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Let {X;, - -+, Xn} be N observations on an m-state Markov chain with
stationary transition probability matrix P = (pi;), pi; >0, 4,j=1,---,m,
where N is a random variable. For any parametric function of P, the in-
formation inequality gives a lower bound on the variance of an unbiased
estimator; attaining the lower bound depends on whether the sampling
plan or stopping rule S, the estimator f = f(X;, - -+, Xn), and the function
E(f) = g(P)are “efficient”. All ““efficient triples” (S, f, g) are characterized
for the Markov chain in which p;; and p;/j+ (i’ # i) are not related function-
ally. It is also shown that efficient triples do not exist if m >2and g isa
function of two or more rows of P. For the case m = 2, efficient triples in
which g’s are functions of both rows are characterized.

1. Introduction and summary. Let{X,, - - -, X} be N observations ona Markov
chain with stationary transition probability matrix P = (p;;), pi; > 0, i,j =
1, ..., m. It is easy to show that when N is fixed there do not exist unbiased
estimators for any function of P (assuming that p,; and p,.;, (i # i) are not func-
tionally related). Thus, any scheme which yields unbiased estimators of func-
tions of P must be a sequential estimation scheme. Determining such a scheme
involves the problem of defining and then finding optimal stopping rules or
sampling plans. The most common criterion of optimality when working in
unbiased estimation is defined in terms of the variances of the estimators. A
lower bound on the variance of an unbiased estimator is given by the (fixed
sample or sequential) Cramér-Rao information inequality. The equality is at-
tained if and only if the sampling plan S, the estimator f, and the expected value
E(f) = g are “efficient” in a sense to be specified.

The problem of characterizing the “efficient” triples (S, f, g) has been studied
by Girshick, et al. (1946) and DeGroot (1959) for the case of binomial samples,
and by Bhat and Kulkarni (1966) for the case of multinomial samples. In this
paper we extend their methods to solve the problem of characterizing the efficient
triples for an m-state Markov chain. The purpose of this paper is to indicate
the limitations of the searches for unbiased estimators of functions of P. We
characterize the functions which admit unbiased estimators with “minimum
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variance” (i.e., variance equal to the lower bound) and the corresponding optimal
plans and optimal estimators. We took on this task in the spirit of eliminating
the searches for “minimum variance” unbiased estimators of some of the pa-
rametric functions. We do not propose that all the functions which can be esti-
mated efficiently are necessarily natural ones to estimate in a given application.

In Section 2, the information inequality for Markov chains is derived, and a
necessary and sufficient condition for an estimator to be efficient is given. In
Section 3, all possible efficient triples (S, f, g) are characterized, where g is a
function of a single row of P. The efficient sampling plans are “similar” to those
inverse-type sampling plans in which observations are made one by one until
N;,q + -+ + N, = cisattained, where N,; is the number of one-step tran-
sitions from state i to state j, 1 < k < m, (¢(1), - - -, 6(m)) is a permutation of
(1, - - -, m), and c is a preassigned positive integer. Under these sampling plans
the estimator f = y#,Ny; + - -+ + fta N,y is an efficient estimator for the function
g(P) = c(thpu + +** + U Pim)(Piowy + +++ + Piouwy)- Furthermore, it is shown
that if g is a function of two or more rows of P and m > 2, then there does not
exist any efficient triple. In the case when m = 2, the sampling plan in which
observations are made one by one until N,, + N,; = 2c is attained is efficient,
and f = a(Ny + Ny) + b(Ny, + Ny) + d is an efficient estimator for the func-
tion g = c(a/p, + b/px) + 4.

2. Preliminaries. In this section we set up necessary notation. A closed
sampling plan is defined and a useful lemma is stated without proof. The lemma
is used to derive the information inequality for the Markov chain. Finally the
notion of efficiency is introduced and the efficient estimators are characterized.

