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MIXTURES AND PRODUCTS OF DOMINATED
EXPERIMENTS

By ErIK N. TORGERSEN
University of Oslo

It is shown, using a theorem of Choquet, that any separable experi-
ment is a mixture of experiments admitting boundedly complete and suf-
ficient statistics. The experiments possessing these properties are precisely
the experiments which are extremal with respect to mixtures.

Dominated models for independent observations X, - - -, X, admitting
boundedly (or L,) complete and sufficient statistics, are considered. It is
shown that a subset—say Xj, - - -. Xn where m < n—has the same property
provided a regularity condition is satisfied. This condition is automati-
cally satisfied when the observations are identically distributed. In the
bounded complete case the proof uses the fact that products of experiments
are distributive w.r.t. mixtures. More involved arguments are needed for
L, completeness. )

1. Introduction, basic facts and notations. Mixtures of experiments with the
same finite parameter set were treated by Birnbaum [3, 4] and by the author
[18]. Some of these results are here generalized to the case of dominated experi-
ments. We will also present results which, when restricted to experiments with
a finite parameter set, appear new.

Some basic facts on comparison of experiments are recapitulated below. It
is only the material up to and including Corollary 1.2 which is needed for the
logical development in Sections 2 and 3. The remaining part of this section is
a short exposition of important and relevant results. Most of the results in this
section are, usually in a somewhat different shape, established in Le Cam [9].
The reader may consult Le Cam [9, 12], Heyer [7] and Torgersen [18, 20] for
more thorough expositions and for detailed proofs.

An experiment will here be defined as a pair & = ((y, ¥'); p,: 6 € ©) where
(x, -7) is a measurable space, the sample space, and (p,: 6 € ©) is a family of
probability measures on .%7. The set © is the parameter set of &". The notation
of the sample space will often be suppressed. Thus we may write % = (,; 0 € ©)
instead of & = ((, %); s : 0 € ©). The restriction (p,: 6 € ©,) where 0, is some
nonempty subset of © will be denoted by Eop I &y = ((Xss NV0)s 9.t 0 €0);
teT is a family of experiments then their product ], &, is the experiment
(x> ), g+ 0 € ©) where (y, ) = s (1> 2) and py = [, o3 0 €©.

The total variation of any finite measure ¢ will be denoted by ||z||. The total
variation distance between two finite measures ¢’ and g’ is ||’ — p”||. Metrical
notions in this paper are, if not otherwise stated, w.r.t. this metric. If
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& = (yy: 0 € O) is an experiment then we shall denote by B(&') the closure of
the linear space spanned by {y,: 6 € ©}.

All experiments considered in this paper will, unless otherwise indicated, have
the same parameter set ®. © may be any nonempty set. An experiment & =
(po: 0 € ©) is called dominated if the set {y,: 6 ¢ ©} of probability measures is
dominated. We will throughout this section and Section 3 assume that all ex-
periments under consideration are dominated. The set of finite measures y such
that pu(A) = 0 whenever p,(A4) =, 0 will be denoted by L(&"). It is shown by
Halmos and Savage [6] that a dominated family (z,: 6 € ©) of probability mea-
sure is dominated by probability measures = of the form = = 3] ¢, ¢, where c is
a prior distribution with countable support. If & = (g,: 6 € ©) is a dominated
experiment and « is a dominating measure of this form then = will be called an
L-measure for &. If z is an L-measure for & then L(Z") consists of all finite
measures ¢ which are absolutely continuous w.r.t. z. It was shown by Bahadur
[1] that the o-algebra induced by (dy,/dr : 6 € ©) is minimal sufficient when = is
an L-measure for &.

Let & = (3, %, 1y : 0 € ©) be an experiment with L-measure = and let <2 be
a minimal sufficient sub-g-algebra of .27, Then the set, V(&'), of measures p in
L(Z’) whose Radon-Nikodym derivatives w.r.t. = may be specified <5-measura-
ble does not depend on the choice of = nor on the specification of <7.

The sets L(#") and V(Z") are, according to the terminology in Le Cam [9],
respectively the L-space of &£ and the minimal equivalent form of & .

Let & = (py: 0 €0©) and 57 = (v,: 0 € ©) be two experiments and let ¢ be a
nonnegative function on ©. Following Le Cam [9] we shall say that & is e-
deficient w.r.t. & if for any finite decision space, any bounded loss function
and any risk function 7 obtainable in =+, there is a risk function r obtainable
in & so that r < 7 + e.

A very interesting criterion for e-deficiency is Le Cam’s randomization cri-
terion (Theorem 3 in [9]). As this criterion is not needed here we shall not
elaborate further on it.

It follows from weak compactness ([15], page 118) that & is c-deficient w.r.t.
- if and only if & is ¢/F deficient w.r.t. .~ for each finite and nonempty
subset F of ©.

The experiment & is more informative than & if & is O-deficient w.r.t. &,
If £ is more informative than .~ and >4 is more informative than & then we
shall say that & and 57 are equivalent and write & ~ 7.

Two useful criterions for equivalence are:

THEOREM 1.1 (Le Cam [9, 12]). Let& = (y,: 0 €O®)and &5 = (v,: 6 € ©) be
dominated experiments. Let ¢ be a nonnegative function on © so that p = 3, ¢,
and v = ), ¢,v, are L-measures for, respectively, & and 5. Put f = (dp,/dpy:
0 €0)and g = (dv,/dv: 6 € ©). Then the following conditions are equivalent:

(i) & ~F;
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(ii) The linear space spanned by {p,: 0 € ®} is isometric, for the total variation
norm, to the linear space spanned by {v,: 0 € ©} by an isometry (necessarily unique)

mapping p, into v,;

(iii) pf~' =gt

REMARK. (ii) may also be formulated:

(ii") B(Z’) and B(#") are isometric by an isometry, necessarily unique, map-
ping u, into v,.

Proor.

(i) = (ii): We may, without loss of generality, assume that © is finite. Let

ae R®. Consider the set {0, 1} as a decision space and let the loss function L be
given by:

Ly(t) = (—1)a,; t=0,1;0€0.

Then the minimum Bayes risks for the uniform prior distribution are, respec-
tively, —|| 2, agpt]lm™" and —|| 33, apv,||m~* where m = #0. Hence

1220 @0 1ol = |1 220 @ov0ll 5 aeR®

so that (ii) holds.
(ii) = (iii): Let 6, ©, let F be a finite subset of ® containing 6, and let
ae RF. By (ii):
S (Zraofo)tde =4[ Zraifo + | Xrapfolldp
=3 2ra + | Zraopll =% Zras + || Zrapv|
=V (Zrap9s)tav.

