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ON RE-PAIRING OBSERVATIONS IN A BROKEN
RANDOM SAMPLE
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It is assumed that a random sample of size n is drawn from a bivariate
distribution f{¢t, ) which possesses a monotone likelihood ratio (MLR).
However, before the sample values are observed, the pairs are ‘broken’
into components ¢ and u. Therefore, the original sample pairings are
unknown, and it is desired to optimally re-pair 7- and u-values in order to
reconstruct the original bivariate sample. It is observed that for the maxi-
mum likelihood pairing (MLP) to be the ‘natural’ pairing for all ¢- and u-
values, it is necessary that f has MLR. It is shown that if it is desired to
maximize the expected number of correct matches, then the class of pro-
cedures ®@1,,, Which result in pairing the largest ¢ with the largest u and
the smallest # with the smallest u, is a complete class. A sufficient condition
under which the MLP maximizes the expected number of correct matches
is also obtained.

1. Introduction and summary. An interesting version of the matching problem
was introduced by DeGroot, Feder and Goel [2]. The authors assumed that a
random sample of size n is drawn from an infinite bivariate population with
pdf f(t, u). However, before the sample values can be observed, each obser-
vation vector (t;, #;) gets broken into two separate components, namely ¢, and
u;, and these observations are available only in the form x,, - -+, x, and y, - -,
Y.» Where

(1.1) <X <X, and p, <y < o0 < P

are the ordered valuesof ¢, - - -, ¢, and u,, - - -, u, respectively. Asa consequence
the pairings in the original sample are not known. The observed values are
called a broken random sample from the given bivariate population. The general
problem considered in [2] is to re-pair the observed values x,, - - -, x,, with the
observed values y,, - - -, y, so as to reproduce most of the vectors (¢, #;) from
the original sample. Two optimality criteria are suggested: (i) to maximize the
probability of correct pairing of all n observations; (ii) to maximize the expected
number of correctly matched pairs. Let @ be the set of all permutations ¢=
(¢(1), - -+, ¢(n)) of the integers 1,2, ..., n, and let us assume that re-pairing
according to the permutation ¢ is to pair x, with y,,, i =1,2, ..., n. Itis
desirable to find a permutation ¢* which is optimal according to one of the
criteria. In [2], it is assumed that the joint distribution of f{t, u) is given by

f(t, u) = a(t)b(u) exp(ut) (u,t)eR*.
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The following results, among others, are then established:

(i) The maximum likelihood permutation (MLP) ¢* is given by the ‘natural’
pairing ¢*(i) = i (i.e., pair x, with y) fori =1, ..., n.

(ii) The MLP maximizes the probability of correct pairing of all n obser-
vations.

(iif) The probability of pairing x,(x,) correctly is maximized by pairing x,(x,)
with y,(y,).

(iv)  Let @, , denote the class of all permutation ¢, such that Vs = yrand
Ysm = Var and let M(¢4) denote the expected number of correct matches if the
permutation ¢ is used to re-pair the observations. (An expression for M(¢) is
given in (5.1) of [2].). Then @, , is a complete class of permutations; i.e. given
any permutation ¢ ¢ @, ,, there exists a ¢ € @, , which is as good as ¢, i.e.,
M(¢) = M(¢). Sufficient conditions for the MLP to maximize M(¢) are also
given.

Chew [1] extends some of the discussion in [2] to a class of distributions f(r, u)
possessing a monotone likelihood ratio (MLR), i.e., for all #, < t, and u, < u,,
9(ty, t,; uy, u,) = 0 where

(1.2) 9(a, b; ¢, d) = f(a, )f(b, d) — fla, d)f(b, ) .
The following results, among others, are established in [1]:

(a) The results in (i) and (ii) above hold.
(b) For a trinomial distribution, the class @, , is complete. A sufficient con-
dition, similar to the one in [2], for the MLP to maximize M(g) is also given.

Various extensions of these results are presented in Section 2 of this paper.
In particular, it is proved that for an arbitrary f with MLR, the class D, , is
complete. In Section 3, a set of sufficient conditions for the MLP to maximize
M(g) is obtained. Thus, the results in this paper extend and complete the results
(iv) and (b) obtained in [2] and [1].

2. Extensions of previous results. The extension of the result (iii) above to
the class of distributions with MLR is trivially obtained by replacing the factor
eXp(x; y) by f(x;, y,) in the proof given in [2]. It can also be proved that if the
MLP is the ‘natural’ pairing for all possible sets of values x,, - .-, x, and Yo vy
Ya» then f has MLR.

