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Tne maximum likelihood estimate of a probability density function
based on a random sample does not exist in the nonparametric case. For
this reason and others based on heuristic Bayesian considerations Good and
Gaskins suggested adding a penalty term to the likelihood. They proposed
two penalty terms; however they did not establish existence or uniqueness
of their maximum penalized likelihood estimates. Good and Gaskins also
suggested an alternate approach for calculating the maximum penalized
likelihood estimate which avoids the nonnegativity constraint on the esti-
mate. In the present work the existence and uniqueness of both of Good’s
and Gaskins’ maximum penalized likelihood estimates are rigorously
demonstrated. Moreover, it is shown that one of these estimates is a
positive exponential spline with knots only at the sample points and that
in this case the alternate approach leads to the correct estimate; however
in the other case the alternate approach leads to the wrong estimate.
Finally, it is shown that a well-known class of reproducing kernel Hilbert
spaces leads very naturally to maximum penalized likelihood estimates
which are polynomial splines with knots at the sample points.

1. Introduction. Let Q denote the interval (a, b). In this study we consider
the problem of estimating the (unknown) probability density function fe LY(Q)
which gave rise to the random sample x,, - - -, x, € Q. The set Q may be bounded
or unbounded.

As usual define L(v), the likelihood that v ¢ L'(Q) gave rise to the random
sample x,, - - -, xy by

(1.1) Lw) = TIL v(xy) -
Let H(Q) be a manifold in L*(Q)and consider the following optimization problem:

(1.2) maximize L(v); subject to
ve HQ), fo¥(f)dt =1 and () =0 VieQ.

Here dt denotes the Lebesgue measure on Q. By a maximum likelihood estimate
based on the random sample x,, - - -, x (corresponding to the manifold H(Q))
we mean any solution of the constrained optimization problem (1.2). The
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estimate is said to be parametric if H(Q) is a finite dimensional manifold and
nonparametric if H(Q) is an infinite dimensional manifold.

In general a nonparametric maximum likelihood estimate does not exist. To
see this observe that the nonexistent solution is idealized by a linear combination
of Dirac delta spikes at the samples and gives a value of + oo to the likelihood
functional. Hence, in any infinite dimensional manifold which has the property
that it is possible to construct a sequence of functions which integrate to one,
are nonnegative and converge pointwise to a Dirac delta spike, the likelihood
will be unbounded and a maximum likelihood estimate will not exist. Morever
most infinite dimensional manifolds in L'(Q) will have this property, e.g., the
continuous functions, the differentiable functions, the infinitely differentiable
functions and the polynomials. Of course we may consider pathological examples
of infinite dimensional manifolds on which the likelihood is bounded. Asan
extreme case let H(Q) be all continuous functions on Q which vanish at the
samples x, - - -, xy. Then the likelihood is identically zero on the infinite dimen-
sional manifold H(Q) and is therefore bounded. Furthermore any member of
H(Q) which is nonnegative and integrates to one is a maximum likelihood estimate
for the random sample x,, - - -, x,.

The fact that in general the nonparametric maximum likelihood estimate does
not exist implies that, except in the extreme case where the parametric form of
the unknown density function f is known a priori, the parametric maximum
likelihood approach for large dimensional problems must necessarily lead to
unsmooth estimates and a numerically ill-posed problem. This leaves the prac-
titioner with the following dilemma: For small dimensional problems he has
no flexibility and the solution will be greatly influenced by the choice of the
manifold H(Q); while for large dimensional problems the solution must neces-
sarily approximate a linear combination of Dirac delta spikes, be unsmooth and
create numerical problems.

The following example will illustrate many of these points. For a given
positive integer n partition Q into n half-open half-closed disjoint intervals
T,, ---, T, of equal length # = (b — a)/n. Let I(T,) denote the characteristic
function of the interval T, and let v; denote the number of samples in the interval
T,. The well-known histogram estimate for f based on the random sample x;,- - -,
xy is given by

* — n Y
(1.3) f*=2n Nk IT;).

LEMMA 1.1. The probability density estimate (1.3) is the maximum likelihood
estimate for the random sample x,, - - -, xy corresponding to the n-dimensional
manifold H(Q) where H(Q) is the linear span of the characteristic functions
{(T):i=1,...,n}

PRrROOF. A typical member o of H(Q) has the form
o= Y. yMT).
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The nonnegativity constraint has the form y, > 0, i =1, ..., n and will not be
active at the solution. To see this observe that if v, > 0, then the optimal
solution of problem (1.2) will have y, > 0. Since the log is a concave function
we may work with the log likelihood instead of the likelihood. Hence we are
interested in determining y,, - .-, y, which maximizes

G(yl, M) yn) = ?:1 Vi log (yl)

subject to the integral constraint 4 3;7_, y, = 1. From the theory of Lagrange
multipliers, see e.g., Fiacco-McCormick (1969) Chapter 2, we must have

(1.4) v, + 4y, =0, i=1,...,n
hyi,y =1

for some scalar 2. It is not difficult to see that y, = v,/(AN) gives the unique
solution of (1.4) and that this solution satisfies the sufficiency conditions for a
maximizer. This proves the lemma.

