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MINIMAX ESTIMATION OF LOCATION VECTORS
FOR A WIDE CLASS OF DENSITIES

By JAMEsS BERGER
Purdue University

Assume X = (X, ---, Xp)t has a p-variate density, with respect to
Lebesgue measure, of the form f{(x — 6)*£-(x — §)). Here % is a known
positive definite p X p matrix and p = 3. Assume either (i) fis completely
monotonic, or (ii) there exist a > 0 and K > 0 for which A(s) = f(s)ees is
nondecreasing and nonzero if s > K. Then for estimating ¢ under a known
quadratic loss, classes of minimax estimators are found.

1. Introduction. Since Stein (1955) first showed that the best invariant esti-
mator of a p-dimensional normal mean was inadmissible (p = 3), much study
has been given to improving upon the best invariant estimator of a location
vector. Until recently, classes of good minimax estimators had been found only
for the problem of estimating a normal mean under squared error loss and with
covariance matrix a multiple of the identity. (See Baranchik (1970), Strawderman
(1971), and Alam (1973).) Of course, Brown (1966) answered the theoretical
admissibility questions for a very wide class of distributions and loss functions.

Recently, Berger (1974a) found classes of minimax estimators for a normal
mean when the covariance matrix and quadratic loss were arbitrary. (Earlier,
Bhattacharya (1966) and Bock (1975) had found some particular minimax esti-
mators for this situation.). Strawderman (1974) extended things in a different
direction, by finding good classes of minimax estimators for location vectors of
certain symmetric densities.

This paper considers two further extensions. Section 3 deals with an extension
combining Strawderman (1974) and Berger (1974a). Densities of the form

(1.1) f((x = 0yE(x — 0))
= |£|~2

(2m)P2g®

exp [_Tfﬁ (x — 0)5-Y(x — 0)] dF (o)

are considered, where F is any known cdf on (0, co) and I is positive definite.
For estimating 6 under a quadratic loss, classes of minimax estimators are de-
veloped. The results parallel those of Strawderman (1974), though of necessity
the proof is different.

Also in Section 3, a characterization of the class of densities of the form
(1.1) is given. It is shown that f is of the form (1.1) if and only if it is com-
pletely monotonic in (x — #)'L-%x — 6). (f(s) is completely monotonic if
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(—1)"[(d"/ds™)f(s)] = O for every n.) This condition is often easy to verify, ob-
viating the often difficult problem of attempting to find F in applications. Section
3 concludes with several applications. ,

The class of completely monotonic f is rather small, and so in Section 4 a
different approach to the problem is considered. Itallows us to deal with densities
(with respect to Lebesgue measure) of the form f((x — 6)*£-}(x — @)), where f
does not decrease too fast in the tails. For example, suppose there exist & > 0
and K > 0 for which A(s) = f(s)e* is nondecreasing and nonzero if s > K. Then
the theory applies to f, and classes of good minimax estimators are found for 6.
Section 4 concludes with several applications.

2. Preliminaries. Let 4, >0 (i=1, ..., p) be known positive constants.
If x=(x,---,x,)" is a p-dimensional vector, define |x| = 37, x?, |x|,? =
2k x1[ Ay, and |x|? = 32, x4

For simplicity only the following ‘“canonical form” of the problem will be
considered. Let X = (X, - - -, X, )" be an observation from a p-dimensional density
(with respect to Lebesgue measure) of the form f(|x — 6|?). Here § = (6,,---,0,)'
is an unknown location vector, while the 4, are known positive constants. As-
sume the loss incurred in estimating 6 by ¢ is [0 — 6[°. (The general situation,
where f is of the form f((y — 7)*£-*(y — »)) and the loss is the quadratic loss
(0 — 1)'Q(d — 7), can be reduced to the case given above. Indeed, there exists
a nonsingular matrix B such that B*QB = I, (the p x p identity matrix), while
B'Y¥-'B = A~ (the diagonal matrix with diagonal elements 1/4,). Defining X =
B-'Yand § = By, it is easy to check that the (X, §) problem is in the “canonical
form” given above.)

