NONINVERTIBLE TRANSFER FUNCTIONS AND THEIR FORECASTS

By DAVID A. PIERCE

Federal Reserve Board

A transfer function relating a time series y_t to present and past values of a series x_t need not possess an inverse. When (x_t, y_t) is a covariance stationary process, it is shown that noninvertibility in this transfer function has the effect of reducing the error variance of the minimum mean-square-error predictor of y_t one or more steps ahead. In deriving these results a "dual" series to x_t is constructed, which has univariate stochastic structure identical to that of x_t itself, and an associated dual transfer function relating it to y_t which is invertible.

- 1. Introduction. The model of this paper is that of a bivariate linear, non-singular, purely nondeterministic covariance-stationary time series $\{(x_t, y_t): t = \cdots, -1, 0, 1, \cdots\}$ in which the cross correlation between y_t and x_{t+k} is zero for positive k. Specifically, the following assumptions are made:
 - A1. The variables x and y possess a relationship of the form

$$(1.1) y_t = \sum_{i=0}^{\infty} \tau_i x_{t-i} + e_t = \tau(B) x_t + e_t;$$

the transfer function $\tau(B) = \sum_{j=0}^{\infty} \tau_j B^j$ is a polynomial in the backshift operator B defined by $B^j x_t = x_{t-j}$, satisfying $\sum |\tau_j| < \infty$.

A2. The two time series $\{x_t\}$ and $\{e_t\}$ are independent, each representable in the form

$$(1.2) x_t = \sum \xi_i w'_{t-i} = \xi(B)w_t' and$$

$$e_t = \sum \psi_j a_{t-j} = \psi(B) a_t,$$

where w_t' and a_t are serially and mutually independent white noise sequences; $\xi(B) = \sum_{0}^{\infty} \xi_j B^j$, $\psi(B) = \sum_{0}^{\infty} \psi_j B^j$; and $\xi_0 = \psi_0 = 1$.

A3. The operators $\xi(B)$ and $\psi(B)$ are invertible; i.e., x_t and e_t possess autoregressive representations [1]

$$\mu(B)x_t = w_t', \qquad \pi(B)e_t = a_t,$$

where $\mu(B)$, $\pi(B)$ are absolutely convergent and

$$\mu(B)\xi(B) = \pi(B)\psi(B) = 1.$$

A4. The transfer function $\tau(B)$ is a rational function of B, i.e.

(1.4)
$$\tau(B) = \frac{\omega(B)}{\delta(B)},$$

Received January 1974; revised April 1975.

AMS 1970 subject classifications. Primary 62M20; Secondary 62M10.

Key words and phrases. Transfer-function models, dynamic models, distributed lag models, forecasting, invertibility (of transfer function models), prediction.

where $\omega(B)$ and $\delta(B)$ are polynomials of finite orders k and k'. The roots of the auxiliary equation $\delta(z) = 0$ lie outside the unit circle.

A5. The transfer function $\tau(B)$ is strictly noninvertible, i.e. $\omega(z)$ in (1.4) has a root inside the unit circle.

It is the last of these, A5, that is the particular focus of this paper. While for stability the operators ξ and ψ are generally required to possess inverses, no such necessary restrictions exist on $\tau(B)$ for either the definition or the empirical modelling [2] of (1.1); and some of the consequences of noninvertibility of the transfer function are the focus of this study. Note that $\tau(B)$ is invertible if and only if $|\beta_j| > 1$, $j = 1, \dots, k$ in the factorization of $\omega(z)$,

(1.5)
$$\omega(z) = \omega_k \prod_{i=1}^k (\beta_i + z).$$

Assumption A5 is that for some j, $|\beta_j| < 1$. The term "noninvertibility" actually refers only to $|\beta_j| \le 1$ for some j, whence the use of the word "strict" in A5. In practice, as noted in [3, pages 43–44], due to rounding errors $|\beta_j| = 1$ will not generally occur, and the use of "noninvertibility" in the sequel will refer to strict noninvertibility. If in fact $\min_{1 \le j \le k} |\beta_j| = 1$ then the transfer function might be regarded as "near-invertible," and the present treatment can be extended to include this case under the "invertible" heading.