Notice that for a fixed sample as n — oo the estimate f* given by (1.3) has
the property that f*(x,) > 4 oo, i =1, ..., N while f*(x) > 0if x¢{x, ---,
xy}. Hence for large n our maximum likelihood estimate is very unsmooth and
unsatisfactory. Whether or not we obtain a reasonable estimate is completely
dependent on the delicate and tricky art of choosing n, properly. It is also of
interest to note that the numerical properties of (1.4) are very poor for large n.

For the reasons stated above and others based on heuristic Bayesian con-
siderations Good and Gaskins (1971) suggested adding a penalty term to the
likelihood which would penalize rough (unsmooth) estimates. They suggested
two specific penalty terms; however, they left the reader in the unfortunate
situation of not knowing whether their maximum penalized likelihood estimates
exist. Good and Gaskins also suggested an alternate approach for constructing
the maximum penalized likelihood estimate which avoids the nonnegativity
constraint. Again they do not demonstrate that the original approach and the
alternate approach give the same estimate or that the estimate obtained from
the alternate approach exists.

In Section 2 we establish a general existence and uniqueness theory for a large
class of maximum penalized likelihood estimates. This general theory is used
to show that a well-known class of reproducing kernel Hilbert spaces (Sobolev
spaces) lead quite naturally to maximum penalized likelihood estimates which
are polynomial splines (monosplines in the terminology of Schoenberg (1968))
with knots at the sample points.

In Section 3 a rigorous demonstration, using the theory developed in Section
2, is given of the existence and uniqueness of one of Good’s and Gaskins’
maximum penalized likelihood estimates. It is also shown that this estimate is
a positive exponential spline with knots only at the sample points and that the
alternate approach suggested by Good and Gaskins gives the correct estimate.

In Section 4 using the theory developed in Section 2 a rigorous demonstration
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of the existence and uniqueness of Good’s and Gaskins’ other maximum penalized
estimate is given. Moreover, it is also demonstrated that the estimate obtained
from Good’s and Gaskins’ alternate approach is not the maximum penalized
likelihood estimate.

Much of our analysis uses the notions of the Fréchet gradient, the Fréchet
derivative and the second Fréchet derivative in an abstract Hilbert space. The
reader not familiar with these notions is referred to Tapia (1971).

Many important statistical considerations, e.g., consistency, unbiasedness,
convergence rate, choice of penalty term and numerical implementation are
unanswered here. Instead, it is the purpose of the present work to set the
maximum penalized likelihood approach on solid approximation theoretic ground.
Hopefully, the insights gained from this study will lead to investigation of the
classical statistical properties of the estimates considered.

Before moving on to Section 2 a few brief historical comments are in order.
Rosenblatt (1956) performed the first analytical study of the theoretical properties
of histograms. Parzen (1962) constructed a class of estimators which properly
included the histogram estimators and examined the consistency properties of
the estimators in this class. These results have been improved upon recently
by Wahba (1971). Kimeldorf and Wahba (1970) introduced the application of
spline techniques in contemporary statistics. Boneva, Kendall and Stefanov
(1971) and Schoenberg (1972) examined the use of spline techniques for obtain-
ing from histograms smooth estimates of a probability density function. It is
of interest to us that essentially all previous authors seem either to ignore the
nonnegativity constraint or to attempt handling it with the seemingly clever
trick of working with a function whose square is to be used as the estimate of
the probability density; however in many cases this approach tacitly ignores
the nonnegativity constraint. More will be said about the use of this approach
in Sections 3 and 4.

2. Maximum penalized likelihood estimators. Let H(Q) be as in Section 1
and consider a functional ®: H(Q) — R. Given the random sample x,, - - -,
xy € Q the ®-penalized likelihood of v e H(Q) is defined by

(2.1) L(v) = T v(x;) exp(—D(v)) .
Consider the constrained optimization problem:
(2.2) maximize L(v); subject to
ve HQ), fv(r)dt=1 and () =0, VieQ.

The form of the penalized likelihood (2.1) is due to Good and Gaskins (1971).
Their specific suggestions are analyzed in Sections 3 and 4.

Any solution to problem (2.2) is said to be-a maximum penalized likelihood
estimate based on the random sample x,, - - -, x, corresponding to the manifold
H(Q) and the penalty function ®. The terms parametric and nonparametric
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have the same meaning in this context as they did in the context of Section 1.
In the case when H(Q) is a Hilbert space a very natural penalty function to
use is @(v) = ||v||* where ||-|| denotes the norm on H(Q). Consequently when
H(Q) is a Hilbert space and we refer to the penalized likelihood functional on
H(Q) or to the maximum penalized likelihood estimate corresponding to H(Q)
with no reference to the penalty functional ® we are assuming that @ is the
square of the norm in H(Q). The Hilbert space inner product will be denoted
by (., «> so that {(x, x) = ||x||*. When H(Q) is a Hilbert space it is said to be a
reproducing kernel Hilbert space if point evaluation is a continuous operation,
ie., v, —»v in H(Q) implies v,(x) — v(x) ¥V xe Q; see Goffman and Pedrick

(1965).

For problem (2.2) to make sense we would like H(Q) to have the property
that for x,, - - -, x, € Q there exists at least on v € H(Q) such that
(2.3) fqv()dt=1, v(t)=0 VteQ and »x)>0 i=1,.---,N.