Differentiating from the right w.r.t. a,, we find

to(2ir @ fo = 0) = vo(2r 409 = 0) .
Let z be a real number such that (3, a,f, = z) = w(3; a9, = z) = 0. Put:

ay = a) — zc, when feF
= —z¢, when 60¢F.
LetF,; n=1,2,... bean increasing sequence of finite sets such that |J, F, =

Fu{f:c, >0} Utilizing that 3, c,f,, = 1 a.e. p and that Y,c,9, = 1 a.e. v
we get

lim, o Xp @ fs = Lraofy — 2 a.e. pu
and

lim,_,, 2r, 490 = Xpaygy — Z ae. .
Hence

to(Zir @0 fy = 2) = lim, g, (X5, @, fy = 0)
= lim, Yol Zr, @090 = 0) = Vo lZir @90 = 2) .
Thus s, (f|F)~* and v, (f| F)~ coincides on the class of half spaces of R*. It
follows that these measures have the same characteristic functions so that
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to(f | F)™ = vy (9| F)™". Hence, as this holds for any finite subset F contain-
ing 6,,
tof =97 fecO
so that
pf™ = et f7) = X cove97) = v97
(iii) = (i): Suppose pf~' = vg~* and consider the set T = {1,2, ---, k} as a
decision space. Let z(|6); t € © be the operational characteristic (performance
function) of a decision rule p in &’. We may, since f is sufficient in &, assume
that there is a measurable function 4 from R® to the set of probability distribu-
tions on {1, 2, - .., k} so that p = Af. Then hg is a decision rule in .~ and

o(t]10) = S h(f)fs dpr = § h(9)95 dv ; teT;0€0.

Thus 7 is also obtainable in .&#. It follows in particular that, for any given loss
function, & and .&¥ determine the same set of risk functions. []

COROLLARY 1.2. Suppose & admits a boundedly complete and sufficient sub-o-
algebra and that & ~ 4. Then -/ admits a boundedly complete and sufficient
sub-c-algebra.

Proor. Let us use the notations of the theorem for the experiments &  and
4. By assumption and by Bahadur [1], the g-algebra induced by f is sufficient
and boundedly complete. Hence, by the theorem, the g-algebra induced by g¢
is sufficient and boundedly complete in .o, []

The remainder of this section is a description of a few important and known
results. This material is included for completeness and is not needed for the
logical development in the next sections.

It was claimed above that L(£") and V(<) was, according to the terminology
in Le Cam’s paper [9], respectively the L-space of ¢ and the minimal equivalent
form of «. In order to verify this we must check that:

L(£) = the band generated by {z,: 6 € ©}
and
V(<) = the Banach lattice generated by {z,: 6 € ©} .

The set . (&) of finite measures on & ’s sample space is an ordered linear
space for setwise definitions of ordering as well as of linear combinations. With
the total variation norm _/(£) becomes a normed linear space. It may then,
see [15], be shown that _Z(<&") with these structures is a Banach lattice which
has the additional property that the norm is additive on the cone of nonnegative
elements. A Banach lattice with this property is called an L-space. A subset
U of .7Z(&) is called a band if:

() el ve (&), b < |ul—veU
and
(i) U, g U, p=supfrivelUj}e Z(&)=pnel.



48 ERIK N. TORGERSEN

Let L(#) be the set of all measures e #(#") such that — 31 ») < p <
i1 to, for some finite sequence (6, 0,, - - -, 6,) in ©. Define also V(<) as the
set of all measures of the form Vr_, 3, a, "y, — V1, >, b,V for some finite
subset F of © and for some real constants a,’, b,”. The claims above may
then be verified by showing that L (&) and V(Z") are dense subvector lattices
of, respectively, L(Z¥") and V(&).

By the result of Bahadur cited above any measure ¢, is in V(") and it follows
directly from the definition of V() that V(¥) < L(¥).It is shown in [9] that
V(£) = L(¥) if and only if .9 is minimal sufficient. With our definitions of
the spaces V(¥) and L(Z) this follows from the essential uniqueness of Radon-
Nikodym derivatives. The author learned from Le Cam several years ago the
fact and the proof given below, that B(¢") = V(&) if and only if .-/ admifs a
boundedly complete and sufficient sub-g-algebra. As the experiments having
the last property will play an important role in our investigation we formulate
these results as:

THEOREM 1.3. Let & = (y, 7, p,: 0 € ©) be a dominated experiment. Then:
(i) B(&) < V(&) < L&)
(i) B(Z') = V(%) if and only if .57 admits a boundedly complete and sufficient
sub-c-algebra;
(i) V(&) = L(¥) if and only if 7 is minimal sufficient;
(iv) B(&) = L(¥) if and only if .57 is boundedly complete.

Proor. It suffices, as (i) and (iii) were argued above and (iv) is a consequence
of (ii) and (iii), to prove (ii). Let r ¢ V(&) — B(Z') and let 7 be an L-measure
for &. Then there is a continuous linear functional, 4, on L(¥)), i.e., an element
of L(#)* = L.(x), strongly separating r from B(Z). We may, since B(¥) is
linear, assume that z(k) > 0 = 2(h) when 2¢e B(&). Let <# be any minimal
sufficient sub-g-algebra of 9. Then there is a bounded £Z-measurable function
hon y so that A(k) = A(h) when 2 e V(). It follows that we may as well assume
that & is <4-measurable. Hence <2 cannot, since y,(h) =, 0 while z(h) > 0, be
boundedly complete. If, conversely, <7 is not boundedly complete then there
is a bounded <Z-measurable function 4 so that § |h|dr > 0 and § hdy, =,0.
Then / defines a nonzero linear functional on V(&) which is vanishing on B(&)
so that B(&) c V(&).

By Le Cam’s isometry criterion, & ~ .5 if and only if B(Z") and B(.>") are
isometric by an isometry mapping s, into v,. It is shown in [9], and it follows
also readily from Theorem 1.1, that such an isometry may be extended to an
isometric lattice isomorphism between V(Z") and V(7). This, together with
the completeness criterion described above, implies again that the property of
having a boundedly complete and sufficient sub-g-algebra respects equivalence.

If & has this property and we want to find out whether & is more informative
than an experiment .% then the following criterion, proved by De Groot in [5],
is useful:
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THEOREM 1.4. Let & = (y, S, pty: 0 € O) be an experiment such that & admits
a boundedly complete and sufficient sub-c-algebra. Then an experiment & is less
informative than & if and only if any power function obtainable in & is obtainable
in &.

REMARK. By [18] and weak compactness this amounts to the fact that & is
more informative than & if and only if & is more informative than .5 for
testing problems.

