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NONINVERTIBLE TRANSFER FUNCTIONS
AND THEIR FORECASTS

By DAvID A. PIERCE
Federal Reserve Board

A transfer function relating a time series y; to present and past values
of a series x; need not possess an inverse. When (x;,y:) is a covariance
stationary process, it is shown that noninvertibility in this transfer func-
tion has the effect of reducing the error variance of the minimum mean-
square-error predictor of y; one or more steps ahead. In deriving these
results a ‘‘dual”’ series to x; is constructed, which has univariate stochastic
structure identical to that of x; itself, and an associated dual transfer func-
tion relating it to y; which is invertible.

1. Introduction. The model of this paper is that of a bivariate linear, non-
singular, purely nondeterministic covariance-stationary time series {(x;,y,):
t=-.--,—1,0,1, ...} in which the cross correlation between y, and x,,, is
zero for positive k. Specifically, the following assumptions are made:

Al. The variables x and y possess a relationship of the form

(1.1) Ye= D50 tiXe; + € =t(B)x, + ¢,
the transfer function t(B) = },7_,t;B’ is a polynomial in the backshift operator
B defined by Bix, = x,_;, satisfying 3} |z;| < oo.

A2. The two time series {x,} and {e,} are independent, each representable in
the form
(1.2) x, = 2 §;wi_; = EB)w,/ and
(1.3) e, =2 ¢;a_; = ¢(Ba,,
where w,’ and q, are serially and mutually independent white noise sequences;
§(B) = L5 &,;B, ¢(B) = L7 ¢; B and § = ¢, = 1.

A3. The operators §(B) and ¢(B) are invertible; i.e., x, and e, possess auto-
regressive representations [1]

w(Byx, =w/', n(B)e, = a,,
where x(B), n(B) are absolutely convergent and
#(B)§(B) = n(B)p(B) = 1.

A4. The transfer function ¢(B) is a rational function of B, i.e.

B)
1.4 «(8) = 28)
(1.4) ® =35
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where o(B) and §(B) are polynomials of finite orders k and k’. The roots of the
auxiliary equation §(z) = 0 lie outside the unit circle.

AS5. The transfer function z(B) is strictly noninvertible, i.e. w(z) in (1.4) has
a root inside the unit circle.

It is the last of these, A5, that is the particular focus of this paper. While
for stability the operators £ and ¢ are generally required to possess inverses, no
such necessary restrictions exist on z(B) for either the definition or the empirical
modelling [2] of (1.1); and some of the consequences of noninvertibility of the
transfer function are the focus of this study. Note that ¢(B) is invertible if and
only if |8,/ > 1, j =1, - .-, k in the factorization of w(z),

(1.5) o(2) = o, TT5., (B; + 2) .

Assumption A5 is that for some j, |8, < 1. The term “noninvertibility” actually
refers only to |3,/ < 1 for some j, whence the use of the word “strict” in AS.
In practice, as noted in [3, pages 43-44], due to rounding errors |3, = 1 will
not generally occur, and the use of “noninvertibility” in the sequel will refer to
strict noninvertibility. If in fact min,_;, |8,/ = 1 then the transfer function
might be regarded as “near-invertible,” and the present treatment can be ex-
tended to include this case under the “invertible” heading.

Suppose, for the remainder of this section only, that the transfer function
©(B) is invertible. Substituting (1.2) and (1.3) into (1.1),

Yo =o(B)§(B)w, + J(B)a,
(1.6) = 1 (Bw/ + ¢(B)a,
C = uBWw. + ¢(B)a, (o =1)
=h +e,
where the normalization y, = 1 is possible since y'(B) and y(B) are invertible
whenever 7(B) is. Then, to forecast a future observation y,,,, p = 1, given
S. = {(X,y:): t < n}, under the criterion of minimum mean square error the

optimal predictor y,(p) is the expectation of y,,, conditional on S, (see [3] for
example). For the model (1.6) this predictor is simply

(1.7) Ju(P) = 1(BWii, + ¢(Bak,, = h(p) + é.(p),

where
w*=w, t<n

=0, t>n

and similarly for a,*. Moreover, the MSE of this forecast, also referred to as
the p-step prediction variance, is

(1.8) p) =0, Dis 2" + 02 3= &5
The assumption (for this paragraph only) that z(B) is invertible implies that
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the series {w,} constitutes the observable past-history innovations of the linear
process
(1.9) h, = y(B)w,,
since y(B) is the product of two invertible operators. Consequently, the single-
period prediction MSE,
(1.10) v(l) =0, + 3.,
is the sum of the two innovation variances, a result which will be seen not to
hold when AS is true.

In the next section a framework is developed for analyzing the present case
where the transfer function 7(B) is noninvertible. The quantitative effect of

noninvertibility on the prediction variance (1.8) and (1.10) is the subject of
Section 3.