PROPOSITION 2.1. Suppose that H(Q) is a reproducing kernel Hilbert space and
D is a closed convex subset of {v e H(Q): v(x,) = O} with the property that D con-
tains at least one function which is positive at the samples x,, - - -, xy. Then the
penalized likelihood functional (2.1) has a unique maximizer in D.

Proor. Since H(Q) is a reproducing kernel Hilbert space we have |v(x,)| <
K|v||fori=1, ..., N. It follows that

24 IL()| < Cillvl|¥ exp(—[2]]") -

The function 6(2) = AV exp(—4)* is bounded above by (N/2)"?exp(—N/2);
hence |L(v)| < C,. If M =sup{L(v): ve D}, then there exists {v;,} © D such
that L(v;) - M. From our hypothesis M > 0. Notice that (1) —»0 as 1 —
+ oo. Hence from (2.4) ||v;|| < C, Vj. Theball {ve H(Q): ||v]|| < C,} is weakly
compact. Hence {v;} contains a weakly convergent subsequence which we also
denote by {v;}. Let v* denote the weak limit of {v;}. We have that v,(x,) —
v*(x,) as j — oo for each i =1, ..., N. The norm is a continuous convex
functional; hence weakly lower semicontinuous so that liminf ||v,|| = |[v*||. It
follows that

(2-3) lim; TTi, v;(x;) exp(—||v,[) < T1iL v*(x:) exp(—I|v*|]*) -

However the left-hand side of (2.5) is equal to M and the right-hand side is
equal to L(v*); so M < L(v*). Now since D is closed and convex it is weakly
closed; hence v* ¢ D. This establishes the existence of a maximizer.

Since M > 0, maximizing L over D is equivalent to maximizing J = log L
over D. A straightforward calculation gives the second Fréchet derivative of J
as

(2.6) It ) = = Tt KT — 2y
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Now since J”(v) is negative definite J is strictly concave and can therefore have
at most one maximizer on a convex set.

THEOREM 2.1. Suppose H(Q) is a reproducing kernel Hilbert space, integration
over Q is a continuous functional and there exists at least one v € H(Q) satisfying
(2.3) Then the maximum penalized likelihood estimate corresponding to H(Q) exists
and is unique.

Proor. The proof follows from Proposition 2.1 since the constraints in (2.2)
give a closed convex subset of {ve H(Q):v(x)=0,i=1, ---, N}.

Suppose (a, b) is a finite interval. For each integer s > 1 we let Hy(a, b)
denote the Sobolev space of functions defined on [a, 5] whose first s — 1 deriva-
tives are absolutely continuous and vanish at a and at b and whose sth derivative
is in L¥a, b). The inner product in Hy(a, b) is defined by
2.7 (e, vy = & p@ (e () dr .

It is well known that the space H,(a, b) is a Hilbert space with the inner product
given by (2.7).
LEMMA 2.1. The space Hy(a, b) is a reproducing kernel Hilbert space and integ-

ration over (a, b) is a continuous operation.

ProoF. Suppose u, u, € Hf(a, b) and u, — u in Hg(a, b). By the Cauchy-
Schwarz inequality in L*a, b) we have for x ¢ [a, b]

(2.8)  |u(x) = uy(x)] = |§2 (@ (1) — w/(t)dt] < (b — a)||w" — u/| 2a,0) 5
hence point evaluation is a continuous operation. A straightforward integration
by parts and the Cauchy-Schwarz inequality lead to
(2.9) 158 [u(t) — (0] di] < 3B — @)W — || gre
hence integration over (a, b) is a continuous operation.

THEOREM 2.2. The maximum penalized likelihood estimate corresponding to the
Hilbert space Hy(a, b) exists, is unique and is a polynomial spline (monospline) of
degree 2s. Moreover, if the estimate is positive in the interior of an interval, then

in this interval it is a polynomial spline (monospline) of degree 2s and of continuity
class 25 — 2 with knots exactly at the sample points.

Proor. The existence and uniqueness are a consequence of Lemma 2.1 and
Theorem 2.1, since clearly there exists at least one v € Hy*(a, b) satisfying (2.3).

When no confusion can arise we will delete the variable -of integration in
definite integrals. Consider an interval I, = [a, 8] C [a, b]. Let I = {te[a, b]:
t ¢[a, B]}. Define the two functionals J, and J_ on H(a, b) by

Ji(v) = X logv(x,) — §,, [v],
J_(v) = Zilogv(x,) — §,_[v*],

where the summation in the first formula is taken over all i such that x;, e/,

and
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and the summation in the second formula is taken over all / such that x,e/_.
It should be clear that
J() = J,(v) + J_(v)

where as before J(v) = log L(v) and L is the penalized likelihood in Hp(a, b).
Let v, denote the maximum penalized likelihood estimate for the samples
Xy, -+, Xy. Suppose v, is positive on the interval 7,. We claim that v, restricted
to this interval solves the following constrained optimization problem:

maximize J,(v); subject to
(2.10) veHy(a, B), v™(a)=v,"(a), v™(B)=v,"(h),
m=20,...,s—1,

§r, = {1, ¥ and ()= 0, tel, .
To see this observe that if v, satisfies the constraints of problem (2.10) and
J.(vy) < J,(v,), then the function v* defined by

v¥(t) = v, (1), tel,
=v,(1), tel_
satisfies the constraints of problem (2.2) with Hp(a, b) playing the role of H(Q)
and J(v,) = J,(vy) + J_(vy) < I (vy) + J_(v,) = J(v*), which in turn implies
that £(v,) < L(v*); however this contradicts the optimality of v*. Now define
the functional G on Hy(e, 8) by
G(v) = J (v, + V) for ve Hya, ).
Consider the constrained optimization problem
(2.11) maximize G(v); subject to
ve Hi(a, B) and §;,v=0.