Suppose, for the remainder of this section only, that the transfer function $\tau(B)$ is invertible. Substituting (1.2) and (1.3) into (1.1),

(1.6)
$$y_{t} = \tau(B)\xi(B)w_{t}' + \psi(B)a_{t}$$
$$= \chi'(B)w_{t}' + \psi(B)a_{t}$$
$$= \chi(B)w_{t} + \psi(B)a_{t} \quad (\chi_{0} = 1)$$
$$= h_{t} + e_{t},$$

where the normalization $\chi_0 = 1$ is possible since $\chi'(B)$ and $\chi(B)$ are invertible whenever $\tau(B)$ is. Then, to forecast a future observation y_{n+p} , $p \ge 1$, given $S_n = \{(x_t, y_t) : t \le n\}$, under the criterion of minimum mean square error the optimal predictor $\hat{y}_n(p)$ is the expectation of y_{n+p} conditional on S_n (see [3] for example). For the model (1.6) this predictor is simply

(1.7)
$$\hat{y}_n(p) = \chi(B)w_{n+p}^* + \psi(B)a_{n+p}^* = \hat{h}_n(p) + \hat{e}_n(p),$$

where

$$w_t^* = w_t, \quad t \leq n$$
$$= 0, \quad t > n$$

and similarly for a_t^* . Moreover, the MSE of this forecast, also referred to as the p-step prediction variance, is

$$V(p) = \sigma_w^2 \sum_{i=0}^{p-1} \chi_i^2 + \sigma_a^2 \sum_{i=0}^{p-1} \psi_i^2.$$

The assumption (for this paragraph only) that $\tau(B)$ is invertible implies that

the series $\{w_t\}$ constitutes the observable past-history innovations of the linear process

$$(1.9) h_t = \chi(B)w_t,$$

since $\chi(B)$ is the product of two invertible operators. Consequently, the single-period prediction MSE,

$$V(1) = \sigma_w^2 + \sigma_a^2,$$

is the sum of the two innovation variances, a result which will be seen not to hold when A5 is true.

In the next section a framework is developed for analyzing the present case where the transfer function $\tau(B)$ is noninvertible. The quantitative effect of noninvertibility on the prediction variance (1.8) and (1.10) is the subject of Section 3.

2. Explicit and implicit representations. Suppose, in accordance with A5, that $m \ge 1$ zeroes of the numerator $\omega(B)$ of the transfer function (1.4) lie within the unit circle. Denoting these by $-\alpha_1, \dots, -\alpha_m$, it follows that the quantity

$$(2.1) \nu(B) = \nu_0 + \nu_1 B + \cdots + \nu_{m-1} B^{m-1} + B^m = \prod_{i=1}^m (\alpha_i + B)$$

is a factor of $\omega(B)$ (if any of the α_j are zero then the leading coefficients of $\nu(B)$ vanish). Let $\omega^*(B)$ and Q(B) be defined by

$$\begin{split} \omega(B) &= \omega^*(B)\nu(B) \\ Q(B) &= [\omega^*(B)/\delta(B)]\xi(B)/\xi_0\omega_0^* \; . \end{split}$$

Thus Q(B) is the normalized $(Q_0 = 1)$ product of the operator $\xi(B)$ characterizing the stochastic process $\{x_t\}$ and the remainder of the transfer function. Defining

$$\chi^{(E)}(B) = Q(B)\nu(B),$$

it follows that the component $[\tau(B)x_t]$ of y_t is [compare (1.6)]

(2.3)
$$h_t = \nu(B)Q(B)w_t = \chi^{(E)}(B)w_t.$$

It is important to note that (2.3) does not define a linear process the way that (1.9) does; the existence of interior roots implies that $\{w_t\}$ in (2.3), while observable given $\{x_t\}$, are unobservable given only $\{h_t\}$. Instead, the innovations of the series $\{h_t\}$, say $\{v_t\}$, satisfy

$$(2.4) h_t = \chi^{(I)}(B)v_t$$

where (a) $\chi^{(I)}(B)$ is invertible and (b) the autocovariance function or spectrum of (2.4) is identical to that of (2.3). The structure of h_t as a linear process is given by

LEMMA 1. The operator $\chi^{(I)}(B)$ in (2.4) is

$$\chi^{(I)}(B) = \eta(B)Q(B), \qquad where$$

(2.6)
$$\eta(B) = 1 + \eta_1 B + \cdots + \eta_m B^m = \prod_{i=1}^m (1 + \alpha_i B),$$

except that if b of the α 's in (2.1) are zero, then $\eta(B)$ is of degree m-b.