For a measurable estimator d(X) = (9,(X), - - -, 0,(X)), define the risk func-
tion R(9, 0) = E,|0(X) — 0],>. (E, is, of course, the expectation under 6.)

It is easy to check that the best invariant estimator of 6 is d,(X) = X. Since
this is a location parameter problem under squared error loss, it is well known
that g, is a minimax estimator. Furthermore, J, clearly has constant risk. An
estimator ¢ is thus minimax if A,(§) = R(d,, ) — R(3, 6) = 0. The search for
minimax estimators is, hence, also a search for estimators as good as, or better
than §,. From Brown (1966) and Brown and Fox (1974) it is clear that we’ll
need p = 3 to hope to find estimators better than 4,.

The estimators that will be considered in this paper are given componentwise

by

=1 ) .

In terms of the general problem, with arbitrary £ and Q, the above estimator
corresponds to

(2'2) 6(X) = <Ip - r(th;:g;g::g_)lijlxnl) X.
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For an intuitive justification of estimators of the above form, along with a
numerical analysis of the improvement A,(f) they give, see Berger (1974b).

3. Minimax estimators of normal mixtures. This section deals with densities,
with respect to Lebesgue measure, of the form

B flx—0l) = §§ (2r) "0~ (I]2 A7F) exp[—|x — 6],%/(20%)] dF(0) ,
where F is a cdf on (0, co).

THEOREM 1. Let X be an observation from a p-dimensional density of the form
(3.1), where p = 3. Assume Ey|X|’ and E\|X|,7* are finite. Let § be of the form
(2.1) where

(i) r(v) is nondecreasing in v,

(ii) r(v)/v is nonincreasing in v, and

(iii) 0 < r < 2/(E,|X],™).

Then ¢ is a minimax estimator of 6§ under squared error loss.

CoMMENT. Note that E£|X|,~? < oo is a relatively weak assumption. If f is
bounded in a neighborhood of zero and p = 3, then it is clear that £ |X|,7* < co.
This ensures that condition (iii) is not vacuous.

Proor oF THEOREM 1. Clearly

(3:2) Ai(0) = E[|X — 01" — [0(X) — 01,"]
_ YK, 2r(|X|32)Xi§Xi —0) _ g, X1 |
| X154, | X1s*

Defining ¢ = (2z)~*”(][?-, 4,"%) and interchanging orders of integration gives
2r(| X | X(X; — 6,)
| X124,

2r(x|)x(x,
3.3 = I AMA
(33) bae |x[s*A4;

E,

= 0) (& cor exp[—% Ix — 0|22J dF () dx
g

%)y, ) 1
= (2 2¢0 P r(|xs)x; . (x; i) ex [—— x—0 2:] dx dF(o) .
§o $ o x| A.0° P 202| |2 (9)

Assume for the moment that r is differentiable. Let 7’ denote the first deriva-
tive of r. A simple integration by parts shows that the inner integral in the last

expression of (3.3) equals

i J [M] exp[—% |x — 0|22] dx

RP —3}: |x|32
— s [r(|x|32) + 2xi2r'(|x|32) _ 2xi2r(|x|32)] expli_i Ix _ 022[1 dx .
|x]3* |x]sA4,* |x]5*A4* 2¢0°

Using this together with (3.2) and (3.3) gives
Ay(8) = 17 § o 20° [LF;M"_@ + 2r’(|x[32)] co-?exp[ ]dx dF(s)

|x[5?
r2 X 2
— g, 7))
|x]s
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Cbmbining terms and noting that by assumption (i) 7’ = 0, it is clear that

A0 2 57 § 12(p — 200" — () ) com expl 2 b — 07| ()

Defining b = sup, r(v) gives

(34) A0) =z §3°|:2(‘D —:302 — b:' § 206D g-s exp[ ]dxdF(os).

|x[*/a*

Consider next the function

g(o) = § 214 o5-s exp[—éF |x — 0|23] dx

|x[s*/o
— ¢ ryls?) [_L _9 2] d
=9 |y|32 c exp 5 y pa ly .