2.1. Information inequality. Let {X,, X,, - - -} be an m-state Markov chain with
stationary transition probability matrix P = (p,;), 0 < p;; < L, 4,j, =1, .-, m,
>, pi; = 1, and initial probability distribution Pr [X, = k] = ¢, 0 < ¢, < 1,
k=1,---,m Yr.q.=1. Let P, = (py, -+ +» Pim)s i = 1, - -+, m, be the row
vector denoting the ith row of P, and q = (¢, - - -, g.) be the vector of initial
probabilities.

Suppose {X, - -+, Xy} is observed, where N is a random variable whose dis-
tribution is completely specified by the stopping rule or sampling plan under con-
sideration. Define the transition count random variable N;;, i, j = 1, - - -, m, by

Ny = n(Xy, -+, Xy) = 2NiLa Nyj(0)
where
N =1, if X,,,=i and X,=j,.
=0, otherwise.

Write N, = 37, N;;, N, = (N, - -+, N;p), and N = (N;;). Furthermore define
the random variable V,, k = 1, ..., m, by
Ve=1, if X,=k,

=0, otherwise,
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so that Pr[V = e,] = Pr[X, = k] = ¢;, where V= (V,, -.-, V,,) and e, is an
m-component row vector with unity as the kth component and zeros elsewhere.
Whenever a capital letter is used to denote a random variable (or vector or
matrix), the corresponding small letter will denote the value assumed by the
random variable (or vector or matrix).
Given a sampling plan S, define

a) A(S) = {n: Pr[N = n|S] > 0},

b) B(S) = Uneuss 0= (ny;): ny; = nyy(xy, -+, x,), 5, j =1, -.., m},
¢) BXS) = {(v.,n): vele, - -+, e,), ne BS)).

The joint distribution of (V, N) under S is then given by
p(v,n|S) =Pr[V=v,N=n|S]

2.1 = k(n|v;S) - (I[7a ¢ - (122 P57) > (V- m) € BX(S)
=0, otherwise,
where k(n|v; S) is the number of all possible sequences (x,, - - -, x,), 1€ A(S),

which yield the same transition counts N = n, given V = v.
The following definition of a closed sampling plan is analogous to those of
Girshick et al. (1946) and DeGroot (1959).

DerINITION 1. A sampling plan S will be said to be

i) closed if 3 pus p(v,m|S) = 1,
ii) and nontrivial if Pr [N < 1|8] = 0.

In this paper only nontrivial closed sampling plans will be considered.

Under a sampling plan S, an estimate f(v,n) is a real-valued function
defined on B*(S). It is unbiased for its expected value g(q, P) = Ef(V,N) =
3 svs) f(V, M) - p(v, n|S). This series will be assumed to be absolutely convergent
and differentiable termwise with an absolutely convergent derived series for all
values of (q, P).

The objective here is to characterize all sampling plans which admit unbiased
estimators of some parametric functions whose variances attain the lower bounds
of the information inequality. For the Markov chain described above the in-
formation inequality for an estimator f = f(V, N) of g(q, P) = E(f) will be
shown to take the form

(2.2)  Var(f) =2 [Z75 99" — (X705 9.94)°] ‘

+ D (EN) T [ 205 P07 — (X275 pis 905)°]
where g,' = dg/dq,, and g}; = dg/op,; are the partial derivatives of g(q, P) with
respect to ¢, and p,;, respectively, fork,j=1,...,m —landi=1, ..., m,
regarding ¢,, = 1 — 17! ¢, and p,,, = 1 — 317! p,.. For example, for any
unbiased estimator f of a transition probability p,;, we have Var (f) =
Pii(1 — pi)/(E(N))-
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The following lemma will be used to derive (2.2). The proof is straightforward
and therefore omitted. (In this section it will be understood that, unless other-
wise specified, i,/ =1, --.,mand k, k', j,j’ =1, ..., m — 1.)

LemMma 1. i) If f = f(V, N) is an estimator of E(f) = g(q, P), then

(23) E[(@nVe = 9Va) - f1= 424n 8y »

E[(PimNi:i - PiiNim) : f] = Pijpimg;j ’
where

Gn=1—2p3q and  p.=1-—313p,;.