Proor. We may, without loss of generality, assume that %/ is minimal suf-
ficient and, consequently, boundedly complete. Put &% = (7, <5, v,: 0 € O).
Let T = (1,2, .-, k) be a finite decision space and let ¢ be a decision rule in
5. We may represent ¢ as¢ = (d,, 0,, - - -, ;) Where ¢,(y) is the probability of
deciding ¢ when y is observed. By assumption there are test functions p,, - - -, g,
in & so that § o, dyu, =, § 0,dv,. Then § X3, p,dp, =, X3, 0,dv, = 1 so that
2o, = lae. py,forall 6. Redefining o on the null set {x: 3}, o,(x) = 1} so
that 33, o,(x) =, 1 we obtain a decision rule in & having the same operational
characteristic as ¢ has in =~ . []

2. Convex combinations of dominated experiments and extremal experiments.
It was shown in [18] that—in the case of a finite parameter set—an experiment
does not have a sufficient and complete sub-g-algebra if and only if it is equiva-
lent with a proper mixture of two nonequivalent experiments. In trying to
generalize results valid for finite ® we must keep in mind that, in general, we
have to distinguish between several types of completeness, In particular bounded
completeness does not—see Lehmann ([14], page 152)—imply completeness. It
turns out that many of the results in [18] carry over to the infinite case provided
we replace ‘“‘completeness” with “bounded completeness.” A more detailed ex-
amination of some possible generalizations of the completeness concept for finite
O will be given in the next section.

The assumption that the measures defining an experiment are all probability
measures is not essential for the development below. In fact, most of the
results have ([19]) straightforward generalizations to arbitrary families of finite
measures.

Consider two experiments & = ((y, =«"), #y: 0 € ©) and . = (¥, %), vy :
6 € ®) and a number r [0, 1]. A new experiment < = ((¥, ©’), g,: 0 € ©)
may then be defined by:

2 =[x x {1V [Z x {2}]
'« = the g-algebra of all subsets of %~ of the form
[A X {1}]JU[B x {2}] where Ae.v" and Be<s

oA X (U B X (2)]) = (1 = ) + w(B):  Aes/, Beis.

The notation (1 — 7)¢ 4 7.4 will occasionally be used for this experiment.

When 4 and ..~ are dominated, then (1 — 7)&" + = is dominated. This
and other facts are collected in:
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PROPOSITION 2.1. Let &, & and t be as above, let ¢ be a nonnegative function
on © such that ¥, c,p, and Y, c,v, are L-measures for respectively & and 5. Then
Yo €404 is an L-measure for (1 — )& + t.5 . Put

t= 219C o> v = 219CoVg>» 0= 319C404,

fo= d/‘lﬂ/d/z s 9o = vy, » hy = dog4,

f=(f:0€0), 9=1(9,:0€0), h=(h:60€0).
Then
o([4 X {1I}] U [B x {2}]) = (1 — 7)p(A) + 7(B)
and
oh ' = (1 — t)pf' 4 Tvg~'.

One possible specification of h, is:

ho((x, 1)) = fo(x), xex
ho((y,2)) = 94(p)s e z .

Proor. Note first that o([A4 x {1}] U [B X {2}]) = (I — 7)u(A) + 7v(B). Hence
o is an L-measure for (1 — 7)& + v/

It is a matter of checking that do, ,, may be specified as stated. Finally let «
be any bounded measurable function on R®. Then o(k o h) = a((x o h)],, 1y +

(60 W)L ) = (I = D)l o f) + 2u(x 0 g). []
COROLLARY 2.2. Let &, 5, 7 and .7 be dominated experiments such that
& ~ & and A ~ 7. Then
(1 — )& + 0. ~ (1 —0)& + i,
Proor. Let F be a finite subset of ©® and let ae R”. Choose a nonnegative
function ¢ on O such that it works for all four experiments. Using the notations

above for & and .~~~ and adapting these notations to # and .~ in the obvious
way, we find

12 raso,ll = (1 — )| 2r ag ol + Il 2w vl
= =) Zrafill + l| Dr ¥l = |25 20l -
Hence equivalence follows from Theorem 1.1. []

An experiment & will be called extremal if & ~ & + 3./ imply & ~ 7.
The extremal experiments which are dominated are characterized in

THEOREM 2.3. A dominated experiment < is extremal if and only if it admits a
boundedly complete and sufficient sub-c-algebra.

The proof is a consequence of Propositions 2.4, 2.5 and 2.6 below.

PROPOSITION 2.4, Let €10, 1[. Then (1 — 7)& + 7.7 is dominated if and
only if & and &7 are dominated.

PrROOF. We use the same notations as in the definition immediately before
Proposition 2.1. Let ¢ = 0 be a function on © such that ¢ = 3] ¢,0, is an
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L-measure for (1 — )& 4 t#. As in the proof of Proposition 1 we get

L= lo|l = (1 = 7) Zseollrall + Zo collval] -
It follows that ¢ = }3,¢,¢, and v = 3, ¢,v, are probability measures and that
o4 X {1}JU [B X {2}] = (1 — 7)x(A) + 7v(B). Suppose p(A) =0. Then
s[4 X {1)] + [@ X {2}) = (1 — D)(A) + (@) = 0. Hence
(I = )ps(A) =g 0o([4 X {1}] + [@ X {2}]) =,0.

It follows that p > {,: 6 € ©}. Similarly v > {v,: # € ©}. This proves the “only
if” and the “if” follows from Proposition 2.1. []

PRroPOsITION 2.5. Let = €10, 1[ and suppose (1 — ©)& + ©.% is dominated, and
that it admits a boundedly complete and sufficient sub-g-algebra. Then & ~ 5.

Proor. We use the notations of Proposition 2.1. Suppose we have proved
the proposition when & and .2~ are minimal sufficient. Let # and %/ be mini-
mal sufficient experiments equivalent with, respectively, & and .57. Then
(1 — )& + =& is dominated, it is equivalent with (1 — )& 4 7% by Co-
rollary 2.2, and it admits a boundedly complete and sufficient sub-c-algebra.
By assumption % ~ . Hence & ~ 7.

It follows that we may, without loss of generality, assume that & and .& are
minimal sufficient. By Proposition 2.1 ¢A™' = (1 — 7)uf~' 4 rvg~'. Hence
puf~' € oh™'. Let s be a version of duf~'/doh~'. We may specify s so that 0 <
s<(1—)% Tt follows that sey(x) = § fy dpe = | x,(pef ~)(dx) = § x, 5(x)(ch™)(dx) =
§ hys(h) do = § s(h)do,. Hence § s(h)do, =, 1do,; i.e., § [s(h) — 1]ds, =,0.

The o-algebra generated by % is, by assumption, boundedly complete and
s o h — 1| is bounded. It follows that s(k) = la.e.o,i.e., s = la.e.gh™'. Hence
Y=okt = (1 —7)puf~' + tvg~'. It follows that puf~' = vg~'so that & ~ .27 []

PROPOSITION 2.6. Let 2% be a dominated experiment which does not admit a
boundedly complete and sufficient sub-o-algebra and let 7 €10, 1[. Then there are
nonequivalent experiments & and 24 so that & ~ (1 — 7)& + ©.57 .

ProorF. We may, without loss of generality, assume that 2 is minimum
sufficient. Write 27 = (U, &); 4, €©). By assumption there is a bounded
measurable function ¢ on (U, &7) so that 1,(¢) =, 0 and 2,(¢ # 0) > 0 for at
least one ¢, say for & = 6,. Suppose M is a constant so that — M < ¢ < M.
Let £€,7€10,1]. Then &(¢ + M)/2M + (1 — &) and y(¢ + M)/2M are test
functions and the 2, integrals are, respectively, (36 + 1 — &) and 7. We may
adjust § or 7 so that one of these numbers is 7 and choose ¢ accordingly. By
this construction 4,(d # ) > 0.