If v satisfies the constraints of problem (2.11), then v, + tv satisfies the con-
straints of problem (2.10) for ¢ sufficiently small, since v, is positive in 7,. It
follows that the zero function is the unique solution of problem (2.11). From
the theory of Lagrange multipliers we therefore must have
(2.12) VG(0) + Av, =0,

where 1 is a real number, VG(0) is the Fréchet gradient of G at 0 and v, is the
Fréchet gradient of the functional v — §,, v in the space Hy(a, ). Clearly
in this case v, is merely the Riesz representer of the functional v — {; v.
Specifically

SI+ ’l)o(‘)’l)(‘) - SI.,. .

Integrating by parts in the distribution sense we see that v,* = 1; hence v, is
a polynomial of degree 2s in [a, 8]. A straightforward calculation shows that

(2.13) VG(0) = (z;i v”(f = 2v*)

*(Xs
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where the summation is taken over i such that x;el, and v, is the Riesz
representer of the functional v — v(x,) in H#(«, p), i.e.,

§r, 070 = v(x;) .

As before integrating by parts in the distribution sense we see that v, = g,
where 9, is the Dirac mass at the point x,. It follows that v, is a polynomial
spline of degree 2s — 1 and of continuity class 2s — 2 with a knot exactly at
the sample point x,. From (2.12) and (2.13) we have that v, restricted to the
interval [a, ] is a polynomial spline of degree 2s and of continuity class 2s — 2
with knots exactly at the sample points in [@, 8]. A simple continuity argument
takes care of the case when v, is only positive on the interior of [«, 8]. Schoenberg
(1968) defines a monospline to be the sum of a polynomial of degree 2s and a
polynomial spline of degree 2s — 1. This proves the theorem.

Before we analyze the Good and Gaskins estimates in Section 3 and Section
4 we must develop more background on Sobolev spaces. The reader desiring a
more complete treatment is referred to Lions and Magenes (1968).

By the Sobolev space of order s on the real line we mean

(2.14)  Hi(—o0, 00) = {ze St (I + @)"Flu)(®) € L~ oo, o)}

where § is the space of distributions with polynomial decrease at infinity and
F[p] denotes the Fourier transform of . The norm of € H(— oo, o) is given

by
(2.15) £l 3 —eo,eor = [I(1 + @) 2F[p)(@)]] 230, e0) -

If s is an integer, then pe HY(—oo, o) if and only if g, p®, ..., p®e
L*(— o0, o) and an equivalent norm is given by

(2.16) [0 Wil 2y o, I
where w, > 0 and w,, w, > 0.

LEMMA 2.2. The Sobolev space H*(—co, o) is a reproducing kernel Hilbert
space if and only if s > }.

ProofF. The dual of H* is H-*. A reproducing kernel Hilbert space is a space
such that the Dirac distributions are in the dual; hence we want

(1 + o) *2F(8,) € [(— oo, o)

where 4, is the Dirac distribution at the point x. Since the Fourier image of a
Dirac mass if a constant we must have ‘

(1 + @) e L(— o0, o).
This proves the lemma.

3. The first maximum penalized likelihood estimator of Good and Gaskins.
Motivated by information theoretic considerations Good and Gaskins (1971)
consider the maximum penalized likelihood estimate corresponding to the penalty
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function -
o =ai=."DLa (a>0).
v(r)
They do not define the manifold H(Q); but it is obvious from the constraints
that must be satisfied and the fact that

10,(v) = a | <‘Zf’) dt

what the underlying manifold H(Q) should be, namely v* € H(— oo, o0). This
leads us to analyzing the following constrained optimization problem:

maximize L,(v) = [[X, v(x;) exp(—P,(v)); subject to
3.1 vt e H(— o0, 00), (. v(t)dt =1 and v(t) =0
Vte(— o0, ).
In an effort to avoid the nonnegativity constraint in problem (3.1) Good and

Gaskins considered working with the vt instead of v. Specifically if we let u =
v}, then restating problem (3.1) in terms of # we obtain

3.2) maximize ¥ u(x,) exp(—4a (=, w'(t)*dr); subject to
u e H(— o0, o0) and (=, u(t)dt=1.
Problem (3.2) is solved for u* and then v* = (u*)* is accepted as the solution

to problem (3.1). This seemingly clever trick is somewhat standard in the
literature. The following lemma tells us when this trick can be used.

LEMMA 3.1. Let H be a subset of LX(Q) and J a functional defined on H. Consider
Problem 1
maximize J(vt); subject to
vie H, fov(t)dt =1 and v(t) =0 VieQ
and Problem 11
maximize J(u); subject to
ueH  and fqu(tydt=1.

Let u* be a solution of Problem II. Then v* = (u*)* solves Problem I if and
only if |u*| € H and J(u*) = J(|u*|).

