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AN APPLICATION OF A THEOREM OF
ROBBINS AND SIEGMUND

By DAN ANBAR
Tel-Aviv University

A stochastic approximation process for estimating an unknown para-
meter in nonlinear regression is discussed. The process was suggested by
Albert and Gardner [Stochastic Approximation and Nonlinear Regression.
Research Monograph No. 42. M.LT. Press, Cambridge, Massachusetts].
An almost sure convergence of the process is proved. The proof is an ap-
plication of a theorem of Robbins and Siegmund on the almost sure con-
vergence of nonnegative almost supermatingales. The conditions given
here are weaker than those given by Albert and Gardner.

1. Introduction. In their paper on the convergence of almost super martin-
gales Robbins and Siegmund [3] have proved the following theorem:

THEOREM. Let (Q, 5, P) be a probability space and ¥, F,Z --- be a
sequence of sub o-fields of & . LetU,, B,,&§,and{,,n =1,2, ..., be nonnegative
F ,~-measurable random variables such that

(1) E(Un+1]ﬁ-n)§(l +[8n)Un+€n_Cn, n = 1, 2, MY

Then on the set {3, B, < oo, 3., &, < o} U, converges a.s. to a random variable
and )3, C, < oo a.s.

As Robbins and Siegmund have demonstrated in [3], this theorem can be used
as a strong tool for proofs of convergence of various processes.

In this note this theorem is applied to obtain a proof of a.s. convergence of
a stochastic approximation process for estimating an unknown parameter 6 in
a nonlinear regression setup. This process was first discussed by Albert and
Gardner in [1].

Consider the following situation. Let F,(x),n = 1,2, ... be a sequence of
real valued functions of a real variable. The functions F, are known. One wishes
to estimate a real parameter #, the information about which is obtained by
means of observable random variables Y, = F,(0) + Z,.

Let ¢, be a random variable. For n = 1 define

(2) t'n.+l =1, — an(tl’ M) tn)[Fn(tn) - Yn] )
where a, is a real valued function which is measurable with respect to the o-field

generated by (#, Y;, --., Y, ;). Albert and Gardner have proved that under
some conditions ¢, — 6 a.s. (For details see [1] Theorem 2.1 page 11.) They
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require fairly strong differentiability conditions on the F,’s. In the next section
an a.s. convergence of the process (2) is proved under much more plausible con-
ditions.

2. A convergence theorem. In what follows, § denotes some fixed (unknown)

real number. Assume:
3) For every n>=1, F,x) isa monotone function of the real

variable x.

For every 0 < e < 1 there existsa sequence of nonnegative
4 number {b,(¢)} such that for every n =1

inf,cpmgicem1 [Fa(X) — Fu(0)] = ba(e) -

For every n =1 thereexistsanumber 0 < 4, < oo such

®) that
|Fo(x) — F (0)] < A,|x — 0] for all x.

Let #,and Z,, n = 1 be random variables, and let Y, = F,(f) + Z,. Let &, be
the o-field generated by r, and &, be the o-field generated by (1, Y}, - -+, Y, )
for n = 2. Denote V, = E(Z,}| % ,).

THEOREM. With the above notation, suppose that conditions (3), (4) and (5) hold
and that E(Z,|.%,) = 0. Suppose also that a,,n = 1, is an 5 ,-measurable ran-
dom variable with

(6) sgn (a,) = 1 if F, isnondecreasing
= —1 if F, isnonincreasing
and that
(i) 2a’4’ < oo
) (i) X atV,< oo and
(iii) )] |a,|b.(e) = oo for every ¢ >0, a.s.,
then t, — 0 a.s., where t, is given by (2).
Proor. Let U, = (t, — 6)*. Then,
(®) Unir = Uy — 2a,(t, — 0)(Fu(1,) — F.(0))
+ 2a,(t, — 0)Z, +.a,(F,(t,) — F,(0) — Z,)".
Taking expectations on both sides of (8) and using the convexity inequality
(a + b)* < 2(a® + b%), one obtains
E(UpnlF,) = U, — 2a,(t, — 0)(Fu(1,) — F.(0))
+ 20 (F(t.) — Fu(0)) + 24,V .
By (3), (5) and (6) it follows that
EUpi| Z0) = Un = 2la,||t, — O||Fu(1,) — Fu(0)] + 24,°4,’U, + 2a,'V,
= (1 + 2a,’4,HU, + 24,2V, — 2|a,||t, — 0||F.(t,) — F.(0)] .
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If we set 8, = 2a,’4,% §, = 2a,’V, and {, = 2|a,||t, — 0||F,(t,) — F,(6)|, con-
ditions (7) (i) and (ii) imply that lim, U, exists a.s. and

© 3 @ity — BlIF,(t,) — Fu(®)] < oo as.

Let X be the a.s. limit of U,. It remains to show that X = 0 a.s. Suppose
this is not the case. Then there exists a set S with P(S) > 0 such that X(w) > 0
for every we S. Let w € S. Then there exists ¢ > 0 and N such that forn = N,
¢ < |t,(w) — 0] < 7. Hence by (4),

Zn lan(a))”tn(w) - olan(t'n) - Fn(o)] =€ anNlan(w)lbn(e) =&

by (7)(iii), which contradicts (9).

In some applications it may occur that the functions F, are random. This
situation was encountered by the author while constructing an adaptive proce-
dure for determining an optimal inspection policy in a stochastically failing
system. The details are discussed elsewhere (see [2]). If instead of F,(x) one
has F,(x, w) which is (jointly) measurable with respect to (% x &) where <&
is the Borel o-field on the real line, then it is easy to see that the above theorem
remains true if the following modifications are made:

(a) Conditions (3) and (6) hold for every fixed w.

(b) Conditions (4), (5) with A4, being & -measurable functions and (7) hold
with probability one.

REMARKS. 1. As Albert and Gardner point out it seems advisable to use
truncated procedure whenever it is known that ¢ lies in some finite interval
(a, ). That is, let f(x) be a real valued function. The truncation of f(x) in an
interval (a, b) is defined by

[0k = if fl)zb
= f(x) if a<flx)y<b
=a if fixyga.
A truncated process analogous to (2) is defined by
(10) i = [0* — a(F(t,*) — YL
Since

It — 0] < (1% — 0) — ay(Fo(t,¥) — Y,) 5

it is clear that the proof of convergence of the untruncated process (2) holds for
the truncated process (10) as well.

2. As one can readily check, all our conditions except condition (7) (i) follow
from Albert and Gardner’s conditions of their Theorem 2.1. If we assume dif-
ferentiability of the functions F,, with sup, |F,(x)| < oo, where F, denotes the
derivative of F,, then our condition (5) is satisfied with A, = sup, |F,(x)| and
Albert and Gardner’s condition (2) is implied by our condition (7) (i).
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