2. Explicit and implicit representations. Suppose, in accordance with AS,
that m > 1 zeroes of the numerator w(B) of the transfer function (1.4) lie within
the unit circle. Denoting these by —a,, - - -, —a,, it follows that the quantity
2.1) v(By=vy+v,B+ -+ + v, B + B™ = [[™, (a; + B)
is a factor of w(B) (if any of the a; are zero then the leading coefficients of v(B)
vanish). Let *(B) and Q(B) be defined by

o(B) = w*(B)v(B)

Q(B) = [@*(B)/o(B)]E(B)/§o 0" -
Thus Q(B) is the normalized (Q, = 1) product of the operator §(B) characterizing
the stochastic process {x,} and the remainder of the transfer function. Defining

(2.2) 1*(B) = Q(B)«(B) ,
it follows that the component [7(B)x,] of y, is [compare (1.6)]
(23) h, = u(B)Q(B)w, = y (B, .

It is important to note that (2.3) does not define a linear process the way that
(1.9) does; the existence of interior roots implies that {w,} in (2.3), while ob-
servable given {x,}, are unobservable given only {#,}. Instead, the innovations of
the series {4}, say {v,}, satisfy
(2.4) h, = 3 P(B)v,
where (a) y¥(B) is invertible and (b) the autocovariance function or spectrum
of (2.4) is identical to that of (2.3). The structure of #, as a linear process is
given by

LemMMA 1. The operator y'"(B) in (2.4) is
(2.5) 1 P(B) = p(B)Q(B) , where
(2.6) B)y=1+pB+ --- +9,B" =TI, (1 + a,B),
except that if b of the a’s in (2.1) are zero, then 7n(B) is of degree m — b.
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Proor. The covariance generating function of 4, is given by
0 'QB)QFW(B)(F) = 0,’Q(B)Q(F)y(B)y(F) ,
where F = B-! is the “forward shift” operator. It is easily seen that, since

Iail < 1’
(@ + B)@, + F) = (1 + a,B)(1 + a,F),

so that

2.7 WBM(F) = 7(By)(F),
and hence

(2.8) g,t=07"2.

Since |a,| < 1, x*”(B) in (2.6) is invertible; thus (2.4) defines a stationary linear
process with observable past-history innovations v,. []

We shall refer to (2.3) and (2.4) as respectively the explicit and implicit rep-
resentations of 4,. It can be shown that the coefficient of B in v(B), 0 < i < m,
is the coefficient of B™~* in 5(B). These results can be summarized as

THEOREM 1. Corresponding to the stationary noninvertible representation
h, = Q(B)(B)w, = y*(B)w,

of the component h, = [w(B)[d(B)]x, of the transfer function-noise model (1.1), there
exists a unique invertible representation

h = Q(B)yy(Byv, = x"(B)v -
The autocovariance structures implied by the dual linear operators y'"'(B) and y'*'(B),
or equivalently by 7(B) and v(B), are identical, as are the variances of the innovations
w, and v,.
In addition to the dual representations of h, given by (2.3) and (2.4), there exist

a) the dual invertible transfer functions v(B) and

(2.9) 2B (B) _ Ly, and
o(B)
b) the dual independent variable series x, and
(2.10) x, D = [¢D(B)]"*h, = &(B)v, .

As univariate stochastic processes, {x,'"’} and {x,} are indistinguishable.

3. Reduction in prediction variance. As seen above, noninvertibility in a
transfer function implies that two sets of innovations, {w,} and {v,}, are re-
coverable from the system whereas only one would be otherwise; in other
words the series x, contains additional information pertinent to y, not imbedded
within the dual series x,'””. A measure of this additional information is the
reduction in the forecast variance.

For the noninvertible transfer function model containing (2.3) as a component,
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it is easily seen that the forecast variance is given by (1.8) with y;* replacing
x;> for the dual implicit model (2.4), the MSE is also given by (1.8), noting
that ¢,2 = 0,7 by replacing y; with y;. Consequently, the difference in predic-
tion variance as a result of noninvertibility in the transfer function z(B), is,
letting ¢ = ¢, = 0}

(3.1 A(p) = o* 32 (") — ()% -

In justifying the title of this section it is now shown that (3.1) is positive for
p = 1 and nonnegative for general p.

THEOREM 2. The single-step prediction variance reduction is
(3.2) A() = o1 — [[[In ]} > 0.
Proor. Recalling that Q, = 1, (2.2) and (2.5) imply
A(l) = ple? — vio? = a¥(1 — vy?)
which, since v, = [ a;, is (3.2). Since each |a,| is less than unity this quantity
is positive. []

The quantity A(1) is particularly amenable to interpretation since it depends
only on ¢? and a, whereas in general (3.1) depends on other aspects of the
bivariate process (x,, y,) as embodied in Q(B). However, (3.1) is never negative.

THEOREM 3. For all positive integers p,
(3.3) A(p) 2 0.