PRrOOF. Observe that v* = |u*| hence if |u*| ¢ H, then J(v*)} is not defined
and meaningless. While if |u*| € H and J(u*) = J(|u*|), then for any v = 0 such
that vt ¢ H we have

Jh) < Ju*) = J(ju|) = Jw*) .

Now noticing that the proper constraints are always satisfied we have the lemma.

Two points are immediately of interest. The first being that the conditions
of the lemma clearly hold when #*, the solution to Problem II, is nonnegative.
The second being that the space H'(— oo, co) and the function L in problems
(3.1) and (3.2) satisfy the conditions of the lemma. Hence Good’s and
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Gaskins’ alternate approach gives the correct estimate in this case; however in
their other case (analyzed in Section 4) this is unfortunately not true.

Problem (3.2) cannot possibly have a unique solution. To see this notice that
if u* is a solution, then so is —u*. Adding the nonnegativity constraint to
problem (3.2) and restating in the form obtained by taking the square root of
the objective functional (since it is nonnegative) we arrive at the following
constrained optimization problem:

(3.3)  maximum L(v) = [, v(x,) exp(—®(v)); subject to
ve H(—oco, ),  [Z,0(tfdt=1 and ()20,
Vie(—o0, )
where
DO(v) = 2a §=,, V() dt

and a is given in problem (3.1).
ProrposiTION 3.1.

(i) If v solves problem (3.1), then vt solves problem (3.2) and problem (3.3).
(ii) If u solves problem (3.2), then |u| solves problem (3.3) and u* solves problem
(3.1).
(iii) If v solves problem (3.3), then v solves problem (3.2) and v* solves problem
(3.1).

Proor. The proof follows from Lemma 3.1 and the fact that if v > 0, then

D(v) = $Dy(v)
and

L(v) = L(vt).

CoRrOLLARY 3.1. If problem (3.3) has a unique solution, then problem (3.1) has
a unique solution; and although problem (3.2) cannot have a unique solution, it will
have solutions and the square of any of these solutions will give the unique solution
of problem (3.1).

The remainder of this section is dedicated to demonstrating that problem
(3.3) has a unique solution which is a positive exponential spline with knots
only at the sample points. The same will then be true of Good’s and Gaskins’
first maximum penalized estimate.

Along with problem (3.3) we will consider the constrained optimization
problem obtained by only requiring nonnegativity at the sample points:

maximize L(v); subject to
(34 ve H(—o0, ), (=, 9(ffdt=1 and w(x)=0,
i frnd 1, e, N .

Given 4 > 0 and a in problem (3.3) we may also consider the constrained
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optimization problem:

maximum £,(v) = T, v(x,) exp(—®@,(v)); subject to
3.5) v e H(— o0, o0), 2. U(t)'dt =1 and v(x)=0,
i=1,...,N

where
D, (v) = 2a (=, V(1) dr + 2 (=, v(r)* dr.

Our study of problem (3.5) will begin with the study of the following con-

strained optimization problem:
(3.6) maximize L,(v); subject to

v e H'(— o0, o0) and v(x;) =0, i=1,...,N
where L, is given by problem (3.5). Let L* = I}(— oo, o).

PROPOSITION 3.2. Problem (3.6) has a unique solution. Moreover if v, denotes
this solution, then

() v, is a exponential spline with knots at the sample points x,, - - -, x,;

(ii) v,(r) > 0, Vte(—o0, c0); and

(i) [[oil],0 = (/@)

Proor. From Lemma 2.2 H'(— oo, o) is a reproducing kernel space. Also
[[7]];* = @y(v) gives a norm equivalent to the original norm on H'(— co, o).
The existence of v, now follows from Proposition 2.1 with D = {v € H(— o0, c0):
v(x)=0,i=1, ..., N}. Wewill denote the @, inner product by ¢ , »,. Let

v, be the representer in the @, inner product of the continuous linear functional
given by point evaluation at the point x;,, i =1, ..., N, i.e.

. Vs )2 = 9(x;) V7ne H(—o0, ).
Equivalently

2a {2, v/('(0) dt + 2 §Z. v(tp(r) dt = 9(x;),  ¥ype HY(—oo, o).
Integrating by parts in the distribution sense gives

=a [=200(1) + Z(O]n(1) dt = 5(x), Ve H(—oo, c0);
hence
3.7 —2av" + v, =34,, i=1,...,N

where d,(f) = d,(t — x,)and §, denotes the Dirac distribution, i.e., |, Oo(t)n(t)dt =
7(0). If we let v, be the solution of (3.7) for i = 0, then

(1) exp((A(2))ir), t< 0

= 2(2ad)

= 0ad) exp(—(2/2a))tt), t>0

and v,(f) = vy(t — x;) fori = 1, ..., N. Since v, is the maximizer we have that
vy(x;) > 0,i=1, ..., N we necessarily have that the Fréchet derivative of £,
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at v, must be the zero functional; equivalently the gradient of L, or for that

matter the gradient of log £, must vanish at v, since L, and log L, have the same

maxima. A calculation similar to that used in the proof of Proposition 2.1 gives
vi

v(x,)

where V, denotes the gradient. It follows from (3.8) that

(3.8) V,log Ly(v) = 20 — T, 2

3.9) v, =3 2L vz(x)

Properties (i) and (ii) are now immediate. Since {v,, v;); = v;(x;) from (3.9)
we have

(3.10) [oallt = NJ2.