PROOF. The covariance generating function of h_t is given by

$$\sigma_w^2 Q(B)Q(F)\nu(B)\nu(F) = \sigma_v^2 Q(B)Q(F)\eta(B)\eta(F) ,$$

where $F = B^{-1}$ is the "forward shift" operator. It is easily seen that, since $|\alpha_i| < 1$,

$$(\alpha_i + B)(\alpha_i + F) = (1 + \alpha_i B)(1 + \alpha_i F),$$

so that

$$\nu(B)\nu(F) = \eta(B)\eta(F) ,$$

and hence

$$\sigma_w^2 = \sigma_r^2.$$

Since $|\alpha_i| < 1$, $\chi^{(I)}(B)$ in (2.6) is invertible; thus (2.4) defines a stationary linear process with observable past-history innovations v_i . \square

We shall refer to (2.3) and (2.4) as respectively the *explicit* and *implicit* representations of h_i . It can be shown that the coefficient of B^i in $\nu(B)$, $0 \le i \le m$, is the coefficient of B^{m-i} in $\eta(B)$. These results can be summarized as

THEOREM 1. Corresponding to the stationary noninvertible representation

$$h_t = Q(B)\nu(B)w_t = \chi^{(E)}(B)w_t$$

of the component $h_t = [\omega(B)/\delta(B)]x_t$ of the transfer function-noise model (1.1), there exists a unique invertible representation

$$h_t = Q(B)\eta(B)v_t = \chi^{(I)}(B)v_t.$$

The autocovariance structures implied by the dual linear operators $\chi^{(I)}(B)$ and $\chi^{(E)}(B)$, or equivalently by $\eta(B)$ and $\nu(B)$, are identical, as are the variances of the innovations w_t and v_t .

In addition to the dual representations of h_t given by (2.3) and (2.4), there exist

a) the dual invertible transfer functions $\tau(B)$ and

(2.9)
$$\frac{\eta(B)\omega^*(B)}{\delta(B)} = \tau^{(I)}(B) , \qquad and$$

b) the dual independent variable series x_t and

(2.10)
$$x_t^{(I)} = [\tau^{(I)}(B)]^{-1}h_t = \xi(B)v_t.$$

As univariate stochastic processes, $\{x_t^{(I)}\}$ and $\{x_t\}$ are indistinguishable.

3. Reduction in prediction variance. As seen above, noninvertibility in a transfer function implies that two sets of innovations, $\{w_t\}$ and $\{v_t\}$, are recoverable from the system whereas only one would be otherwise; in other words the series x_t contains additional information pertinent to y_t not imbedded within the dual series $x_t^{(I)}$. A measure of this additional information is the reduction in the forecast variance.

For the noninvertible transfer function model containing (2.3) as a component,

it is easily seen that the forecast variance is given by (1.8) with $\chi_j^{(E)}$ replacing χ_j ; for the dual implicit model (2.4), the MSE is also given by (1.8), noting that $\sigma_v^2 = \sigma_w^2$, by replacing χ_j with $\chi_j^{(I)}$. Consequently, the difference in prediction variance as a result of noninvertibility in the transfer function $\tau(B)$, is, letting $\sigma^2 = \sigma_v^2 = \sigma_w^2$

(3.1)
$$\Delta(p) = \sigma^2 \sum_{i=0}^{p-1} \{ (\chi_i^{(I)})^2 - (\chi_i^{(E)})^2 \}.$$

In justifying the title of this section it is now shown that (3.1) is positive for p = 1 and nonnegative for general p.

THEOREM 2. The single-step prediction variance reduction is

(3.2)
$$\Delta(1) = \sigma^{2} \{1 - \left[\prod_{i=1}^{m} \alpha_{i}\right]^{2}\} > 0.$$

Proof. Recalling that $Q_0 = 1$, (2.2) and (2.5) imply

$$\Delta(1) = \eta_0^2 \sigma^2 - \nu_0^2 \sigma^2 = \sigma^2 (1 - \nu_0^2)$$

which, since $\nu_0 = \prod \alpha_i$, is (3.2). Since each $|\alpha_i|$ is less than unity this quantity is positive. \square

The quantity $\Delta(1)$ is particularly amenable to interpretation since it depends only on σ^2 and α , whereas in general (3.1) depends on other aspects of the bivariate process (x_t, y_t) as embodied in Q(B). However, (3.1) is never negative.