Proor. First consider the case where «,, - - -, a,, are all real, for which the
result will be seen to follow by application of

LeEMMA 2. If, for any convergent operator H(B) = Y., H; B?,

(34 [H(B)], = X3~ H}

then for any |a| < 1,

(3.5) [(« + BYH(B)], < [(1 + aB)H(B)], -
Proor oF LEMMA. Since

(3.6) (o« + B)H(B) = Hya + (H, + H,a)B + - -

and

3.7 (1 + aB)H(B) = H, + (aHy + H)B + ---, .

it follows that the left hand side of (3.5) is

(3.8) o X Hf + 2a 5§~ HyHyyy + S~ Hy

whilst the right hand side is
(3.9) T H? + 2a Yp H;H,,, + a* Y27 Hp?
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whence the right minus the left is

(3.10) HXl —a?)=0. ' 0
To establish the theorem (for real roots), apply the lemma m times: first with
H(B) = Q(B) TI™: (1 + a,B), @ = aj; then with H(B) = Q(B)(«, + B) [I™s (1 +
a;B), @ = a,; then with H(B) = Q(B) [I2, (¢; + B) [ (1 + @, B),a = ag; - - -5
and finally with H(B) = Q(B) [I7=' (a; + B) and a = a,,. This gives m in-
equalities of the form (3.5), successive ones of which relate transitively; the

left hand side of the last is thus not greater than the right hand side of the
first, viz. '

[ (2 + B)QA(B)], = [T[n (1 + 2. B)Q(B)],
which replacing p by p — 1 is equivalent to A(p) = 0. []
Complex roots are handled in pairs according to

LEMMA 3. If & is the conjugate of a,

(3.11) [(a 4 B)(a + B)H(B)], = [(1 4 aB)(1 + aB)H(B)], -
ProoF oF LEMMA. If (a 4+ B)(@ + B) = v, + v, B + B?, then
(3.12) (1 + aB)(1 + aB) = (1 + v,B + v, B?).

In terms of the v’s
(3.13)  (a + B)(@ + B)H(B) = v, H, + (v, H, + v, H))B

+ (voH, + v, H, + H)B* 4 - - .
and
(3.14) (1 + aB)(1 + &B)H(B) = H, + (v, H, + H,)B

+ (VoHo + v H 4+ H)B* + .-

To obtain the analogs of (3.8) and (3.9), i.e., the left and right sides of (3.11),
note that the square of the coefficient of B/ (j = 2) above has 6 terms, 3 squares
and 3 cross products. Multiplying these out, adding them up, and matching
like terms in the expansions of (3.13) and of (3.14), the right side minus the
left side of (3.11) is
(3.15) (H3_, + H2)(1 — v?) + 2H, H,_,(v; — v,v,)

= (x* + 20xy + )91 — »)
where x = H,_,, y = H,, and

3.16 — U= WY Y1 — — P,
(3.16) =T T1xy 1.4
where ¢, = —v,, ¢, = —v,. Recognizing that p in (3.16) is the negative of the

lag-1 autocorrelation of the second order autoregressive process

(3.17) (1 — ¢,B — ¢, By, = (1 + aB)(l + aB)y, = e,,



1360 DAVID A. PIERCE

which is stationary since |a| < 1, it follows that |p| < 1. Consequently, the
quadratic form (3.15) is positive definite, whence nonnegative for all H,_,, H,. []

To establish the theorem in general, undergo the same sequence as described
following (3.10), except that whenever a complex root is encountered, handle
it and its conjugate with one application of Lemma 3 rather than two applica-
tions of Lemma 2. []

It is also seen from this proof [(3.10) and (3.15)] that A(p) is strictly positive
unless H,_, and H,_, are zero for every application of the two lemmas. This
will never occur if, for example, Q(B) contains a factor (1 — vB)™, |y| < 1,
e.g. if §(B) is of degree 1 or if x is first order autoregressive. On the other hand
if Q(B) is of finite degree then A(p) > 0 for only finitely many p. In any event,
it is “short term” forecasts which are most affected, as seen by

THEOREM 4. For any noninvertible transfer function,
(3.18) lim, ., A(p) =0.

Proor. The variance of 4, is the same in either its explicit or its implicit rep-
resentation, this variance being

(3.19) o 150 () = 0 X5, (1,0
The difference of the two sides of (3.19) is lim A(p). []

The case of pure delay. Very often in applications there is a delay of & time
units before a change in x influences y. Thus, in effect, »(B) contains the factor

B, so that @y = ... = &, = 0 in (2.1). Thus delay is seen to be but a polar
case of noninvertibility in transfer functions. For p < b,
(3.20) A(p) = o X2 [T

which implies that the forecast error in y results only from the error term, which
is of course always true when the independent-variable values at the time being
forecast are known exactly. The quantity B-*w(B) may still be noninvertible;
if it is invertible, then in the above treatment, »(B) = B*. Two examples where
v(B) = B® are described in [1, Chapter 11]; estimated models involving delay
plus additional noninvertibility are contained in [4].
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