A straightforward calculation shows that

v/ (i (1) = 22 () (1), for i,j=1,.--,N.
a

So
oy = 4 [B () + 2o
= —85_[ (v:((;))) + s v:)(l)(cgzig),):' - % vy

Integrating in ¢ gives
2a) || |22 0,01 = V3l Z20-c0,000 -

By definition of the ®;-norm and (3.10) we have property (iii). This proves the
proposition.

PROPOSITION 3.3. Problem (3.4) has a unique solution.

ProoF. Let B = {ve HY(— oo, o0): (=, v(t)*dt < landv(x;)) = 0,i=1, ...,
N}. Clearly B is closed and convex. If L, is given by (3.5), then by Proposition
2.1 the functional has a unique maximizer in B; say u,. Now by property (iii)
of Proposition 3.2 if we choose 0 < 2 < 1, then v, the unique solution of
problem (3.6) will be such that ||v;]|,5-w,) > 1. We will show that for this
range Of 4, ||#;]| 12—, = 1. Consider v, = 6v, + (1 — 6)u,. We know that
log L, is a strictly concave functional (see the proof of Proposition 2.1). More-
over log £,(v;) = log L,(u,); hence log L;(v,) = log Ly(u;) for 0 < § < 1. Now
suppose ||#;|]12~w,«) < 1 and consider

g(ﬁ) = ||v0||L2(—ea,oo> .

We have ¢(0) <1 and g(1) > 1. So for some 0< 6,< 1, g(d,) =1 and
log L,(u;) < log ﬁz(v,,o). This is a contradiction since , is the unique maximizer
of L, in B; hence ||u;]| ;2w = = 1. This shows that u; is the unique solution of
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problem (3.5) for 0 < 2 < 1. However, the term 4 {=_, v(¢)* dt is constant over
the constraint set in problems (3.4) and (3.5); hence problems (3.4) and (3.5)
have the same solutions for any 2 > 0. This proves the proposition since we
have demonstrated that problem (3.3) has a unique solution for at least one 4.

PRrROPOSITION 3.4. Problem (3.3) has a unique solution which is positive and an
exponential spline with knots at the points x,, - - -, xy.

Proor. If we can demonstrate that ¥ the unique solution of problem (3.4)
has these properties we will be through. Let G(v) = log L(v) where L is given
in problem (3.3) and let

g(v) = (=, v(r)* dt

for v € H(— o0, o). Clearly ¥(x;) > 0fori =1, - .-, N; hance from the theory
of Lagrange multipliers there exist 2 such that ¥ satisfies the equations

(3.11) G'(v) — 29'(v) =0 and gv)y=1.
Using L*(— oo, oo) gradients in the sense of distributions (3.11) is equivalent to
(3.12) e’ 42w =37, % and g =1
v(x;)
where §, is the distribution such that (=, v(f)d(¢)dt = v(x,), i=1, ..., N.

Since we have already established that problem (3.4) has a unique solution if
follows that (3.12) must have a unique solution in H'(— co, oo); namely 7. If
2 £ 0, then any solution of the first equation in (3.12) would be a sum of
trigonometric functions and could not possibly satisfy the constraint g(v) = 1,
i.e., cannot be contained in L*(— oo, oo). It follows that 4 > 0. Now observe
that )

G—Aig=loglL,
where L, is given by problem (3.5); hence if ¥ satisfies (3.11) (from the first
equation alone) it must also be a solution of problem (3.6) for this 2 and there-
fore has the desired properties according to Proposition 3.2. This proves the
proposition.

PROPOSITION 3.5. The first nonparametric maximum penalized likelihood estimate
of Good and Gaskins exists and is unique; specifically the maximum penalized likeli-
hood estimate corresponding to the penalty function

AU
(V) = a S_det (a > 0)
and the manifold
HQ) ={v:v =0 and v'e H(— o0, o0)}

exists and is unique. Moreover the estimate is positive and an exponential spline
with knots only at the sample points.

Proor. The proof follows from Proposition 3.1 and Proposition 3.5.
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4. The second maximum penalized likelihood estimator of Good and Gaskins.
Consider the functional ® : H*(— oo, co) — R defined by

4.1) QW) = a (=, V(1) dt + B {2, v'(2) dt

for some « = 0and 8 > 0. By a second maximum penalized likelihood estimate
of Good and Gaskins we mean any solution of the following constrained optimi-
zation problem:

(4.2) maximize Ly(v) = J[¥, v(x;) exp(—®@(v})); subject to
vte H(—o0, ), §(=.v(f)dt=1 and v(t) =0 Vite(—o0, ).

As in the first case (described in the previous section) Good and Gaskins suggest
avoiding the nonnegativity constraint by calculating the solution of problem
(4.2) from the following constrained optimization problem:

(4.3) maximize [[YX, v(x,)’exp(—®D(v)); subject to
ve H(— o0, 00) and (=, v(1)dt =1

where @ is given by (4.1). )

Notice that if u € H(— o0, c0) is posmve at some points and negative at other
points, then |u| is in general not a member of H*(— oo, co), since in general its
derivative is not continuous. It follows from Lemma 3.1 that the only way we
can obtain solutions to problem (4.2) from solutions of problem (4.3) is for
problem (4.3) to have solutions which are completely of one sign. However
we will presently show that this is not the case.