We shall now show that if f has MLR, then the class @, , is complete. Let
¢ € @ be a fixed permutation such that x, < x; and Yoy > Vg4 fOr some integers
iandj. Let the permutation ¢ € @ and the function A(x, y) be defined by

@1) @) =96(), ¢()=4@) and g(k)=g(k) forall other &,
and

(2.2) A(x, y) = f(x55 )9(x, xj; Yotirs Vo) + (x5 ¥)9(x,5 x; Yotir Yow)
where the function g is given by (1.2). Then, by Theorem 1 of [1], a sufficient
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condition for M(¢) = M(¢) to hold is that A(x,, y,) = 0 for all x, ¢ [x,, x;] and
Ve € [Vsiir» Yor]- We relax this condition and obtain the following stronger
results.

THEOREM 1. Let ¢ be a permutation satisfying x, < x; and y,;, > y,; for some
i and j, and let the permutation ¢ be given by (2.1). If

(2.3) X; =X, or Yo =N or A(x,, 1) 2 0
and
2.4) X, = X or Yoy = In or A(x;, y,) =0,

then the permutation ¢ is as good as ¢, i.e. M(¢) = M($).

Proor. First observe that A(x, y) can also be expressed as

(2.5) A(x, y) = (X Yg(i)9(Xis X33 P Vo) + J(X0 Vgi)9(Xis X35 Ygiins V) -
If we use the assumption that f{z, u) has MLR and let

(2.6)  A*x,y) = A, p)[f(x;5y),  A¥(xy) = AXx, Y% Ypw) »
then it follows that

Fact 1. A(x,y) = 0= A*(x,y) =2 0 = A**(x,y) = 0,

Fact 2. f(x;, y)/f(x;, y) is a nonincreasing function of y,

and
Fact 3. f(x, y,)/f(%, y4.5) is @ nondecreasing function of x.

We shall partition the region x, ¢ [x;, x;] and y, € [y4;)» V4] into four rectangles,
namely
Ri={x=x<xp1 Sy <JYppn}>

Ry ={x; <x=Z X0 Y40y < YV = V) >
Ri={x; <x=x,n=y<Jysp}, and
Ri={x; = x < X yyr <Y = Ja}-
Note. If x; = x, or y,;, = y, then R, is a null set; and if x; = x, or y,;, =
Y., then R, is a null set.
Case I. (x;,y,) €R,.

Since g(X,, X33 Yyiirs Vo) = 0 for all (x,,y,)eR,, it follows from Fact 2,
(2.2), and (2.6) that

(2.7) A*(Xy yg) = A*(Xp5 Vgi5)) -

However,

(2.8) A*(xns Vo) = {(%5 Vo) (%55 Vo) (X5 Yo ) (Xns Vaiin)
— f(xis Yo )f(Xns Yoiir) -

Together, (2.7), (2.8), and Fact 3 imply that
A*(Xh5 Yq) Z f(%5 Yo% V) — f(Xis Y g (Xns Vo) = 0«
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Therefore, from Fact 1, it follows that the condition A(x,, y,) = 0 holds auto-
matically for all (x,, y,) € R,.

Case II. (x,,y,) € R,.

Since (x4, X35 Vyips Vo) = 0 for all (x;, y,) € R,, it follows from Fact 2, (2.2),
and (2.6) that
(2.9) A*(xyy y,) = A*(xh,y¢(i)) .

However,

(2.10) A*(xps Vo) = f(Xis Yo ) Xns Ysiar)
— { (X5 Ysci)lf(xi> Y o) (X V) (Xns Ygeir) -
Together, (2.9), (2.10) and Fact 3 imply that

A*(xn, ¥0) Z [(X0 Yo ) (X Vi) — [(Xis Yoo )f(Xns Vo) = 0.

Therefore, from Fact 1, it follows that the condition A(x,, y,) = 0 holds auto-
matically for all (x,, y,) € R,.

Case III. (x,,y,) € R;.

Since g(x;, X35 Vyiiys Vo) = 0, for all (x,, y,) € Ry, it follows from Fact 2,
(2.2), and (2.6) that

(2.11) A*(% yq) Z A* (X 1) -

However, (x;, y,) € R; and, therefore, it follows from Fact 1 and (2.11) that the
condition A4(x;, y;) = 0 for all x, € (x;, x,] is equivalent to A(x,,y,) = 0 for all
(X4 ¥o) € Ry But, 9(x;, X35 Y1 Ygi) = 0. Therefore, Fact 3, (2.5) and (2.6)
together imply that '

(2.12) A¥H(Xps 1) Z A (%05 1) -

However, (x,, y;) € R, and, therefore, if follows from Fact 1 and (2.12) that the
condition A(x,, y,) = 0 holds for all (x,, y,) € R, iff A(x,, y,) = 0.