It will be shown that g(¢) is nondecreasing in ¢. Differentiating g(s) with respect
to o gives

7(@) = §F(yliezocexp| —o-|y — 2 ay
S [zt () (et 10

The first integral above is clearly positive since ' > 0. Defining k(v) = r(v)/v
and integrating by parts gives that the second integral above equals
2
69 TS Ko - Ly - 2o
2

g

To show the above expression is positive, note that

2

Jo

2

= Sw:ui;o)( )dy + S(y:yi<0)( )dy :

Since 4'(| y|;%%) is a function of y,%, a simple change of variables shows that the
last integral above equals

Stvao Kb exp| —( =y = %Y faay]

g

2.2 1 /)
(3.6) § —H(Iyls'a*)y. 0, eXP[—le - —

g

AN
X exp[—Zm <}’j - 7’) /(2'4:')] dy .
Thus the left hand side of (3.6) equals

G Swon =Kol exp| =i (1s = Y 24 ]

(oo~ 2] - e o]
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By condition (ii), —#’ = 0. Also, for y, > 0, it is clear that §, and exp[—(y;, —
0./0)’/(2A,)] — exp[—(y; + 0./0)*/(2A4;)] have the same sign. Thus the integral
in (3.7) is positive. But the expression in (3.5) is then positive. The conclusion
is that ¢'(¢) = 0.

Note also that [2(p — 2) — b/s"] is nondecreasing in ¢. Using the above facts,
together with (3.4), gives

(3:-8) 8,(0) = §7 [2(p — 2) — b/0"]g(0) dF(0)
2 {7 [2(p — 2) — b/0*] dF(0) {7 9(0) dF(0) .

A straightforward calculation shows that
E|X|,7* = §¢ [67/(p — 2)] dF (o) .

Combining this with (3.8), the definition of b, and Condition (iii), proves that
A,(0) = 0. The theorem has thus been established for differentiable r.

If r is not differentiable, the above proof goes through using Riemann integra-
tion. Noting that r,(x,) = r(|x|;’) (considered as a function of x,) is of bounded
variation in Xx,, it is easy to check that integration by parts for the Riemann
integrals is valid. Indeed, the terms r'(|x|s*) dx; need only be replaced by dr,(x,)
in the given proof. []

THEOREM 2. A density f(|x — 6|;7) is of the form (3.1) if and only if f is com-
pletely monotonic in (0, o).

Proor. Define t = 1/(2¢%), s = |x — 6|%, and G(r) = — {} c(2v)** dF(1/(2v)}).
It is easy to see that G is positive and nondecreasing in ¢ and that

f(5) = 55 e dG(r) .

By a well-known result about Laplace transforms (see Feller (1966), page 439)
f(s) is of this form if and only if it is completely monotonic. []

We now give several examples of the application of the above theorems.

ExampLE 1. Let f(|x — 6|;’) be a normal density with mean # and a diagonal
covariance matrix with diagonal elements 4,. Clearly f(s) = ¢ exp[—s/2], which
is completely monotonic. Hence Theorem 1 applies. A simple calculation shows
that E,|X|,7* = 1/(p — 2). Note that the class of minimax estimators thus defined
by Theorem 1 is essentially the class found in Berger (1974a).

ExaMpPLE 2. Consider the “double exponential” density

3.9 x — 62 = ¥Pl—|x — 0;] P At

(3.9 fix = o)) = FR =P 1T 4,
where a, is the surface area of the unit p-sphere. Here f(s) = Kexp[—st]. In
determining whether or not this function is completely monotonic, the following
well-known lemma is useful.
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- LemMa 1. If ¢(s) is completely monotonic on (0, o0), and ¢(s) = 0 has a com-
pletely monotonic first derivative on (0, oo), then ¢(¢(s)) is completely monotonic on
(0, o0).

