a zero mean Gaussian process having the same covariance function
as W, (1):

K(t, t) = 3[—c(t, + 1) + c(t, — 1)] -
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Then nT, = =, W,*(t) dG(t) converges in distribution to § = |, W*(t) dG(t).
Proor. This result follows on applying Theorem 4.2 of Billingsley (1968) to
X, = {», Wi1) dG(q) , X = {=, W¥1)dG(1)
X, = {2 W20 dG(1) Y, = (=, W,X(1) dG(r) .
The lim lim sup condition follows from the Markov inequality (Loéve (1963),
page 158):
P(§i50 WA (1) dG(1) Z e} = €750 Sigsu EWLH ) W,2(1) dG(1,) G (1) -
A similar argument gives X, —, X. []
The following result gives the distribution of & in the case that G(x) is ab-

solutely continuous with density function G'(x) = g,(x) such that g (x) = 0 for
|x| > M < oo, and g,(x) is continuous on [ — M, M]:
THEOREM 4.3. The characteristic function of the random variable
€ =1, WA(0)g,(1) dt
is given by
o) = 5= (1 — 2i12,)7%

where {4;} is the solution set of the eigenvalue equation

A:9i(1) = V2u $5()K(s, 1)(9(5)9:(1)) ds .
Proor. According to the theorem of Karhunen-Loéve (see the appendix in
Ash (1965), for example) '

W) = L5 2940, —M=1=M,
the convergence being in mean square and uniformly in ¢, and
Z; = Ty W()¢,(1) dr

being independent normal variables having means 0 and variances 1;. The ¢,
are taken orthonormal, and )] 2; < oco. It follows that

§ = 25 ij
is distributed as a sum of independent 2,y,* variables. []

The restriction that G have bounded ‘support is less troublesome than might
first be thought. There are two reasons for this. Firstly, in practice, the realized
X; values are of necessity discretized with recorded values typically confined
toagrid 0, £A +24, ... (A very small); the grid point chosen in each case
presumably being that closest to the “actual” value. Hence the “actual” charac-
teristic function is neither estimable nor relevant for frequencies of order of
magnitude greater than A-'. This may be compared to the phenomena of sam-
pling and aliasing in time series analysis. Secondly, as a consequence of analy-
ticity (Theorem 7.2.1. of Lukacs (1970) for example) the characteristic function
of a bounded random variable is determined by its values in any finite interval
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containing 0. And the problem may always be reduced to one of bounded
random variables: Let H(x) be any absolutely continuous, strictly increasing
distribution function which is symmetric about the origin. Then X is symmetric
about the origin if and only if 2H(X) — 1 is.

The distribution of a weighted sum of independent chi-squared variates may
be found by numerical integration of the characteristic function with the aid of
the fast Fourier transform. Alternatively, a well-known approximation is to
use a multiple fy,” of a chi-squared with #, v chosen to match the first two mo-
ments. These may be computed directly from & = (¥, W(t) dG(1):

Eg = {1, [1 — ¢(20)] dG(1)
and
Var (§) = {2y {2y Cov (W), W*(1,)) dG(1,) dG(1,)
=2 §¥, {2, K¥(1y, 1,) dG(1,) dG(1,) -

In general ¢ will be unknown, but may be estimated by
cp(t) = 1 2r,cos tX; .
n

When the underlying distribution is symmetric, c(f) will become uniformly
close to ¢(r). This leads to a test procedure which, to within the accuracy of the
0y,’ approximation, will have asymptotic level a.

An alternative approach might be to estimate the {4;}. Using the estimate c(?)
the eigenvalue equation becomes

A1) = - Tt 10 (0) sim (1))
where
ki = 2o (94(9) sin (sX,)¢;(s) ds

or, on substituting the first equation into the second,

1
erkj =— 2 Tt,-Dkz
n
where
Dy, = (X, — X)) — 9(X, + X)],

g being the characteristic function of G. This is now an n X n eigenvalue pro-
blem. Once the eigenvalues 4,", 2,, ..., 2, of {D,} are determined, the
characteristic function of £ is estimated as

G.(1) = T2 (1 — 2it4,;™) 4.

An alternate form in terms of the characteristic polynomial of the matrix is:

.0 = (~2i0 2 (s 1) — L))

¢,(f) may then be inverted to approximate the distribution of ¢ as a finite linear
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combination of y,* variates. This procedure is justified by the following theorem
and leads to a test procedure with asymptotic level a:

THEOREM 4.4. Let E,, E be the cumulative distribution functions corresponding
to ¢, ¢. Then with probability one

sup, |E,(x) — E(x)] - 0.

Proor. To simplify notation, write K(s, ) for K(s, 1)(g,(5)g4(?))}, and simi-
larly write K, (s, ) for the kernel based on c,(r). The following assertions each
hold almost surely: c,(r) converges uniformly to ¢(¢) in every bounded interval.
Hence K, (s, f) converges uniformly to K(s, r) in every bounded region. By the
property (see page 151 of Courant and Hilbert (1953) for example) of continuous
dependence on the kernel,

;™ — A, as n—oo, all g

where all eigenvalue sets are assumed in decreasing order. This property, to-
gether with the positiveness and uniform boundedness of the quantities ) 4, =
§ K, (t, t)dt and 3 A; = § K(t, 1) dt suffice to establish, after a little analysis, the
convergence

(1 — 2it2,™) 4 — [T, (1 — 2itd,)"

uniformly on (— oo, co0). The result now follows from the complete convergence
criterion of page 191, Loéve (1963). []

The authors conjecture that Theorems 4.3 and 4.4 remain valid for M = oo
and that the continuity requirement on g, (r) may be relaxed.
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