In particular, with f = 1, we have

(2.4) E(@nVi — 9Vn) = E(pinNij — pijNim) =0,

and

(2.5) E(N,;) = pi; E(N,,) .

if)
(2‘6) E(qm Vi— 9 Vm)(qm Vi — 9w VM) = 9k qm(‘]h + qm) » K=k,
= 99 Gm » k' +k,
and
E(pimNi; — PiiNim)(Pirm Nirjr — Piri'Nim)

(2.7) = PisPin(Pis + Pim) - EN) s V=10, j =,
= PiiPijPim - E(N.) V=i, jr#j,
=0, V£

iif)
(2-8) E@@nVi — 4 Va)(PimNi; — PijNim) = 0.

To derive (2.2) we first define random variables U, and W,; as the partial
derivatives of the log-likelihood function

(2.9) U, = dlog p(V, N|8)/0g, = (9 Vi — 9. V)94 9m »
W,; = dlogp(V,N|S)/op,; = (PimN:; — PiiNim)[PiiPim -

Using Lemma 1 we obtain their moments;

(2.10) EU) =EW,) =0,
(2.11) EUU) = g, + /g, K =k,
= l/qm N k' +* k s
EW i Woi) = (Upi + Upm) - BN, ¥ =1, j =],
(2.12) v = (1/pin) - E(N,,) , =i, j #7j,
=0, £,

(2.13) E{UW,)=0.
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Let
7 = (Zl’ ] Zm—v Zm’ R sz—z’ R Zm(m—1)+1a Sty Z(m+1)(m—1))
= (Uv ] Um—l’ Wm ] Wl,m—l’ ) Wmv Ty Wm,m—l) s
A=AY ...,Am™),
where
AO = (A, -+ Apy) s
AP = (Zi(m-lH-l’ Tty 2(i+1)<m-—1>) ’
4, =Ef-Z), j=1, o, (m+ 1)(m —1).
Using (2.10) through (2.13), we then obtain
% 0...0
0 Z---0
3= (EZ,Z;) = S,
0 0 X,

where X, = (EU,U,,) and X, = (EW; W;.).
It is then easy to show (for example see Graybill (1969), Chapter 8) that

(2.14) 1Zo] = (42 gm)* >0,
I, = (0%),

where
aokk' — qk(l _ qk) , kl — k s
= _qqu" k’ik,
and
(2.15) 1Z;| = (Pir ==+ Pim) ™t - (EN)™,
57 = (),
where

O'i.fj' — Pij(l —P”)/(EN“) , jr =j’
= —Pi;Pi[(ENy) 5 J #EJj.
Since p,; > 0 for all i, j = 1, - - -, m and the sampling plan S is assumed to be

nontrivial, we have E(N,,) > 0 for all i = 1, ..., m. Therefore |Z,| > 0, and
|Z| = 1™, |Z;] > 0. The inverse £-* of the matrix X is then given by

7 0 ... 0

N R

0 o ...2,71

m

We also have, from (2.3), A® = (g/, ---, g},_,) and A® = (g}y, -+, @} m_y)-
We then have

(2.16) - AZIAY = m  AGZSAG
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where At denotes the transpose of A and
(2'17) A(O)Eo_IA(O)t = rtaed 0" 9 9
= 2rd 99 — (e 9:9¢)»
and similarly
(2.18) ADZ NG = [E(N)] - [ 275 P 035 — (Z75 Pii96)'] -
Let f* = AZ-'Z'. Then we have
Var (f*) = E(f*) = AZ-'A¢,
Cov (f, f*) = E(f - f*) = A,

and

Corr? (f, f*) = AZ'A!/Var (f) .
Therefore,
(2.19) Var (f) = AZ-1At.

Thus we have the following theorem on the information inequality for a
Markov chain.

THEOREM 1. Under any nontrivial closed sampling plan S, the variance of any
unbiased estimator f = f(V, N) of E(f) = g(q, P) is bounded below by (2.2).

Equality holds in (2.2) if and only if f(v, n) is a linear function of u,’s and w,;;’s
for all (v, n) € BX(S).