We are now ready to define the experiments & = ((x, %), p,: 0 € 0) and
F = (¥, Z),vs: 0 €0). Put

X‘:‘_Z'//:U, =B =T

| .
m(A) = - Sa(l —0)dd,; Ae
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and
vy(A) :isAﬁdlp; Ae .
T

Then

1 1

#o(x) = 11— § (1 —0)dty = —— (A(U) — t2,(U)) = 1

—_ T 1 — T

and

(P = } { 6da, = _i.. A(U) = 1.

It follows that g, and v, are probability measures.

Let ¢ be a nonnegative function on © such that 2 = 37 ¢,4, is an L-measure
for 2. It follows that 4 = 3] ¢, ¢, and v = 3] ¢,v, are finite measures. Put
ry = d,/dA; 6 € ©. We may assume that 3 {c,7,: ¢, > 0} = 1. Then dy/d2 =
(I —0)/(1 — 7)r, and dv,/d2 = dt7'ryso that dp/di = (1 — 0)/(1 — 7) and dv/d2 =
6/z. It follows easily that x> p,: 0€0, v>v,: 00, and that dy,/dy =
dvy/dv = r,. Put r = (r,: 0 €0), and write (1 — )¢ + ./ = ((£, &), 04
0 € ©) as before. By Proposition 2.1, ¢ = Y}, ¢,0, is a finite measure dominat-
ing {0,: 0 €©}. Put h, =do,/ds and h = (h,: 6 € ©). By Proposition 2.1 again:
oh™ = (1 — t)ur~ + rwr~'. Let ¢ be a bounded measurable function on R°®.
Then
1 —0
K
.
= —7)Vr(r)dy + v §e(r)dv.

It follows that ir=! = (1 — ¢)pur—' + zvr~'so that ¢h=' = Ar~'. Hence (1 —7)& +
v/ ~ 7. It remains to show that & ~ ... Suppose & ~ .»#. Then, by
Theorem 1.1, pr=' = vr=* = Ar~'. Le t be Ar~'-integrable on R°®. Then tor is
Z-integrable and

Vr(r)ydd = (1 — ) § () dA + 7§ _‘j #(r) d2

Q.1 g[l—5_i}ordz=gtordp—g(tor)du

l—7z ¢
=\tdprt —§tdvr'=0.
By minimal sufficiency there is an r-measurable test function 6 on (U, &) so

that 2(9 # 6) = 0. Let w be a measurable function on R® so that 6 = w o r.
(2.1) may then be written:

2.2) g[l_—l_i]tauzo.

| G T

Here we may, since w is Ar~' integrable, insert + = (1 — w)/(1 — 7) — w/z.
Hence

2.3) g(l,_.W. - W,>2dz=0.

1 - T

It follows that (1 — w)/(1 — 7) = w/ra.e. r-tie.,,w = ra.e. r",sothat 6 = ¢
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a.e. . Hence 6 = r a.e. 2. This, however, is impossible since ,200 & 2 and
200(5 #+ 7) > 0. It follows that & ~ . []

ProoF oF THEOREM 2.3. 1°. Suppose ¥ is extremal and dominated. By Pro-
position 2.6 & must admit a boundedly complete and sufficient sub-c-algebra.

2°. Suppose ¥ is dominated and admits a boundedly complete and sufficient
sub-c-algebra. Then Proposition 2.5 implies that & is extremal. []

It was shown in [18] that, in the case of a finite parameter set, any experiment
is a mixture of extremal experiments. We will here show how this may be gen-
eralized to the separable experiments here defined.

A subset O, of ® will be called a separant for the experiment & = ((y, %), o'
6 € ©) if it is countable and {y,: 0 € ©,} is dense in {g,: 0 € ®}. A separable ex-
periment is an experiment having a separant. An experiment & is separable if
and only if V(&) is separable. Any separable experiment & = ((x, '),
0 € ©) is dominated, and the converse holds provided ./ is separable.

It follows directly from Bahadur’s construction ([1]) of a minimal sufficient
s-algebra that any experiment having a countable parameter set admits a suffi-
cient g-algebra which is separable. Now any g-algebra which is sufficient for
“o, where O, is a separant for < is sufficient for . Thus, as has been pointed
out by Pfanzagl [17], any separable experiment admits a minimal sufficient ¢-
algebra which is separable. This follows also directly from the characterization
of V(#) as the set of finite measures in L(~ ) whose Radon-Nikodym derivatives
w.r.t. a given L-measure may be specified measurable w.r.t. a given minimal
sufficient g-algebra.

Let 4 be any o finite measure dominating . Pfanzagl proved in [17] that ¢’
is separable if and only if f, = dP,/d; may be specified so that (x, ) ~ fy(x) is
jointly measurable w.r.t. ./~ X 7 where  is the class of all subsets of O.
If the condition is satisfied then, by [17], f,: # € ® may be specified so that
(x, 8) ~> fy(x) is jointly measurable w.r.t. .« X ../ where ../ is the smallest o-
algebra making all maps 6 ~> P)(4); A e. ~ measurable.

A few simple facts on separable experiments are collected in

ProPoOSITION 2.7.

(i) If & has separant ©, and there is a linear contraction from B(<£) to B(-F7)
mapping (1, into v,, then O, is a separant for .. In particular, separability is pre-
served by equivalence.

(ii) If & has separant ©,and & = (g, 0 € ©,) is an experiment satisfying Eoy ~
&, then there is one and only one experiment .4 = (g,: 0 ¢ ©) such that & ~ & .

Proor. (i) follows from the fact that a contraction is continuous.

(ii) Let & = ((x, =), ¢ty : 0 € ©) have separant O, and let & = (2, ¥), g,:
¢ € ©,) be an experiment with parameter set ©,. Suppose Eog~ T. Let0cO.
By assumption there is a sequence {#,} in ©, so that |16, — pol| — 0. Hence, by
isometry, ||o, —a, || = [[¢ty, — tto, || — 0asm,n— co. It follows that there is a
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o

probability measure o, on <" such that ||s, — g, — 0. Using equivalence once
more we see that ¢, does not depend on the choice of the sequence {6,} in ©,.

Let F be a finite (nonempty) subset of © and let a = (a,: 6 € F) be a point in
R”. Toeach 6 e F there is a sequence {7, ,} in O, so that 1ty — t2oll — 0. By
construction:

12 F aso,l| = lim, || 35 ay0,, || = (by equivalence) lim, || 3, ay 12, ||
=X ag tol| -

It follows that & ~ .27, Uniqueness follows directly from the isometry criterion.
A simple consequence is

PROPOSITION 2.8. Any separable experiment is equivalent to an experiment with
[0, 1] as sample space.

