ON A THEOREM OF MORIMOTO CONCERNING SUFFICIENCY FOR DISCRETE DISTRIBUTIONS¹

By L. Brown

Cornell University

We prove in a discrete setting that if for all test functions, t, there is a **B** measurable test function, s, such that $E_p(t) = E_p(s)$ for all $p \in P$ then some subfield of **B** is sufficient for P.

The purpose of this note is to call attention to the fact that the conclusion of Theorem 5 of Morimoto (1972) can be strengthened. In the following we use the notation and definitions of Morimoto (1972). In particular, P is a family of discrete distributions on a set X and all subsets of X are measurable. We assume as in Morimoto (1972) that p(A) = 0 for all $p \in P$ implies $A = \emptyset$.

The strengthened version of Morimoto's Theorem 5 is as follows:

THEOREM. Let **B** be a σ -field such that for any test function t(x) there is a **B** measurable test function s(x) with E(t(x)|p) = E(s(x)|p) for all $p \in P$. Then **B** contains a sufficient subfield, i.e., B > B(M).

(Morimoto's conclusion is that T(B) > M which implies that B is pairwise sufficient, but not that B is sufficient.)

PROOF. Write $P = \{p_{\omega} : \omega \in \Omega\}$ where Ω is a well-ordered set. The collection of subsets (M) defined in Morimoto (1972) may be rewritten using a transfinite induction as

(1)
$$\mathbf{M} = \{T_{\omega i} : i = 1, 2, \dots, I_{\omega} \leq \infty\}$$

where

(2)
$$p_{\omega}(x) > 0$$
 for all $x \in \bigcup_{i=1}^{I_{\omega}} T_{\omega i}$ and $P_{\omega'}(\bigcup_{\omega \leq \omega'} \bigcup_{i=1}^{I_{\omega}} T_{\omega i}) = 1$,

and the sets $T_{\omega i}$ are mutually disjoint. (The statement $I_{\omega} \leq \infty$ above is intended to mean that the index set $\{i\}$ is countable, but possibly infinite.)

Now, $V \in \mathbf{B}(\mathbf{M})$ if and only if V may be written

$$V = \bigcup_{\omega \in \Omega_0} \bigcup_{i \in I(\omega)} T_{\omega i} = \bigcup_{i=1}^{\infty} \bigcup_{\omega \in \Omega_i} T_{\omega i}$$

where $\Omega_j \subset \Omega$, $j = 0, 1, \cdots$. In order to prove that B > B(M) it therefore suffices to prove that any set of the form

$$Q = \bigcup_{\omega \in \Omega'} T_{\omega}$$

satisfies $Q \in \mathbf{B}$, where $\Omega' \subset \Omega$ and $T_{\omega} = T_{\omega,i(\omega)}$.

Received June 1972; revised July 1974.

¹ The author was supported by NSF contract GP 24438.

AMS 1970 subject classifications. Primary 62B05, 62B20; Secondary 62C05, 62D05.

Key words and phrases. Sufficiency, test-function sufficiency.

As a consequence of the characterization described in (7) of Morimoto (1972) and of our definition (2) each set T_{ω} may be written in the form

(3)
$$T_{\omega} = \{x : p_{\omega}(x) > 0, p_{\xi}(x) = 0 \ \forall \xi < \omega,$$
 and
$$p_{\omega}(x) = k_{i} p_{\omega_{i}}(x); i = 1, 2, \dots, I_{\omega'} \leq \infty \}$$

where $k_i > 0$ and $\omega_i \ge \omega$. (Note that the indices ω_i depend on ω , although this is not indicated by the notation.) After defining 0/0 = 0 we may rewritten (3) as

(4)
$$T_{\omega} = \{x : p_{\omega}(x) / \sum_{i=1}^{I_{\omega'}} \alpha_i k_i p_{\omega_i}(x) = 1 \quad \forall \{\alpha_i\} \ni \alpha_i \ge 0, \sum_{i=1}^{I_{\omega'}} \alpha_i = 1$$
 and $p_{\xi}(x) = 0 \quad \forall \xi < \omega \}$.

We now prove

LEMMA. There exists a vector (α_1, \cdots) in the simplex defined in (4) which satisfies

(5)
$$x \in T_{\omega} \Leftrightarrow p_{\omega}(x)/\sum_{i=1}^{I_{\omega'}} \alpha_i k_i p_{\omega_i}(x) = 1$$
 and $p_{\xi}(x) = 0 \quad \forall \xi < \omega$.

PROOF. Consider the metric space, M, consisting of points $(\alpha_1, \dots, \alpha_i, \dots)$, $i=1,\dots,I_{\omega}'$, satisfying $0 \le \alpha_i \le \max{(2^{-i}, 2^{-i}k_i^{-1})}$; and with metric, ρ , given from the sup (L_{∞}) norm: $\rho(\alpha,\beta) = \sup{|\alpha_i - \beta_i| : i = 1,\dots,I_{\omega}'}$. This is a complete metric space.

If $x \notin \bigcup_{i=1}^{I_{\omega_i}} T_{\omega_i}$ then either $p_{\xi}(x) = 0$ for all $\xi < \omega$ or $p_{\omega}(x) = 0$ so that the r.h.s. of (5) cannot hold true.

For given $x \in D_{\omega} = \bigcup_{i=1}^{I_{\omega}} T_{\omega i} - T_{\omega}$ let S_x denote the set of points in M which satisfy $p_{\omega}(x) \sum_{i=1}^{I_{\omega'}} \alpha_i = \sum_{i=1}^{I_{\omega'}} \alpha_i k_i p_{\omega_i}(x)$. For $x \in D_{\omega} p_{\omega}(x) > 0$ and there is some index, ω_i^x , say, such that $p_{\omega}(x) \neq k_i p_{\omega_i^x}(x)$. It follows that if $\beta \in S_x$ and β' satisfies $\beta_i' = \beta_i$ for $i \neq \omega_i^x$ and $\beta'_{\omega_i^x} \neq \beta_{\omega_i^x}$ then $\beta' \notin S_x$. Hence the interior of S_x is empty.