2.2. Efficient estimators. The notion of “efficient” estimators used in this
paper is the one introduced by R. A. Fisher in connection with unbiased esti-
mation. The following definition is analogous to the one used by DeGroot
(1959) for the binomial case.

DeriniTION 2. i) For a given sampling plan S, a nonconstant estimator f =
f(V, N) is said to be efficient for E(f) = g(q, P) at (q*, P*) if equality holds in
(2.2) when q = q*and P = P*. gisthen said to be efficiently estimable at (q*, P*).

i) If f is efficient at all values of (q, P), then f is said to be efficient for g(q, P),
and g is said to be efficiently estimable.

iii) A sampling plan S is said to be efficient if it admits at least one nonconstant
efficient estimator.

The following corollary, which is an immediate consequence of Theorem 1,
characterizes efficient estimators.

CoROLLARY 1. Under a nontrivial closed sampling plan S, a nonconstant estimator
f = f(V,N) is efficient for E(f) at (q, P) if and only if there exist constants a,, b,;,
k,j=1,...,m—1,i=1, ..., m, not all zero, and d such that
(2.20) f(v,n) = Tt ay (g V% — GiVn)
+ D N7 bi(Pim iy — Piihim) + d
for all (v, n) € B¥(S).

3. Efficient estimation of functions of P. In this section the results of Section
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2 are applied to various functions of P. First we consider estimating functions
of a single row of P. Two useful lemmas are proved and then additional nota-
tion is introduced. Similar sampling plans are defined and examples are dis-
played. Theorems 2 and 3 give the efficient triples for estimating functions of
a single row of P. Next, the problem of estimating functions of two or more
rows of P is considered, and it is shown that unless the chain has only two
states (m = 2) no efficient triples exist. Furthermore for the case m = 2,
Theorem 4 yields efficient triples.

3.1. Efficient estimation of functions of a row of P. In this subsection we
characterize all efficient triples (S, f, g) when g’s are functions of a single row
of P (without loss of generality we take the first row P, = (py,, - - -, p1) Of P).
Henceforth two distinct values P, = (p{®, ..., p{%) and P, = (p{, - - -, pih
of P, will be said to be equivalent with respect to g(P,) if g(P,) = g(P,V), and
the initial probabilities q = (¢,, - - -, 9,,) Will be regarded as nuisance parameters.

LEMMA 2. Let S be a given nontrivial closed sampling plan for which there exists
a nonconstant estimator [ which is efficient for some function g(P,) at two values of
P, which are not equivalent with respect to g(P,).

Then there exist constants pt,, « - -, ft,,, not all zero, and & =+ 0 such that

(3.1) aly A+ et Pty = € forall n, = (ny, -+, my,) €By(S),
where
B(S)=1{n, = (N, -+ Np):NEBWS)}, i=1,-..,m.

Proor. Since g is a function of P, alone, Theorem 1 shows that for any
unbiased estimator f of g,
(3-2) Var (f) 2 (ENw)™ - {255 P95 — (275 P490)' >
and by Corollary 1 f is efficient at P, if and only if there exist constants
a,, ---,a,_,, not all zero, and b such that
(3.3) f=Xrta; - (Pimhj — PrjMm) + b for all n, e B,(S).
Suppose f is efficient at P, = (p{, -- -, p{%) and P, = (p}, ---, pit)). Then
there exist constants a;, a;V, j =1, ---, m — 1, b and b® such that

f= 2153 a0 (piam; — piimm) + b
= D5 - (pRmy — piYma) + bV

From this (3.1) easily follows. Since »* = g(P,) = E,(f), i = 0, 1, where
E(f) is the expectation of f when P, = P,¥, and P, and P, are not equiva-
lent with respect to g(P,), we have & = 0, and not all g,’s are zeros.

Lemma 2 shows that if condition (3.1) is not satisfied, then f cannot be efficient
at two or more nonequivalent values of P,.

LEMMA 3. Let S be a nontrivial closed sampling plan for which Pr[N,, = 0|S] = 0.
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Then N, = (Ny, - - -, Ny,) can be written as

(34) N, = ¥4 Ze
where {Z,} are independently and identically distributed random vectors with
(3‘5) Pr[ZI.:ej]=Plja j=1.9"'9m'
Proor. Define random variables {M,} by
(3.6) M, = min{t: X, = 1},
M,=min{t: X, =1,t > M,_}, k=23,..