Along with problem (4.3) we consider the constrained optimization problem:

maximize L(v) = [[¥, v(x;) exp(—3P(v)); subject to
“.4) ve H(—oo0, ), (".0(t)'dt=1 and v(x)=0,
i=1,...,N.

Problem (4.4) was obtained from problem (4.3) by taking the square root of the
functional to be maxirhized (since it is nonnegative) and requiring nonnegativity
at the sample points; hence the two problems only differ by the nonnegativity
constraints at the sample points. This simple difference will allow us to establish
uniqueness of the solution of problem (4.4); whereas problem (4.3) cannot have
a unique solution. By Lemma 3.2 we can obtain the solution of problem (4.2)
from the solution of problem (4.4) if and only if these solutions are nonnegative.
Moreover we will presently demonstrate that the solutions of: problem (4.4) are
not necessarily nonnegative. It will then follow that we cannot obtain the second
estimate by considering problem (4.4). If we naively use v,*, where v, solves
problem (4.4), as an estimate for the probability density function giving rise to
the random sample x,, - - -, xy, then clearly v,* will be nonnegative and integrate
to one and is therefore a probability density; however the estimate obtained in
this manner will not in the strict sense of our definition be a maximum penalized
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likelihood estimate. For this reason we will refer to this latter estimate as the
pseudo maximum penalized likelihood estimate of Good and Gaskins.

The next six propositions are needed to show that the second maximum
penalized likelihood estimate and the pseudo maximum penalized likelihood
estimate of Good and Gaskins exist, are unique and are distinct, and that Good’s
and Gaskins’ alternate approach cannot be used to obtain their second maxi-
mum penalized likelihood estimate.

ProrosITION 4.1. The second maximum penalized likelihood estimate and the
pseudo maximum likelihood estimate of Good and Gaskins are distinct.

Proor. We will show that it is possible for problem (4.4) to have solutions
which are not nonnegative. Toward this end let N =1, x, =0, « = 0, and
B =2. Let G(v) = log L(v), i.e.,

G(v) = log v(0) — (=, v"'(¢)*dt
and let
g(v) = (=, v(r)* drt .
As in the proof of Proposition 3.4 using the theory of distributions and the
theory of Lagrange multipliers we see that the solutions of problem (4.4) in this
case are exactly the solutions of

0,

2v(0)

“4.5) v 4 Qv = and g(v) =1
where ¢, is defined in the proof of Proposition 3.4. If we let ¥ denote the
Fourier transform of v, then taking the Fourier transform of the first expression
in (4.5) gives

U(w) = [2v(0)(2 + 16IT*w*)]*.
Since ||V]]13(-c0,e0) = ||V|]12(=w0,y = 1 We must have

- dw
7 (2 + 16IT*wt)?

For the integral in (4.6) to exist we must have 2 > 0. Now the inverse Fourier
transform of (4 + 16II*w*)~* is given by v where

(4.6) = 4v(0) .

b
(4.7) o(t) = Se_b; [cos bt — sinbt], ¢ <0
e~bt .
= W(cosbt + sinbt], >0

with b = 2/2¢. From (4.7) v(0) = (86%)~" and from (4.6) v(0)* = }4-1K where
K = ||(1 + 16II*0*)™"|| 3, «r)- Hence 2 = 2K and b = 2}K which is clearly not
nonnegative. This proves the proposition.

In the above proof we assumed the existence of a solution. At that point we
did not know that this was so; however our proof is valid since in Proposition
4.4 we will show that problem (4.4) always has a unique solution.
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COROLLARY 4.1. Problem (4.3) has solutions which are not nonnegative.

Proof. The solution constructed in the proof of Proposition 4.1 also solves
problem (4.3). To see this observe that if v satisfies the constraints of problem
(4.3), then so does —» and the functional values are the same. Also either v
or —v will satisfy the constraints of problem (4.4) since in the present case
there is only one sample.

CoRrOLLARY 4.2. Good’s and Gaskins’ alternate approach cannot be used to ob-
tain their second maximum penalized likelihood estimate.

Given 2 > 0 consider the constrained optimization problem:

maximize L,(v) = J]Y, v(x;) exp(—@;(v)) ; subject to
(4.8) v e H(— o0, o), (. v(t))dt =1 and wv(x) =0,
i=1,..-,N.

where
D;(v) = Q) + 2 {=, v(r)*dt
with @(v) given by (4.1).
As before we also consider the constrained optimization problem obtained by
dropping the integral constraint:

4.9) maximize L,(v); subject to
v € H¥(— o0, o0) and v(x) =0, i=1,.-.,N.
PROPOSITION 4.2. Problem (4.9) has a unique solution. Moreover if v, denotes this

solution, then
V2] 22(=e0,00) — F+ 00 as 1—0.