Proor. See Feller (1966), page 441. []

Clearly ¢(v) = K exp[—w] is completely monotonic, and ¢(s) = s* has a com-
pletely monotonic first derivative. Hence, f(s) = K exp[—st] = ¢(¢(s)) is com-
pletely monotonic on (0, co). Theorem 1 thus applies to the density in (3.9).
A simple calculation shows that Ej|X|,”* = [(p — 1)(p — 2)]7".

ExampLE 3. Consider the Cauchy like density

flx = 61" = 2T (a)[(1 + |x — 01,)([[?= 4H)a, T(p/2)(a — p[2)]7

where a > 1 + p/2 so that E | X|,> < co. Clearly f(s) = K(1 + s)~*is completely
monotonic. A calculation shows that E|X|,”* = (2a — p)/(p — 2).

4. Minimax estimators for densities flatter than a normal density. While
the class of densities discussed in the previous section includes many interest
ing, ones, it is obviously quite sparse. In this section, a different approach is
considered, leading to a theory which handles a much more complete class of
densities.

THEOREM 3. Let f(|x — 6|;}) be a density, with respect to Lebesgue measure,
satisfying the following 3 conditions:

(i) Ey|X], < oo and Ej|X|,7? < co.

(ii) The set of points, W, (in (0, o)) at which f() is discontinuous has Lebesgue

measure zero.
V) dv
(iii) ¢ = inf, Us It
TS

Let o be an estimator of the form (2.1) where r(+) is nondecreasing and 0 < r <
c(p — 2). Assume also that p = 3. Then § is a minimax estimator of 6 under squared
error loss.

where U = {s¢ W: f(s) > 0}.

ProOF. Assume that ris differentiable. The generalization to nondifferentiable
r can be carried out as indicated in Theorem 1.
As in (3.2),

Y R e e 2

1

It can easily be checked that if ¢ > 0, then { f(v) dv < co. Hence if |x — 4|
is a positive point of continuity of f,

—o2 f(0) dV) = f(|x — 01°)(x, — 0,)/4, .
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An integration by parts thus gives
E, |:Xi’(|X|32) . «X; — 0i)]

| X1s* A,
(4.2) = 50X | =00 fox  gayax
|x]5* A,
r(|xlsY) _ 2xr(|x|s) | 2x}r'(]x]3 w
= l: (||x||:a) B |X|3ﬂ4|’3) T |x|3”(,|4 .13 )](12‘ (o=, f(V) dV) dx .

(Clearly {x: |x|# = 0 or |[x — 6|, = 0 or |x — 6|,’ ¢ W} has measure 0, and can
hence be ignored in the integration by parts.)
Using (4.1), (4.2), and the assumption that r’ > 0, a little algebra gives

A0) = § —‘l'l'—> [(p — 2) §502f(0) dv — F(Ix|DA(x — 01,3)] dx .

Since 0 < r < ¢(p — 2), it is clear from the definition of ¢ that

[(P = 2) §2-0,2f(V) dv — r(x[s)f(1x — 6],)] 2 0,
except possibly on a set of measure 0. Thus A,(f) = 0 and 6 is minimax. []

The following theorem is useful in verifying condition (iii) of Theorem 3.

THEOREM 4. Assume that the first two conditions of Theorem 3 hold. Then condi-
tion (iii) holds if and only if the following are true:

(a) f(s) < B < oo for every sec U.
(b) U is not contained in any compact subset of [0, o), and

4.3) liminf, .., 35/ _p< 0.

’ f(9)

ProoF. Assume first that conditions (a) and (b) hold. From (b), it is clear
that there exists a K such that if s > Kand s e U, then {2 f(v) dv/f(s) = b/2 > 0.
If s < K, then {2 f(v)dv = {3 f(v)dv = K’ > 0 (since U is not contained in a
compact subset of [0, co)). But combined with condition (a), this tells us that if
s < Kandse U, then {2 f(v)dv/f(s) = K’/B > 0. Hence inf,., [{ f(v) dv/f(s)] > O,
and condition (iii) of Theorem 3 holds.