Then since Pr[N,, = 0|S] =0, ¢, >0,and p,; >0, j,k=1,...,m, we have
PriM, < oo |S] =1,k =1,2,---.
LetZ,, k = 1,2, ... be an m-component random vector defined by

(3.7) Z, =e,

J

if Xyn=j, Jj=1---,mand k=1,2,....

That is, Z, = e, if the kth visit to state 1 by the chain is followed by a visit to
state j. Then we obtain

Pr[Z, = e;] = Pr[X,, ,, = /]
= Y, Pr[Xp 1 = j| M, = m] - Pr [M, = m,]
= Pij - Zimy PT[M, = my]
= P j=1m,

and it can easily be seen that {Z,} are independent. Thus, {Z,} are independently
and identically distributed random vectors with distribution (3.5). Furthermore,
it can be seen, from the definition of Z,, that N, can be represented as the sum
(3.4) of N,, independent observations on a random vector Z with the same dis-
tribution as given in (3.5).

The following notation and definition will be used in characterizing efficient
sampling plans.

Let ¢ and c* be preassigned positive integers and W = w(X,, ---, X,) be a
random variable such that w = w(x,, - - -, x,), ne€ A(S), is a positive integer-
valued function of (x;, - - -, x,), nondecreasing in n. Let W* = w*(X,, - - -, X,)
be another such random variable. S(c; W) will denote the sampling plan in
which observations are continued until exactly W = c is attained.

DEFINITION 3. A sampling plan S(c*; W*) will be said to be similar to S(c; W)
ifw=w(x, .-, x,) =cforall (x, - --, x,) whenever w* = w*(x,, - - -, x,) = ¢*
and n ¢ A[S(c*; W*)]; that is, if W = c at the termination of the sampling under
S(c*; WH).

ExaMpLE 1. Let

X9 = xO(X,, -, Xy)

= number of times that X, =i, ¢t=1,...,N.
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Then we have
(3.8) X0 = FiL (X)) = Ny + 1y(Xy) 5

where I,,, is an indicator function.
Now, the plan S(c + 1; X*’) can be seen to have the property that

1. X, =1 for all ne A[S(c + 1; X)],
2. n, =¢ for all n,eB[S(c + 1; X¥)].
Thus, S(c + 1; X9) is similar to S(c; N,,).
ExAMPLE 2. Let
RO = r9(X,, -+, Xy)

= number of runs of i’sin N observations.
Then we have

(3-9) RV = Bt Nog + La(Xa) -
The plan S(c 4 1; R”) can be seen to have the property that
1. X, =1 for all ne A[S(c + 1; R¥)],
2. DMy =¢C for all mn, e B[S(c + 1; R¥)].

Thus, S(c + 1; R®) is similar to S(c; ™, ;2. Nij)-

Bhat and Kulkarni (1966) have extended the result of DeGroot (1959) for the
binomial population to the multinomial case, and have characterized efficient
sampling plans, which turn out to be single (fixed sample size) sampling plans
or inverse multinomial sampling plans (Tweedie (1952)). The following theorem
is a consequence of Lemmas 2 and 3 and the Bhat-Kulkarni result (their Theorem
2)* and is presented without proof.

THEOREM 2. Let S be a given nontrivial closed sampling plan such that

1. Pr[N, =0|S]=0,
2. there exist constants p, - - -, pt,,, not all zero, and & + 0 such that

Paly + st A+ Ty =€ for all n e By(S).

Then S is either S(c; 3%, Ny o)) for some positive integer ¢ or a sampling plan

similar to it, where (o(1), - - -, a(m)) is a permutation of (1, --., m) and k, is an
integer, 1 < ko < m.