PROOF. Suppose & = (¢,: 0 € ©) is an experiment with separant ©,. Let ¢
be a nonnegative function on 0, so that p = 3, c,pu, is an L-measure for &.
Specify f; = dp,/dp = 0; 6 € © so that 3 {¢, f,: 0 €O} = 1, and put f = (f,:
¢ €©,). Construct an experiment ° = ((Z/, 25'), v,: 0 € ©,) as follows:

7/ = the set of all points 0 < ye[0, co[® such that 3 {c,y,:0e0)<1;
<% = the class of Borel subsets of 2/}

vg = o f! when 60¢0,.

Then, by the isometry criterion, ‘590 ~ . The proof follows from Proposition
2.7 and the fact that (2, _#') is Borel isomorph with [0, 1]. ]

Let us turn to the task of decomposing separable experiments into separable
extremal experiments. The final result will be an experiment of the form

(T X 3,/ X 7); Q,: 0€©),
where

(i) T and y are Borel subsets of Polish spaces and ./ and ../ are, respectively,
the classes of Borel subsets of T and y.

(i) Qy(S X A) = {5 Py,(A)x(dr) where « is a probability measure on ./" and
Py;0€0,teTis a family of probability measures on . such that ¢ ~» P, (A)
is measurable when # ¢ © and 4 ¢ ..

The basic properties of our construction are stated as

THEOREM 2.9. Any separable experiment & with separant ©, is equivalent with
an experiment

(T X xS X 57,Q,: 0€0)
satisfying (i), (ii) and:
(it The map (t, x) ~> x from T X y is minimal sufficient.
(iv) The experiments ((y, /), P,,: 0 € ©); 1 € T are boundedly complete and
{Py: 0O} > {P,: 00O}); teT.
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ReMARK. It follows from (iii) that & ~ ((x, %), Qy(T X +); # € ©). Sup-
pose & has a particular property which implies that QT X 4,) =, 1 for a
certain 4, in .. Then (ii) and (iv) imply that there is a set N in & so that
n(N) = 0 and P, (T X 4,) =,1 when r¢ N.

PROOF OF THE THEOREM. Let& = ((Z/, &), p1y: 0 € ©) be an experiment with
separant ©,. The summation set for any sum denoted by 3 will, in this proof,
be ©,. Let ¢ be an everywhere positive function on 0, such that 3} ¢ = 1. Then
1= ), ¢ty is a probability measure dominating {y,: 6 € ®}. Specify f; =
duy/dy; 0 € ©, so that f; > 0 when 6§ € ®, and 3 ¢, f, = 1.

Define y as the set of points x in R® such that x, > 0; €0, ] cyx, = 1.
Denote by K the set of points x in R% such that x, > 0; 6§ € 0, and }; ¢,x, < 1.
Then K is compact and metrizable for the topology of pointwise convergence
on ©,. The subset y is a G, subset of K. It follows that y is a Polish space. Let
" be the class of Borel subsets of .

The set 277 of all probability measures ¥ on % such that { x,V(dx) = 1;
6 €0, is convex and it is compact for the weak* topology. It follows from
Krein Millman’s theorem ([8], page 131) that the set T of extreme points of 7~
is nonempty. It may (see Phelps [16], page 7) be shown that T is a G, subset
of 77. Let & denote the class of Borel subsets of T.

We have, so far, constructed measurable spaces (y, %) and (T, ) satisfying
(i). Each Ve 77" defines an experiment {V,: 6 € ©,} where—for each § € ©,—V,
is the probability measure on .%~~ whose Radon-Nikodym derivative w.r.t. V is
x ~s x,. The projection (¢, x) ~> x from T X y onto y will be denoted by X.

The map f from (Z/, £%) to (y, ') is measurable. Put P = pf~'. Then
Pe 7. Define, for each ¢ € ©,, P, as the probability measure on . whose
Radon-Nikodym derivative w.r.t. Pis x ™ x,. Then, by the isometry criterion,
Eep ~ (s ), Py: 6 €0,). It follows from Proposition 2.7 that there is one
and only one way of defining probability measures P,: § ¢ ® — 0, so that & ~
((x» ), Py: 0 € O). Let, for each 6, s, be a finite nonnegative version of the
Radon-Nikodym derivative dP,/dP. We may assume that s,(x) = x, when 6 € 0,
and x € y.

By a theorem of Choquet ([16], page 19) there is a probability measure 7= on
% and a family P,: t € T of probability measures in 27" such that ¢~ P(A4) is
measurable for any 4 € %" and P(A) ='{ P,(A)x(dt); Ae .. Define for each
6 ¢ ©, and each ¢ ¢ T the probability measure P,, on .5 by

Py (A) = §,5,dP,; Ae 7.

Then ¢ »»> Py,(a) is measurable when ¢ € ©,. We may therefore define Q, when
0 € ©, by

(2.4) 0/(S X A) = {5 Pp(A)n(dty, Se<, Aesv.
Similarily define the probability measure Q on & X % by
(2.5) Q(S X A) = (s P(A)n(dr), Se, Ae .
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By (2.4),
22 € Qu(S X A) = {s[ X ¢y Pou(A)Ir(dl) = (s P(A)n(dt) ; Se, Ae V.
Hence
Q = Z chO .
Furthermore
$sxa 80 dQ = § Is(D) (xX)50(x)Q(d(1, X)) = (s Po,(A)m(dl)
= Qy(S X A); 0e®,, Se¢, Ade. .
Hence
dQ,/dQ = s,; 60e€0,.

It follows, since s,(x) = x, when € € ©, and x ¢ y, that X is minimal sufficient in
the experiment (T X y, & X %), Q,: 0 €0,;). Now

Q)X e A) = QT X A) = § Py(A)n(d) = § [§ 1,(x)x, P(dx)]x(dr)
= { L(x)x, P(dx) = P,(A) when 6e®, and Adec. ..

Hence (T X y, &7 X 7, Qp: 0 €0,) ~ %)“90. By Proposition 2.7 again there is
one and only one way of defining probability measures Q,: #e¢® — 0, on
& x 7 sothat (T X y, &7 X WV, Q,: 0€0) ~&. Clearly X is minimal suf-
ficient in this experiment also.

Let # € ©. Then there is a sequence {6,} in ©, so that o, — ty- Hence P, —
Py so that § |s, — s5|dQ = § s, — s,/ dP = ||P, — P,]| — 0. It follows, since
Q,, — Q,, that dQ,/dQ = s5,; 6 € ©.

Let Se¢ & and 0 ¢©. Then

§5 [§ 80 dP]r(ds) = § Is(0)s,(x)Q(d(t, x)) = § I(1)Qo(d(1, X)) = Qp(S X 7) -

If 6 € B, then Q,(S X y) = {sn(dr) = =n(S). By separability this extends to any
0 € 0. Hence
s [§ 50 dP,Jn(dt) = =(S): Se
so that
{s,dP, = 1 for = almostall ¢ in T.