Case IV. (x,,y,) €R,. Using an argument similar to Case III, it can be
proved that the condition 4(x,, y,) = 0 holds for all (x,, y,) € R, iff A(x,,y,) = 0.
The result in Theorem 1 follows from the above discussion and Theorem 1 of
[1].

Now the completeness property of the class @, , of permutations follows from
the next theorem. "

THEOREM 2. For each permutation ¢ ¢ @, ,, A¢p* € O, , such that M(p*) = M($).

ProoF. Let ¢ ¢ @, ,begiven. If y,,, = y,, let ¢ = ¢. However, if y,,, > y,
and y,;, = y, for some j, then choose the ¢ defined by (2.2) for i = 1. Now, if
x; = x,, then M(¢) = M(p) and if x; > x,, then by Theorem 1, M(¢) > M(9).
If ¢ satisfies yy,) = y,, then let ¢* = ¢. However, if y,,, < y,, and y,, =y,
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for some i < n, then obtain the ¢*, which is as good as ¢, by applying Theorem
1. Now ¢* e @, , and M(¢*) = M(9).

COROLLARY 1. Let p** ¢ ® be a permutation such that M(¢**) = max, ., M(9).
Then y,ug, = Y, and Yy = Ya-

COROLLARY 2. If n = 3, then o** is the MLP ¢*.

3. Sufficient conditions for MLP to maximize M(¢). We shall now obtain
conditions, similar to (6.8), (6.9) and (6.10) of [2], under which the MLP
maximizes M(p) for every n > 3.

Let us define

(3.1 (%, y) = {f0x0s Y2 ) [f(X0s V)% 32}

and
(3.2) A, (a, bsc,d) = 2,,(b,d) — A,4(b, c) — A,(a,d) + 4,(a,¢).

On multiplying A(x, y) by f(x, Y){S% s)f(% Y s)f(Xis Y)f(x55 y)} it follows
that the last conditions in (2.3) and (2.4) are equivalent to

(3.3) Au(Xis X35 Vg Vo) Z 05 and Aia(Xis X35 Vg Vo) = 0 -

The following lemma is a consequence of Theorem 1 and Theorem 2.

LeMMA 1. If A,(a,b;c,d) = O0forallx, < a<b<x,andy, <c<d=<y,
and A, (a, b;¢c,d) =0 forall x, <a<b<x, ,and y,<c<d<y,, then the
MLP ¢* maximizes M(p).

Let us now assume that f{¢, u) has second order partial derivatives and observe
that A,,(a, b; ¢, d) is a second mixed difference of the function Z,,(x, y). The
next theorem is a consequence of the above lemma.

THEOREM 3. If (0%/0x dy)A,.(x, y) = O for all x and y such that x, < x < x, and
Y <Y £ Yu_, and if (0°/0x 3y)A1,(x, y) = O for all x and y such that x, < x < x,_,
andy, < y < y,, then the MLP ¢* maximizes M(¢).

The proof is similar to that of Theorem 5 of [2] and is omitted.

COROLLARY 3. If (9*/0x 0y)A,y(x, y) and (0*/0x dy)A,,(x, y) are nonnegative for
all (x,y) such that x, < x < x, and y, < y < y,, then the MLP ¢* maximizes
M(9).

REMARK. 1. As noted in [2], the sufficient conditions given in Theorem 3
and Corollary 3 are typically more restrictive then is necessary.

2. It is conjectured that there exists no distribution for which the conditions
in Theorem 3 hold for all rectangles (x,, x,), (y;, y,). However, it is obvious
from the examples considered in [1] and [2], that these conditions do hold for
some data sets.

ExaMpPLE. An example of a pdf with MLR, not satisfying the condition in
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[2], is the bivariate logistic distribution, Gumbel [3], given by
ft, u) = 2exp(—t — w1 + exp(—1) + exp(—u)]~
—oLt<ow, —oLuUuLoo.
For this pdf, the sufficient condition, given in Corollary 3, reduces to
(eXp(=x) — exp(=x,))(EXP(—)s) — eXP(—Ja) g,
(I + exp(—x;) + exp(—y))(1 + exp(—x,) + eXp(—y.))
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