THEOREM 3. For all positive integers p,

$$\Delta(p) \ge 0.$$

PROOF. First consider the case where $\alpha_1, \dots, \alpha_m$ are all real, for which the result will be seen to follow by application of

LEMMA 2. If, for any convergent operator $H(B) = \sum_{j=0}^{\infty} H_j B^j$,

$$[H(B)]_{p} = \sum_{i=0}^{p} H_{i}^{2},$$

then for any $|\alpha| < 1$,

$$[(\alpha + B)H(B)]_p \leq [(1 + \alpha B)H(B)]_p.$$

PROOF OF LEMMA. Since

$$(3.6) (\alpha + B)H(B) = H_0\alpha + (H_0 + H_1\alpha)B + \cdots$$

and

$$(3.7) (1 + \alpha B)H(B) = H_0 + (\alpha H_0 + H_1)B + \cdots,$$

it follows that the left hand side of (3.5) is

(3.8)
$$\alpha^2 \sum_{i=0}^{p} H_i^2 + 2\alpha \sum_{i=0}^{p-1} H_i H_{i+1} + \sum_{i=0}^{p-1} H_i^2$$

whilst the right hand side is

(3.9)
$$\sum_{0}^{p} H_{j}^{2} + 2\alpha \sum_{0}^{p-1} H_{j} H_{j+1} + \alpha^{2} \sum_{0}^{p-1} H_{j}^{2}$$

whence the right minus the left is

$$(3.10) H_{p}^{2}(1-\alpha^{2}) \geq 0. \Box$$

To establish the theorem (for real roots), apply the lemma m times: first with $H(B) = Q(B) \prod_{i=2}^{m} (1 + \alpha_i B)$, $\alpha = \alpha_1$; then with $H(B) = Q(B)(\alpha_1 + B) \prod_{i=3}^{m} (1 + \alpha_i B)$, $\alpha = \alpha_2$; then with $H(B) = Q(B) \prod_{j=1}^{2} (\alpha_j + B) \prod_{i=4}^{m} (1 + \alpha_i B)$, $\alpha = \alpha_3$; \cdots ; and finally with $H(B) = Q(B) \prod_{j=1}^{m-1} (\alpha_j + B)$ and $\alpha = \alpha_m$. This gives m inequalities of the form (3.5), successive ones of which relate transitively; the left hand side of the last is thus not greater than the right hand side of the first, viz.

$$\left[\prod_{i=1}^m (\alpha_i + B)Q(B)\right]_p \leq \left[\prod_{i=1}^m (1 + \alpha_i B)Q(B)\right]_p,$$

which replacing p by p-1 is equivalent to $\Delta(p) \ge 0$. \square

Complex roots are handled in pairs according to

LEMMA 3. If $\bar{\alpha}$ is the conjugate of α ,

$$(3.11) [(\alpha + B)(\tilde{\alpha} + B)H(B)]_{p} \leq [(1 + \alpha B)(1 + \tilde{\alpha}B)H(B)]_{p}.$$

PROOF OF LEMMA. If $(\alpha + B)(\bar{\alpha} + B) = \nu_0 + \nu_1 B + B^2$, then

$$(3.12) (1 + \alpha B)(1 + \bar{\alpha}B) = (1 + \nu_1 B + \nu_0 B^2).$$

In terms of the ν 's

(3.13)
$$(\alpha + B)(\bar{\alpha} + B)H(B) = \nu_0 H_0 + (\nu_0 H_1 + \nu_1 H_0)B + (\nu_0 H_2 + \nu_1 H_1 + H_0)B^2 + \cdots$$

and

$$(3.14) (1 + \alpha B)(1 + \tilde{\alpha}B)H(B) = H_0 + (\nu_1 H_0 + H_1)B + (\nu_0 H_0 + \nu_1 H_1 + H_2)B^2 + \cdots$$