Proor. By Lemma 2.1 the Sobolev space H*(— oo, oo) is a reproducing kernel
space. Moreover, if
[IVll:* = @x(v) »

then an integration by parts gives

(4.10) 19'[[72 = [KVs ¥ 1al < [[9]]2a][9"]] 22

= 3]z + V712
where L? denotes L*(— oo, oo); hence ||+||, is equivalent to the original norm on
H*(— oo, c0). The existence and uniqueness of v; now follows from Proposition
2.1. ‘

We must now show that ||[v,]|;» — + o0 as 2 — 0. From the fundamental
theorem of calculus we have

d“’;t’)z dt = 2 {2, v(y' (1) dt

= 2|0l eVl zs -

(4.11) v(x)? = §7,
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Also, ||v"||.2 < ||v||2/B* so that from (4.10) and (4.11)

(4.12) v(x)* < 2|0l [0]]2/8*) -

Evaluating (4.12) at x,, taking logs (since v(x,) = 0) and summing over i gives
N 4 3N

(4.13) I log o(x) = - 10g (5 1ol ) + g~ log (vl

Hence from (4.13) we see that
N N 4
@14) 10 L) = 2L log (i) + 3108 (5 1ol ) — ol

In a manner exactly the same as that used to establish (3.10) we have that
|[v:]|,* = N/2. Hence from (4.14) and the fact that log £,(v) < log L,(v;) we
obtain

7 3N N N
(4.15) log L,(v) = e log (|[vsllz2) + 3 log (8N/B) —

—E b
forany ve{ue H(—oo0, 0):u(x;) =20,i =1, -.-, N}.
Let a and b be such that
a < min, (x;) and max, (x;) < b.

Given 2 > 0 and ¢ and ¢ define the function 6, in the following piecewise
fashion:
0,(t) = A exp(—(t — a)’[20%) for te(—o0,a)

=z for tela, b]
= AZexp(—(t — b)’[20%) for te (b, +0)
where 0 = A°. Straightforward calculations can be used to show
log (ITi%: 6:(x,)) = eNlog (4) ,
162112 = (b — @)2* + ((ILA)H)**?
1162122 = (2I2))*=2,

1162722 = 2((2I1A))%-%
and

(4.16)  [|6,]]7 = (b — @2+ 4 ((TLAY*++ + da(RIAH~* + 26((2MA) > .

If we want ||6,]|;> > 0 as 2 — 0 it is sufficient to choose all exponents of 4 in
(4.16) positive. If we also want

log (JTX, 0x(x;)) > +c0  as 250
we should choose ¢ < 0. This leads to the inequalities
224+1>0
26 4+0+1>0
4.17) 2¢ —0>0
26 —30>0
e<O0,
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The system of inequalities (4.17) has solutions; specifically e = — 4, and § =
—} is one such solution. With this choice of ¢ and § we see that log L,(6,) —
+oo as 1 — 0. It follows from (4.15) by choosing v = #, that ||[v;||,» — + oo
as 4 — 0. This proves the proposition.

ProposITION 4.3. Problem (4.3) has a unique solution.

Proof. By Proposition 4.2 there exists 2 > 0 such that if v, is the unique
solution of problem (4.9), then [|v,]|,2 > 1. Now, if B = {ve H¥(—oo0, o0):
(. v(t)’dt <1 and v(x)=0,i=1, ..., N}, then B is closed and convex.
The proof of the proposition is now exactly the same as the proof of Proposition
3.3.

PROPOSITION 4.4. The pseudo maximum penalized likelihood estimate of Good
and Gaskins exists and unique.

ProoF. Since problems (4.4) and (4.8) have the same solutions the proposition
follows from Proposition 4.3.

By the change of unknown function v — v* we see that problem (4.2) is
equivalent to the following constrained optimization problem:

maximize L(v) = TJ¥, v(x;) exp(—3P(v)); subject to
(4.18) ve H(—o0, ), (=, v(r)dr=1 and v(r) =0
Vite(—oo0, o0)
where ®(v) is given by (4.1).
In turn for 2 > 0 problem (4.18) is equivalent to
maximize L,(v); subject to
(4.19) v € H(— o0, o), (. v(t)*dt =1 and v(f) =0
Vite(—o0, )
where L, is defined in problem (4.8).

As in the previous two cases we also consider the constrained optimization

problem:
(4.20) maximize L,(v); subject to

v e H*(— o0, o0) and () =0 Vite(—o0, o0)
where L,(v) is defined in problem (4.8).

PROPOSITION 4.5. Problem (4.20) has a unique solution. Moreover if v,* denotes

this solution, then
[|v2F]|2e = +o0 as A—0.

Proor. The existence of v,* follows from Proposition 2.1 as in the proof of
Proposition 4.2. Let us first show that
(4.21) o3l < (N]2)? -
From Lions (1968) we see that
(4.22) Lyw)np —v,7) <0
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for all nonnegative 7 in H(— oo, c0). We have

L)) = n¥, g% — 200, 72

hence
(4.23) Ly (v,*)(v;*) = N = 2||vy)|;* .
Now choosing » = 0 in (4.22) and using (4.23) we arrive at (4.21). The

functions 0, defined in the proof of Proposition 4.2 satisfy the constraints of
this problem; hence

log L,(6,) < log Ly(v,*).

From (4.14) and (4.21) we have

@29)  log L0 = 2V 1og (03"l + 10g (8N/B) + -

The proof now follows from (4.24) since log L,(6;) — + oo as 2 — 0.

ProrosiTION 4.6. The second maximum penalized likelihood estimate of Good
and Gaskins exists and is unique.

ProoF. Using Proposition 4.5 the argument used to prove Proposition 4.3
shows that problem (4.19) has a unique solution which is also the unique
solution of problem (4.18). This proves the proposition.
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