The fact that $\alpha_i \leq \max{(2^{-i}, 2^{-i}k_i^{-1}p_{\omega_i}^{-1}(x))}$ and the dominated convergence theorem lead to the conclusion that S_x is closed in M. Since D_{ω} is countable the Baire category theorem may then be invoked to establish the existence of a point $\alpha' \in M$ such that $p_{\omega}(x) \sum_{i=1}^{I_{\omega_i'}} \alpha_i' \neq \sum_{i=1}^{I_{\omega_i'}} \alpha_i' k_i p_{\omega_i}(x)$, for all $x \in D_{\omega}$. The vector $\alpha'' = \alpha' / \sum_{i=1}^{I_{\omega_i'}} \alpha_i'$ is in the simplex described in (4) and satisfies the conclusion of (5). \square

Fix any vector in the simplex which satisfies (5). Then $T_{\omega} = R_{\omega} - S_{\omega}$ where

$$R_{\omega} = \{x : p_{\omega}(x) / \sum_{i=1}^{I_{\omega}'} \alpha_i k_i P_{\omega_i}(x) \ge 1 \text{ and } p_{\xi}(x) = 0 \quad \forall \xi < \omega\} \subset \bigcup_{i=1}^{I_{\omega}} T_{\omega_i},$$

and

$$S_{\omega} = \{x : p_{\omega}(x) / \sum_{i=1}^{I_{\omega'}} \alpha_i k_i p_{\omega_i}(x) > 1 \text{ and } p_{\xi}(x) = 0 \quad \forall \xi < \omega \}.$$

Note that if $p_{\omega}(x) > 0$ and $p_{\xi}(x) > 0$ for some $\xi < \omega$ then $p_{\omega}(x)/lp_{\xi}(x) < 1$ for l sufficiently large. Since $\{x : p_{\omega}(x) > 0\}$ is countable we may thus rewrite R_{ω} as

$$R_{\omega} = \{x : p_{\omega}(x) / [\sum_{i=1}^{I_{\omega'}} \alpha_i k_i p_{\omega_i}(x) + \sum_{i=1}^{J_{\omega}} l_j p_{\xi_i}(x)] \ge 1\}$$

where the ξ_j satisfy $\xi_j < \omega$ and the l_j are suitable positive constants and $0 \le J_\omega \le \infty$. S_ω has a similar expression. Hence

$$Q = \bigcup_{\omega \in \mathfrak{Q}'} (R_{\omega} - S_{\omega}).$$

1182 L. BROWN

Since $S_{\omega} \subset R_{\omega}$ for all $\omega \in \Omega'$ and since for $\omega \neq \omega'(\bigcup_{i=1}^{I_{\omega_i}} T_{\omega_i}) \cap (\bigcup_{i=1}^{I_{\omega_i}} T_{\omega'_i}) = \emptyset$ we have $R_{\omega'} \cap R_{\omega} = \emptyset$ for all ω , $\omega' \in \Omega'$ with $\omega' \neq \omega$. The expression (6) may thus be rewritten as

$$Q = \bigcup_{\omega \in \Omega'} R_{\omega} - \bigcup_{\omega \in \Omega'} S_{\omega}.$$

To prove the theorem it therefore suffices to show that any set of the form $\bigcup_{\omega \in \Omega'} R_{\omega}$ or $\bigcup_{\omega \in \Omega'} S_{\omega}$ is an element of **B**.

Let $W' = \bigcup_{\omega \in \Omega'} A(p_{\omega}) = \{x : p_{\omega}(x) > 0 \text{ for some } \omega \in \Omega'\}.$

Let $t = \chi_{\bigcup_{\omega \in \Omega'} R_{\omega}}$ and let s be the **B** measurable function generated by the hypothesis of the theorem such that $E(s \mid p) = E(t \mid p)$ for all $p \in P$. t' = t is the essentially unique test function relative to the measure given by $p_{\omega} + \sum \alpha_i k_i p_{\omega_i} + \sum l_j p_{\xi_j}$ maximizing $E(t' \mid p_{\omega})$ subject to the side conditions

$$E(t' | p_{\omega_i}) \leq E(t | p_{\omega_i})$$
 and $E(t' | p_{\xi_j}) \leq E(t | p_{\xi_j});$
 $i = 1, \dots, I_{\omega'}, j = 1, \dots, J_{\omega}.$

Hence s(x) = t(x) for all $x \in W'$.

Since t(x) = 0 for $x \notin W'$ we thus have $s(x) \ge t(x)$ for all $x \in X$. Suppose s(x) > t(x) for some $x \in X$. Then, for some p_{ω} , $p_{\omega}(x) > 0$ and $E(s \mid p_{\omega}) > E(t \mid p_{\omega})$, a contradiction.

It follows that s(x) = t(x) for all x so that $\bigcup_{\omega \in \Omega'} R_{\omega} \in \mathbf{B}$. Similarly $\bigcup_{\omega \in \Omega'} S_{\omega} \in \mathbf{B}$ (use the fact that **B** is a σ -field). As described above this proves that $\mathbf{B} > \mathbf{B}(\mathbf{M})$, which is the desired conclusion.

REFERENCE

MORIMOTO, H. (1972). Statistical structure of the problem of sampling from finite populations.

Ann. Math. Statist. 43 490-497.

STATISTICS CENTER
RUTGERS UNIVERSITY
NEW BRUNSWICK, N. J. 08903