From Lemmas 2 and 3 and Theorem 2, it is seen that the only sampling plans
which could be efficient for some function g(P,) are S(¢; 3112, N, ,«,) or plans
similar to them. The following theorem shows that these plans are indeed efficient.
This, combined with Lemma 2, will then imply that a nonconstant estimator f
is efficient for g(P,) for all values of P, if and only if it is efficient at two distinct
nonequivalent values of P,.

2 To be precise, their Lemma 1 is in error. However, their Theorem 2, which partially de-
pends on Lemma 1, is essentially true.
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THEOREM 3. The sampling plan S(c; 3%, N, ,u,), 1 < ko < m, or plans similar
to it are efficient and any nonconstant function f of the form

(3.10) f=mNay+ -+ + tuNin
is efficient for
(3.11) c(tapu+ 0+ UnPim)(Prowy + * 0+ Procg) -

Proor. It will be proved that S(c; 352, Ny;), 1 < ko < m, is efficient and
(3.10) is the efficient estimator for

g(P) = c(tupu+ -+ + mPim)/(Pu+ -+ + Plko)

by showing that there exist constants a;, j=1,-..,m — 1, and b such that
equation (3.3) holds for all n, € B,[S(c; 3352, Ny;)]. Write

(3.12) Piitim = —(PimMj — P1Mim) + PimMij > J=1 k.

Since
Yo.un;=c  forall meB[S(c; 1% N,

summing both sides of (3.12), we obtain

(Pu+ -+ Plko) CPhm = — Z?":l (PimMij — P1jMim) + CPim -

Then
(3'13) Ry = — Z?):I Pu+ -+ plko)—l < (PimM; — P1iMim)
+ Pin(Pu + o+ Pu)
Write
plmnlj = (lenlj - Pljnlm) +P1jnlm )
or
n; = Pim* (PimMi — P1Mm) + PimPriMim -
Then
(3-14) = 2rapim; = 2005 UiPim - (PimMy — P1jMam)

+ Pra( 271 #5P13) * My -
Substituting (3.13) into (3.14), we get, after some simplification,
f=Z8pile; — (Pu+ oo + Pu)™ Do taPul - (PrmMj — Prjam)
(3.15) + D751 #iPim(PimM; — P1jMim)
+e(pu+ o+ Puy) T BT BiPri s
which is of the form (3.3). Hence f is efficient for

E(f) = c(pu+ -+ + Pu) ™'+ Dl i1 = g(Py) .

We note that, in particular, S(c; N,,) is efficient and (3.10) is an efficient esti-
mator for ¢« 3™, p.p,;.

3.2. Efficient estimation of functions of two or more rows of P. We now
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consider the problem of characterizing efficient triples (S, f, g) when g’s are
functions of two rows of P, say P, and P,.

We note that, when p,; and p,.;. (i’ # i) are not functionally related, a) terms
involving p,;’s in the joint probability displayed in (2.1) can be factored out so
that terms involving P, = (p,, - - -, p;») involve only n, = (n, ---, n,,), and
b) the lower bound in the information inequality (2.2) and the form of efficient
estimators (2.20) have an additive property in the sense that they are, in part,
sums of terms involving P, and n; only. These facts plus Theorem 2 indicate
that in order for a sampling plan S to be efficient for some g(P,, P,), S must
have the property that for some fixed positive integers ¢, and c,,

(3.16) Z:o=1 oy = €1 and Z:;?—-l Ny 65 = Ca
for all (n,, n,) for which n € B(S), where k, and g, are positive integers, 1 < k,,
0y < m.

However, it is easy to see that condition (3.16) cannot be satisfied if m > 2.
The case m = 2 will be discussed in the next subsection.

Thus, if m = 3, there does not exist a sampling plan that is efficient for g
whenever ¢ is a function of two or more rows of P.

3.3. Dependent Bernoulli trials (the case when m = 2). Let {X,, ---} be
Markov dependent Bernoulli trials such that

Prix,=1]=1—-Pr[X,=0]=p, o<p<1,
PI‘[Xt:”Xt_l:l]:a, O<axkl,
Prix,=1|X,.,,=0]=8, 0<pB<Kl.

