ON THE ASYMPTOTIC NORMALITY OF KENDALL'S RANK CORRELATION STATISTIC

By MILOSLAV JIRINA

The Flinders University of South Australia

Kendall's rank correlation statistic $T_n = \sum_{i>j} \operatorname{sgn}(X_i - X_j) \cdot \operatorname{sgn}(Y_i - Y_j)$ is well known to be asymptotically normally distributed under the null hypothesis of independence as the sample size $n \to \infty$. In the note it is shown that this assertion can be obtained easily from the recurrence formula $p_n(t) = (1/n) \sum_{k=1}^n p_{n-1}(t-2k+n+1)$ for the probability distribution p_n of T_n (see Kendall (1970), e.g.). This recurrence formula implies that T_n has the same distribusion as a sum of (n-1) well defined independent random variables to which the Lyapunov criterion applies.

Kendall's rank correlation test is based on the statistic $T_n = \sum_{i>j} \operatorname{sgn}(X_i - X_j) \operatorname{sgn}(Y_i - Y_j)$, where $(X_1, Y_1), \dots, (X_n, Y_n)$ is a sample of size n from a continuous bivariate population and $\operatorname{sgn} y = 1$ if y > 0, $\operatorname{sgn} y = -1$ if y < 0. It is well known that

(1) under the null hypothesis H_0 of independence, the statistics T_n are asymptotically normally distributed as $n \to \infty$.

Kendall uses the moment method in proving (1) (see [1], 5.8 e.g.). The aim of this note is to show that (1) can be obtained easily by proving that T_n has under H_0 the same distribution as a sum of n-1 independent random variables. A similar method was used in [2], however the proof is much longer than the present one.

PROOF OF (1). For each integer t and for each $n \ge 2$ put $p_n(t) = \text{Prob } (T_n = t \mid H_0)$. The following recurrence formula for p_n will be used (see [1], 5.2 e.g.):

(2)
$$p_n(t) = \frac{1}{n} \sum_{k=1}^n p_{n-1}(t - 2k + n + 1)$$

for any integer t and $n \ge 3$. For each integer t and each $n \ge 2$ put

$$q_n(t) = \frac{1}{n}$$
 if $t = -n + 1, -n + 3, \dots, n - 3, n - 1$
= 0 otherwise.

Using the convolution operation * we can rewrite (2) in the form $p_n = q_n * p_{n-1}$ which, together with $p_2 = q_2$, yields $p_n = q_n * q_{n-1} * \cdots * q_2$. Hence under H_0 ,

www.jstor.org

Received January 1975; revised April 1975.

AMS 1970 subject classification. Primary 62E20.

Key words and phrases. Kendall rank correlation statistic, asymptotic normality, recurrence formula.

214

 T_n has the same distribution as the sum $\sum_{k=2}^n Z_k$, where Z_2, \dots, Z_n are independent integer-valued random variables such that Z_k has probability distribution q_k . Clearly, $E(Z_k) = 0$, $E(Z_k^2) = \frac{1}{3}(k^2 - 1)$, $E(|Z_k|^3) \le k^3$ and $\sum_{k=2}^n E(|Z_k|^3)/[\sum_{k=2}^n E(Z_k^2)]^{\frac{3}{2}} \le cn^{-\frac{1}{2}} \to_n 0$. Hence, by the Lyapunov theorem, T_n are asymptotically normal.

REFERENCES

- [1] KENDALL, M. G. (1970). Rank Correlation Methods, 4th ed. Griffin, London.
- [2] TERPSTRA, T. J. (1952). The asymptotic normality and consistency of Kendall's test against trend, when ties are present in one ranking. *Indag. Math.* 14 327-333.

SCHOOL OF MATHEMATICAL SCIENCES
THE FLINDERS UNIVERSITY OF SOUTH AUSTRALIA
BEDFORD PARK, SOUTH AUSTRALIA 5042