Now assume that condition (iii) of Theorem 3 holds. We first show that this
implies (a), that fis essentially bounded. Assume (a) does not hold. Then there
exists a sequence {z,} of positive numbers in U, such that f(z,) — oco. It will first
be shown that z; — 0. Assume not. Then {z;} could be chosen so that z, >
¢ > 0 for every i, and so that f(z,) — co. But then

§5/) dvff(z)) = §2 flv) dv[fiz) < K'[f(z) >0 as i—oco.

This contradicts the assumption that condition (iii) holds. Hence {z,} must con-
verge to 0.
Now let ¢ be a positive number, and define T, = (1/n,¢) n U for n > 1/e.
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By the above result, it is clear that f is bounded on T,, and that there exists a
sequence of numbers d, such that d, € T, and f(d,) — oo. Because f is bounded
on T, and T, includes only continuity points of f, there exist z, € T, such that
sup,.r, f(v) < f(z,) + 1/n. Note that f(d,) — 1/n < f(z,), which implies that
f(z,) > oo. Finally,

2 f0)dv _ §r, f(v) d0 + {7 f0) dv
fey = <)
2 fe) + Un) + K,
= 1<)

Since this holds for every ¢ > 0, condition (iii) of Theorem 3 is again contradicted.
Thus condition (a) must hold.

Next, we show that condition (iii) implies condition (b). Clearly, it is only
necessary to verify that U is not contained in any compact subset of [0, oo).
Assume it is. Then there exists a constant K > 0, such that f(s) = 0 for se¢
(K, oo) n We. Choose K as small as possible. Let D, = (K — 1/n, K)and V, =
SUp,.p, v f(5). Notethat V', > 0since K was chosen as small as possible. Also,
V, < oo by condition (a). By construction, there exists s, € D, N U such that
f(s,) > V,/2. Hence,

/W) do _ SEf@)d _ (K—s)V, _ (K= sV,
fis) fo) = fe) T VR

=2K~—s5,)—0 as n— oo.

3 as n— oo.

Thus condition (iii) is again contradicted, and condition (b) must hold. []

Theorem 4 clearly gives considerable insight into the class of densities to which
Theorem 3 applies. The following lemmas are also useful in this regard.

LEMMA 2. Assume there exist K > 0 and a > 0, such that if s > K, then f(s) is
positive, differentiable, and satisfies lim sup,_., [ —f'(5)/f(5)] £ a < co. Then (4.3)
is satisfied.

Proor. For convenience, define g(s) = { f(v) dv. Note that lim,_,, g(s) = 0,
that g(s,) — g(s;) > 0 for 5, > s, > K, and that —g'(s) = f(s) > 0 for s > K.

Let ¢ > 0. By assumption, there exists K, > K, such that if s > K, then
[—f(5)[f(s)] £ a + e. Thus, for K, < a < b < oo, the generalized mean value
theorem says that there exists s € (@, b) at which

“.4) f@ —f8) _ [0y,
9@ — g g'G)
Let {b,} be a sequence of numbers greater than K,, such that b, — co and
f(b,) — 0. Clearly g(b,) — 0. Thus (4.4) gives that [ f(a)/g9(a)] < a + ¢. Since

this holds for every ¢ > 0, it is clear that lim sup,_.. [ f(a)/9(a)] < a. Hence,
lim inf, ., [g(a)/f(a)] = 1/a > 0, which verifies (4.3). []
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LEMMA 3. Assume that f(+) is bounded, positive, and differentiable on (0, co),
that Ej|X|? < oo, that p = 3, and that lim sup, ., [ —f'(5)/f(s)] < oco. Then the
conditions on f in Theorem 3 are satisfied.

Proor. Trivial using Theorem 4 and Lemma 2. Note that f bounded and
p = 3 implies that E|X|,7* < co. [

LEMMA 4. Assume that f(+) is bounded and continuous (except possibly on a set
of measure 0). Assume also that E|X|* < oo, that p = 3, and that there exist
K = Oanda > Osuch that if s > K, then h(s) = f(s)e** is nonzero and nondecreasing.
Then the conditions on f in Theorem 3 are satisfied.