Put S, = {r: §s,dP, + 1}. Then =(S,) = 0 for each § ¢ O and S, = ¢ when
0 c0,.

Let # €¢©® — ©, and suppose ¢ S,. Then we define P,, as the probability
measure on % whose Radon-Nikodym derivative w.r.t. P, iss,. If6ec¢© — 0,
and ¢ ¢ S, then we put P,, = P,. We have now defined all the probability mea-
sures P, ,; 0 €0, re T so that:

dpP, /dP, = s, when ¢3S,
P,, =P, when reS,.
It follows that P, ,(4) is measurable in 7 for each # € ® and 4 e . and that
Py, L P forall0cOandreT. Let Se. ¥, Ae . and # c©®. Then

Qu(S X A) = § I(OL()5s(x)QE(t, X)) = Vs [§.4 5 dP,] dr = {5 Py(A) d .
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Let 1€ T. Suppose {P,,: 0 € O} was not extremal. Then, since it is minimal
sufficient, it cannot be boundedly complete. Hence its restriction 52, = {P,, :
0 € ©,} to O, is not boundedly complete either. It follows, since 5% is minimal
sufficient, that 57 is not extremal. Hence, there are nonequivalent experiments
&7, and 57, on O, so that o7, ~ 157 + 157/. It follows that there are
distinct probability measures V',’ and V,” in 7" so that P, = 3V, + 4V,”. This,
however, is (since P, is an extreme point in 777) a contradiction. It follows that
the experiments {P,, : 6 € ©} are extremal so that by minimal sufficiency they are
boundedlylcomplete. 0

The last part of the proof of Theorem 2.9 is a consequence of the following
extremality condition for dominated experiments.

THEOREM 2.10. Let & = ((x, -~«), Py: 0 € ©) be a dominated experiment and
let ¢ be a nonnegative function on © so that n = ), ¢, P, is an L-measure for & .
For each 0 let f, be a nonnegative and finite version of dP,/dx. Put f = (f,: 0 € ©).
Then & is extremal if and only if nf~' is an extreme point for the convex set of
probability measures p on [0, co[® (with the product g-algebra) which are supported
by {x: 3] ¢c,x, = 1} and satisfies § x,p0(dx) =, 1.

Proor. Let the convex set described above be denoted by .

1°. Suppose < is extremal and that =f~! = Lp’ + 10" where o, p”" € 7. De-
fine p,” and p,” by:

[doy'[dp']. = [dp,"[dp"]. = x,5 x€[0, o[

Then 7' ={p,/: 0O} and .7 " = {p,”'; 6 € O} are experiments, and using
Proposition 2.1 it is easily checked that < ~ 152" 4+ 1", By extremality,
o' ~ 2% " so that o’ = p". It follows that =/~ is extreme.

2°. Suppose nf~! is extreme. Let .# ' and 2% " be experiments such that
& ~L% 17" Write 2’ = ((/, "), Py: 0e®)and v " = ((y", "),
P)': 0 c0©”). Itis easily seen that ’ = 3 ¢,P,’ and n” = ) ¢,P,” dominates,
respectively, {P,’: 6 ¢ ®} and {P,”": 6 € ©}. Let f,' and f,” be finite nonnegative
versions of, respectively, dP,'/dz’ and dP,”|dr". Put f' = (f,’; 6 € ©) and " =
(fy"; 0 €0). It follows from Proposition 2.1 that zf~! = 4zf"~* + Lzf”~! and,
since nf’~', nf""'e /7, nf'~' = nf"""' so that ¥’ ~ .7 ". Hence, by the defi-
nition of extremality, ~ is extremal. []

3. Completeness of product experiments. We will throughout this section
assume that all experiments under consideration are dominated.

It is well known that several important results in the theory of mathematical
statistics involve some notion of completeness. The most important ones are
bounded completeness, quadratic completeness (to be defined below) and com-
pleteness. As an example we mention only the fact that a dominated experiment
admits a sufficient and quadratically complete sub-g-algebra, if and only if any
real function on ® which is unbiasedly estimable within the class of everywhere
quadratically integrable variables, hasa UMVU estimator. (The “if”” was proved
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by Lehmann and Scheffe in [13]. Most of the recent comprehensive books on
mathematical statistics do not mention the “only if,” although this important
result was proved by Bahadur [2] in 1957.)

Let pe[l, co]. An experiment & = ((x, "), Py: 0 € ©) will be called p-
complete if any random variable ¢ in (), L,(y, =, P,) such that P,(0) =,0 is
=0 a.e. P, for all # €©. A sub-g-algebra .& of ../ will be called p-complete
if the restriction of & to ..% is p-complete. We may write “complete” instead
of “l-complete” and “quadratically complete” instead of “2-complete.” Clearly
p-completeness implies g-completeness for ¢ > p and p-completeness for any p
implies bounded completeness.

If © or y is finite then these notions are all equivalent. If © is infinite, how-
ever, then as is well known, they all differ and bounded completeness does not,
in general, imply co-completeness. We include, for the sake of completeness,
two examples.

ExampLE 3.1. Put y ={0, 1,2, ...}, .~ = the class of all subsets of y and

define probability measures P,; n = 1,2, --. by
Poy=1—1, pm="1. =12
n n

Then {P,; n = 1,2, ..} is boundedly complete. It is not, however, co-complete.

ExampLE 3.2. Let (y,. « ) be as in the previous example. Let p, €10, I[, n =
1,2, ... and define for each n = 1, 2, - .. the probability measure P, by

P,0) =1 —pu
P,(i))=0 when 0 <i<n

P, (n+ i) = Pus 1=0,1,2,....

1
20+

A random variable ¢ is here everywhere integrable if and only if it is P -inte-
grable, and this is the case if and only if 3772,27%0({)] < c0. 0;i=0,1,2, ...
is an unbiased estimator of zero if and only if d, = (1 + p7}, — 2p, )0, i = 1,
2, ---and Y, |prl — 2p.7Y 10,277 < oo and |G[27p, 7t — 0.

Letze]l, co]and put p, =2, n = 1,2,.... This model is r-complete since
D lprh — 2p,7Y 27 = co. Itisnot, however, since 3 72, |prly — 2p,7 727 =
23 [2777']* < oo when ¢’ € [1, ¢, r’-complete for any 7’ in [I, 7.

p-completeness is not, of course, preserved by equivalence. The property of
having a sufficient and p-complete sub-g-algebra is, however, preserved by

equivalence.

ProposITION 3.3. Let & be an experiment admitting a p-complete and sufficient
sub-o-algebra. Suppose 5 ~ _#". Then ..~ admits a p-complete and sufficient sub-
g-algebra.

REMARK. The proposition and its proof carry over, with obvious modifica-
tions, to the situation where any given nonnegative measurable function on R
takes the role of the function: x ~ |x|.
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Proor. Referring to Section 1 for the case p = co we restrict attention to
pel0, oof.