Write 1 —p=¢, |l —a =&, and | — 8 = . We note that we have here
simplified the notation so that p, ¢, a, &, B, B, X;, My, Ny, Ny, Mg BT€ Gy, Gay Poy,
Pia> Pas Pass V1» My, Myy, My, My, respectively, of the earlier sections.

Then the joint probability (2.1) becomes

(3.17) P(xis m|S) = k(n|x; ) - prigi-riauarnfropro,
the information inequality (2.2) reduces to
(3.18) Var (f) = pg9,"(p, @, B) + aag"(p, a; B)/E(N,.)

+ BB9s(p, @ B)IE(N..) »
and the efficient estimators (2.20) have the form
(3.19) f(xi,m) = a(x, — p) + by(an, — any) + by(Bno, — Bne) + d .
Theorems 2 and 3 show that a given nontrivial closed sampling plan § is
efficient (for functions of a alone) if and only if S is either one of S(c; N,,),
S(c; Ny), S(c; Ny) or a plan similar to one of them. The efficient estimators f
and efficiently estimable functions g(«), under these plans, are

S(e; Ny);  f=aN,+b,  gla)=cax + b,
(3.20) S(e;Ny);  f=aN, +b, gla)=caja+b,
' S(c; Ny) ; f=aN, + b, g(a) = caja + b .
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Note that if we let X = x(X,, - - -, X,) = Y¥, X,, then S(c; X), a sampling
plan in which trials are continued until exactly ¢ successes are attained, is similar
to S(c — 1; N,).

By replacing N,,, N,,, N, and a by N,,, Ny, N, and 5, we obtain the charac-
terization of efficient triples (S, f, g) when g’s are functions of 8 alone.

We now consider the problem of characterizing efficient triples when g’s are
functions of both «a and S.

Out of the nine possible combinations between n,,, n,;, n,, = ¢, and n,,, ny,
ny, = ¢, which satisfy the condition (3.16), the only one that a sampling plan
can possibly satisfy is (n, = ¢,; n, = ¢,). Moreover, for any sampling plan S,

(3.21) Ry — Ny = X, — X, for all ne A(S).
Thus,
X, — X, =¢ —C,.

This implies that x, = x, = 0 or 1 for all ne A(S). In that case, ¢, = ¢, = c.
That is, n,, = ny, = ¢ or equivalently n,, + n, = 2¢ for all (n,, n,) for which
n € B(S).

THEOREM 4. The only efficient sampling plan for functions of both parameters a
and B is S(2¢; Ny, + Ny,) or plans similar to it, and any nonconstant function f of
the form

(3.22) f=aN, + bN, +d
is an efficient estimator for
(3.23) 9(a, B) = c(ala + b/B) + d.

In particular, f = N is efficient for g(a, ) = c(1/a + 1/B) + 1.

Proor. The above arguments show that the only sampling plan that could
be efficient is S(2¢; Ny, + N,,) (or plans similar to it). We now show that this
plan is indeed efficient. Since n,, = n, = ¢ for all (n,, n,) for which ne
B[S(2¢; Ny, + Ny)], we have

an, — an, = an,, — C.

Hence

n,, = (lja&)(an, — any) + cja.
Similarly

ny, = (—1/B)(Bny — Bny) + ¢/B -
Thus,

f=an, + bn, +d
= (a/a)(an, — any) + (—b/B)(Bny, — Pny) + c(aja + b/B) + d

for alln e B[S(2¢; Ny, + N,;)], which is of the form (3.19). Hence fis efficient for
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4. Conclusions. The purpose of this paper has been to display the restrictions
on the problem of obtaining minimum variance unbiased (m.v.u.) estimators
for functions of the transition probabilities in a Markov chain. We have charac-
terized those parametric functions and corresponding sampling plans which ad-
mit m.v.u. estimators. We have not claimed that these functions are necessarily
natural ones to estimate in a given application. However it is not difficult to
visualize a situation where we would want to estimate one of these efficiently
estimable functions. For example, in an experiment using Bernoulli trials, we
might want to estimate the probability ratio a/a = 1/a — 1, in which case
S(c; N,;) would be a good sampling scheme to adopt.
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