To obtain the analogs of (3.8) and (3.9), i.e., the left and right sides of (3.11), note that the square of the coefficient of B^{j} ($j \ge 2$) above has 6 terms, 3 squares and 3 cross products. Multiplying these out, adding them up, and matching like terms in the expansions of (3.13) and of (3.14), the right side minus the left side of (3.11) is

$$(3.15) (H_{p-1}^2 + H_p^2)(1 - \nu_0^2) + 2H_p H_{p-1}(\nu_1 - \nu_1 \nu_0)$$

= $(x^2 + 2\rho xy + y^2)(1 - \nu_0^2)$

where $x = H_{p-1}$, $y = H_p$, and

(3.16)
$$\rho = \frac{\nu_1 - \nu_1 \nu_0}{1 - \nu_0^2} = \frac{\nu_1}{1 + \nu_0} = \frac{-\phi_2}{1 - \phi_2}$$

where $\phi_1 = -\nu_1$, $\phi_2 = -\nu_0$. Recognizing that ρ in (3.16) is the negative of the lag-1 autocorrelation of the second order autoregressive process

$$(3.17) (1 - \phi_1 B - \phi_2 B^2) y_t = (1 + \alpha B) (1 + \tilde{\alpha} B) y_t = e_t,$$

which is stationary since $|\alpha| < 1$, it follows that $|\rho| < 1$. Consequently, the quadratic form (3.15) is positive definite, whence nonnegative for all H_{p-1} , H_p . \square

To establish the theorem in general, undergo the same sequence as described following (3.10), except that whenever a complex root is encountered, handle it and its conjugate with one application of Lemma 3 rather than two applications of Lemma 2. \square

It is also seen from this proof [(3.10) and (3.15)] that $\Delta(p)$ is strictly positive unless H_{p-1} and H_{p-2} are zero for every application of the two lemmas. This will never occur if, for example, Q(B) contains a factor $(1 - \nu B)^{-1}$, $|\nu| < 1$, e.g. if $\delta(B)$ is of degree 1 or if x is first order autoregressive. On the other hand if Q(B) is of finite degree then $\Delta(p) > 0$ for only finitely many p. In any event, it is "short term" forecasts which are most affected, as seen by

THEOREM 4. For any noninvertible transfer function,

$$\lim_{p\to\infty}\Delta(p)=0.$$

PROOF. The variance of h_t is the same in either its explicit or its implicit representation, this variance being

(3.19)
$$\sigma^2 \sum_{j=0}^{\infty} (\chi_j^{(E)})^2 = \sigma^2 \sum_{j=0}^{\infty} (\chi_j^{(I)})^2.$$

The difference of the two sides of (3.19) is $\lim \Delta(p)$. \square

The case of pure delay. Very often in applications there is a delay of b time units before a change in x influences y. Thus, in effect, $\omega(B)$ contains the factor B^b , so that $\alpha_1 = \cdots = \alpha_b = 0$ in (2.1). Thus delay is seen to be but a polar case of noninvertibility in transfer functions. For $p \le b$,

(3.20)
$$\Delta(p) = \sigma^2 \sum_{j=0}^{p-1} [\chi_j^{(I)}]^2,$$

which implies that the forecast error in y results only from the error term, which is of course always true when the independent-variable values at the time being forecast are known exactly. The quantity $B^{-b}\omega(B)$ may still be noninvertible; if it is invertible, then in the above treatment, $\nu(B) = B^b$. Two examples where $\nu(B) = B^a$ are described in [1, Chapter 11]; estimated models involving delay plus additional noninvertibility are contained in [4].

REFERENCES

- [1] Box, G. E. P. and Jenkins, G. M. (1970). Time Series Analysis, Forecasting and Control. Holden-Day, San Francisco.
- [2] PIERCE, D. A. (1972). Least squares estimation in dynamic-disturbance time series models. Biometrika 59 73-78.
- [3] WHITTLE, P. (1963). Prediction and Regulation by Linear Least Squares Methods. English Universities Press, London.
- [4] Zellner, A. and Palm, F. (1974). Time series analysis and simultaneous equation models. J. Econometrics 2 17-54.

DIVISION OF RESEARCH AND STATISTICS FEDERAL RESERVE BOARD WASHINGTON, D.C. 20551