Write & = ((x, %), P,: 0 €0) and & = ((Z/, &), Q,: 6 €0). Let ¢ be a
nonnegative function on © so that 7 = >} ¢, Py and p = 3] ¢,Q, are L-measures
for, respectively, & and 5. Write

fo=dP)dr; 0e0©, 9y = dQyldp; 0€0O,
[=(f:0€0) and g=(g:0¢cO).

By Theorem 1.1: zf~! = pg~".
Suppose ¢ € N, L,(Qy), that Qy(¢) = 0 and that ¢ is of the form ¢ =xog
where « is a real-valued, measurable function on R®. Then

§ o f]?dPy = § |k o fI°fydn = § x)|e(x)|” dre f~1 = § x,|x(x)|” dp g~
= { 9ole(9)|? do = § |k(9)]? dQ, < oo .

It follows thatk o f e M, L,(P;)and { ko fdP, = { k0o gdQ, = 0. Hence, since
the s-algebra induced by f is p-complete, x o f = 0 a.e. 7 so that x = 0 a.e.
nf™' = pg~'. Consequently ¢ = rog = 0a.e. p. [

Suppose we have a dominated model for independent random variables X,
X,, - -+, X, which admits a p-complete (boundedly complete) and sufficient sta-
tistic. Does the model for X, - - -, X,, where m < nadmit a p-complete (bound-
edly complete) and sufficient statistic? This is the main problem of this section.
The answer cannot be an unconditional yes since the hypothesis is satisfied
whenever one of the n observations is totally informative. It will, however, be
shown that the answer is yes provided we impose a mild regularity condition.
This condition is automatically satisfied when our observations are identically
distributed.

Let & = (Py: 0 €0®) and . = (Q,: 6 € ©) be two experiments. We shall
say that .~ is regular w.r.t. & if A, P, = 0 for any finite subset F of © such
that A, Q, = 0. We shall say that ..~ is regular if A, Q, + 0 for all nonempty
finite subsets of ©®. If ..~ is regular then .. is regular w.r.t. and experiment
& . Clearly any homogeneous experiment is regular.

For any experiment # = ((y, .); P,: 6 € ©) with finite parameter set © and
any number 7€ R® such that r > 0 and Y}, 7, = I, put

Lo(1) = § 1o [dPoJd 3o Po)" d 3y Py -
The map ¢t~ L _(¢) is called the Laplace transform (Hellinger transform) of & .

If dPy)/d4 = f, for some measure A then L (7) = § ], f;' dA. The Laplace trans-
form determines the experiment up to equivalence and we shall use the formulas:

LIIZ‘=1 e = 11 Lz‘rt
and

Liz’ﬂf =3L, +3L. .

Regularity may now be described in terms of Laplace transforms as follows:
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& is regular w.r.t. & if and only if L, (r) = 0 for any nonempty finite subset
of © and point 7€ [0, co[” satisfying 3,1, = 1, such that L () =0. " is
regular if and only if the Laplace transform of any experiment ..~ , where F is
a finite nonempty subset of © has no zeros. It follows that regularity is preserved
by equivalence and moreover that . is regular w.r.t. & if T is regular w.r.t.
E;”,ﬁ'~f/~‘and§f~?;”.

The statistical interpretation of regularity is, essentially, that we cannot be
sure that our observations will exclude some part of ©.

We will now show that the regular experiments are precisely the experiments
which satisfy the cancellation law for products. Note first that we may, without
loss of generality, assume that © is finite. One way is easy. Suppose & X & ~
& X 2r” and that « is regular. Then, since L, never vanishes, L, = L, so
that & ~ . Suppose, on the other hand, that L has zeroes. Then, by con-
sidering the Laplace transforms, ¢« X 2 ~ & X .# whenever 2, ~ 77, for
all proper subsets F of ©. (This follows since L, (f) = 0 when 7, > 0 for all 4.)
It remains to show the existence of nonequivalent experiments <" and _# "such
that &, ~ % for all proper subsets F of ©. We do this as follows:

Put m = £#0. We may assume m > 2. Lete,:i=1,2,...,27! be the ver-
tices of [0, 1]° having an even number of coordinates = 1. Lety,:i=1,2, ...,
2m=! be the remaining vertices. Take {1, 2, ..., 2»~'} as sample space for both

experiments. Then < = {P,}and » = {Q,} satisfy our requirements provided
we put P,(i) = 2*"™¢,, and Q,(i) = 2*~™y,,. Here ¢,, and 7,, are the fth coordi-
nate of, respectively, ¢, and 7,.

If we do not want to assume regularity, then cancellation may often be carried
out by noting that X # ~ < x < imply .# ~ & provided _# and £ are
regular w.r.t. 7.

Consider first the case of extremal product experiments:

THEOREM 3.4. Let & and .. be dominated experiments such that & X ./ is
extremal. Then < is extremal provided ..~” is regular w.r.t. & .

Proor. Let < and 7" be experimentssuch that © ~ 1o 4 L % Then<& x
S~ N X A+ H(# x .~7). Hence, since < X .~ is extremal, 2 X
S~ 7 X . Let F be a finite nonempty subset of ©® and r a point in
[0, co[¥ such that .7, = 1. Then Lp,F(t)L_;_F(t) =L, (t)o L, () Itfollows
that L, (1) = L, (r) when L. (t) > 0. Suppose L. (1) = 0. Then, since
has w.r.t. 5,0 = L, (1) = $L, (1) + 4L, (). It follows that L, =L so
that .27, ~ .7 ,. Hence 2" ~ .z and this proves the extremality of <. []

COROLLARY 3.5. Let & be a dominated experiment and suppose ™ is extremal.
Then <™ is extremal when 1 < m < n.

Proor. Suppose the statement is true for n = k and consider the case n =
k 4+ 1. Then <™ ~ #%* x <. Clearly  is regular w.r.t. < * Hence ~* is ex-
tremal, and by the induction hypothesis this implies that ~ ™ is extremal for any
m=1,2, ..., n. The corollary follows now by induction on . []
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In order to treat the same problem for p-completeness we need a result which
is of some interest in itself.

THEOREM 3.6. Let &~ = ((x, ./ ), Py: 0€®) and .»~ = (¢, £5), Q,: 0 € O)
be dominated experiments such that ..#~ is regular w.r.t. . Suppose & is minimal
sufficient and let ./ be a minimal sufficient sub-c-algebra in the product experiment

XA =g XY, X EB), Py X Q1 0e0).

Let 6 be areal-valued everywhere-integrable variable in &5 such that

Epo)0].7)=0 ae. P,x Q,; 0c0O.

Then
Pyo=0)=,1.