Proor. It is only necessary to verify condition (iii) of Theorem 3. Theorem
4 will be used to do this. It is obvious that only (4.3) must be checked. Since
h is nondecreasing and nonzero for s > K,

lim inf,

8—00

h(s)e==* h(s)
= liminf,__ {®e**dv=1/a > 0.
Hence (4.3) is satisfied. []

i fv) dv = lim inf, §5 h(v)e* dv = liminf,__ {* h(v) exs=v dy
s

LemMA 5. If f(s) = e==9"), where g(s) is nondecreasing, g(s) — oo, and a > 0,
then condition (iii) of Theorem 3 is violated.

Proor. Using the assumptions on g(s) gives

lim inf,

_L’%ﬁ’ = lim inf,_, {= exp[—a(vg(v) — sg(s))] dv

= liminf,_ {§ exp[—a((t 4 s)g(t + 5) — s9(s))] dt
< liminf,__, {5 exp[—atg(s)] dt
= liminf,__ [ag(s)] = 0.

Condition (iii) of Theorem 3 is thus violated. []

Lemmas 4 and 5 indicate that the density must not go to zero much faster
than a normal density (recall s = |x — 6|,%), in order for the theory to apply.
Most important densities are in this class, however.

We now give some applications. The examples given in Section 3 are not re-
peated, though they could be handled by the theory of this section also. Clearly,
it is only necessary to indicate the function f(s) in the examples. The normaliz-
ing constant will be unimportant so it will be denoted by K.

ExampLE 1. f(s) = Ks"exp[—s/2], (n = 0). (Note that if n =0, then
f(lx — 6] is a normal density.) Clearly f is not completely monotonic unless
n = 0. Thus Section 3 could not, in general, be applied. A simple calculation
shows that ¢ = inf, [{Z f(v) dv/f(s)] = 2 > 0. Hence Theorem 3 applies and gives
a wide class of minimax estimators.
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EXAMPLE 2. f(5s) = K/cosh s. This is a density similar to a hyperbolic cosine
density. To show that Theorem 3 applies to this density, Lemma 4 can be used.
Choosing a = 1 gives A(s) = [2K/(e* + e~*)]e* = 2K/(1 + e~*), which is clearly
nondecreasing. The remaining conditions of Theorem 3 are trivial to check for
this density. Numerical calculation showed that ¢ = 1.

ExAMPLE 3. f(5) = Ks(1 + s*)~™*V, where m > p/4. The condition on m
ensures that £)|X|, < oco. An easy calculation shows that ¢ = 1/m.

EXAMPLE 4. f(s) = Ke'=**=P(1 4 e'~**-#)=2, This is a density similar to the
logistic. It can easily be calculated that ¢ = 1/a.

Many other examples could be given. Indeed most densities work fairly easily.

A word is in order as to how the results from Section 4 relate to those from
Section 3. There do exist some densities covered by results in Section 3, which
cannot be handled by the methods of Section 4. Such densities are not very
interesting, however, and so as a whole Section 4 has a much wider range of
applicability than Section 3.

On the other hand, when Section 3 does apply, it tends to give stronger results
than Section 4 (in the sense that the upper bound on r is often larger). Hence
one should use the results from Section 3, if they happen to apply, rather than
those from Section 4.

Certain of the above results can be generalized to the multiobservational
situation. Assume n observations are taken, and that an invariant estimator, ¢,
is to be used to estimate §. To attempt to improve upon §,, merely set X = 4,
and proceed. Note that if the original density is of the form (1.1), there is no
reason to expect that the density of , will also be of the form (1.1). Hence the
results of Section 3 are of limited usefulness for the multiobservational situation.
If the original density satisfies the conditions of Theorem 3, however, then the
density of 4, will, often, satisfy these conditions itself. Section 4 will thus be very
useful for the multiobservational problem. Note, finally, that if §, is Pitman’s
estimator, than the improved estimators will be minimax.
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