Proor. Choose a countable subset ©, of © so that
{P,: 00O} > {P,: 0c0B)}
(Q,:0€0,) > (Q,: 00}

(P, X Q,:0€0} > (P, x Q,: 00},

The summation set for any sum ), appearing in this proof will—if not otherwise
indicated—be ©,. Letcbeaneverywhere positive function ©,such that 3} ¢, = 1
and Y ¢,P,(|d]) < co. Putw =3 ¢,Pp 0= 3 ¢,0, 0= c,(P, X Q) [y =
dP,dr, = (f,: 0€0), g, = dQ,/do and h, = d(P, X Q,)/do. We may assume
that, for each 0, f,, g, and %, are finite nonnegative versions such that /4, is .-
measurable and ", ¢, f, = 1. It follows from the minimal sufficiency of ... that
we may assume that ¢ is of the form ¢ = » o f where 7 is a real-valued measur-
able function on R°.

By assumption £, ,,,6 =,0so that £, ¢* = E, 6-. We may therefore define
for each ¢ probability measures S, and 7, on . / by:

ds,/dP, = a,”(6* + 1) and  dT,/dP, = a,"'(5" + 1)

where a, = E, (07 + 1) = E, (0- 4+ 1). Write @ = ) ¢,S, and § = >} ¢, 7.
Then « and j are probability measures dominating, respectively, {S,: 0 ¢ ©} and
{T,: 606} Put

sy = dS,/de, s = (s,: 0€0), t, = dT,/dS and t=(t,:0€0).
Simple calculations yield: '

[y = a,8,/> cpa,s, = ayt,/ 3 c,a,t, ae. 7w; 0e€0O.

and

(3.1) ZZ - [(m + Y Cl:)fgr and
dr

~1
[ oz ()]
Define experiments .~ and .~ by
=y 7)), S 00) and =y ), Ty: 0€0).

Suppose ©" ~ . Let b be a bounded measurable function on R®. Then,
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since d = 7 o fis x-integrable,

V(o N o f) + Ndr = §(bo f)(0* + 1)dn = Sbof[z ;jf—f,,]‘da

= 169| 2 x| twf e,
and similarly

§ (60 N > )+ 11dz = § )| 0 [ (8

0

By Theor.em 1.1 as™* = Br7%; and by (3.1) af~* = Bf~*. Hence
§(bo f)ne fdr = (bo )" o f)+ 1dr —§(be (7 o f) + 1]dn
= §500] £ x| (ef )

ay

—$609] B x| (80 = 0.

ay

The validity of this for all bounded measurable functions on R® implies § =
nof=0ae. x ie., Pyd=0)=,1. The proof will now be completed by
showing 2" ~ 57" We will show this by showing that L, () = L, (1) when
F is a nonempty finite subset of © and 7 € [0, oo ” satisfies 3, ¢, = 1. Consider
such a pair (¢, F). Then, since ¢ is o-integrable,

S{LLe 2o} o fldo = § {ILx [ho(Xr ho) ' T}7 o fI(Xr hg) do < oo .

It follows that [[] hy'¢]( o f) is o-integrable and consequently it is P, X Q,-
integrable whenever 6 ¢ ©,. Let 6 ¢ ©,. Then, since # is &/-measurable,

§[1Lr 2601(0 o f) d(Ps X Qo)
= [ITr 4N Eppr, (3] )1d(Py X Q) =0 when ¢,>0.
It follows that § [[], &,'¢)(n o f)do = 0, i.e.,
(3.2) § [TTr 20" o f)do = § [TLx ho)(r™ o f) do -

Now %, = (f; ® go)[ 2 ¢o(fy ® 95)]* a.e. o and do |d(x X p) = 3] co(fo & gy) so
that (3.2) may be written

§ e [Ao(E €o(fy ® 911" o f)d(x X o) = the same expression in -
or

§ 11 (fs ® 90)?)(n* o f) d(m X p) = the same expression in 7~ .
By Fubini’s theorem this may be written
Ve fo'o)n* o fydm o L (1) = S [T1e fo')(7™ o f)dmo L (1) .
Hence
(3-3) Vr fy0]0* dn = § [115 fy'*]0" dn
when L_ (1) > 0. By regularity, however, this holds also when L (1) = 0.
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It follows that

Ly () = § e la,7(0" + D)y dr
= a7 S [I1r fo10% dr + 1 a0~* § [T1# fo'0] dx

= (the same expression in §7) = L. (). 0

We are now ready to prove the analogs of Theorem 3.4 and Corollary 3.5 for
p-completeness.

THEOREM 3.7. Let & and . be dominated experiments such that & is regular
w.r.t. &. Suppose & X F admits a p-complete and sufficient sub-c-algebra.
The & admits a p-complete and sufficient sub-c-algebra.

REMARK. By the remark after Proposition 3.3 and Jensen’s inequality, the
theorem and its proof carry over, with the obvious changes, to the case where
the function x — |x|? is replaced by any nonnegative convex function on R.

Proor. We may, without loss of generality, assume that & is minimal suffi-
cient. Write & = ((x, %), P,: 0€0), & = (7, %), Q,: 0 €0O) and let &~
be a minimal sufficient sub-g-algebra in & x .&. Suppose o6 € (), L,(P,) and
that £,0 =,0. Then E,,,,0 =,0. By sufficiency there is a .>~measurable
random variable ¢ on y X 2/ so that

Eppip(01 ) =¢ ae. P, xXQ,; 0€0.
Then ¢ € N, L,(P, X Q) and
(Py X Qo)) = (P X Q,)(0) = Py(3) =0; 60eO.
Hence ¢ = 0 a.e. P, X Q,; 0 €0, so that, by Theorem 3.6, Py(d = 0) =, 1. []

CoROLLARY 3.8. Let & be a dominated experiment and suppose &™ admits a
sufficient and p-complete sub-c-algebra.
Then &™:m = 1,2, ---, n, admits a sufficient and p-complete sub-c-algebra.

Proor. This follows from Theorem 3.7 as Corollary 3.5 followed from
Theorem 3.4. ]

Let us finally consider a few examples of experiments with finite parameter
sets. !

ExampPLE 3.9. Consider a subset © of [0, 1] containing m points. Let & cor-
respond to one binomial trial with unknown success parameter ¢ ¢ ©. Then Z™
is extremal if and only if n < m — 1.

ExaMmPLE 3.10. Let X be uniformly distributedon 1,2, ..., 6 where 0 €© =
{1,2, ..., m}. If # is the experiment defined by X then ™ is extremal for all n.

ExampLE 3.11. Each point £ € [0, 1]° defines an experiment ?55 with parame-
ter set © where #, consists in observing a random variable taking the values 6
dan © with, respectively, probabilities §, and 1 — &,. Then L_ (1) = [, &,"
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when 7, < 1; 8§ ¢ ©. It follows that

gé X %},} = ge,”

where o indicates pointwise multiplication. In particular,

[éfe]nzgw,

Now &, is extremal if and only if §, =,0 or §, = 1 for at least one #. Hence
& is extremal for all n provided " is extremal for some n. Particular cases
where &, X &, is extremal but neither £, nor & is extremal may be con-
structed by choosing points &, 5 in [0, 1[® — {0} such that § o » = 0.
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