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THE BEHAVIOR OF ROBUST ESTIMATORS ON
DEPENDENT DATA

By JosepH L. GASTWIRTH' AND HERMAN RUBIN?
George Washington University and Purdue University

This paper investigates the effect of serial dependence in the data on
the efficiency of some robust estimators. When the observations are from
a stationary process satisfying certain mixing conditions, linear combina-
tions of order statistics and the Hodges-Lehmann estimator are shown to
be asymptotically normally distributed. Gaussian processes are studied in
detail and it is shown that when all the serial correlations (p,) are = 0, the
efficiency of the robust estimators relative to the mean is greater than in
the case of independent observations.

1. Introduction and summary. Many robust estimators of the location pa-
rameter of a symmetric unimodal distribution have been proposed in the past
several years. All of them have the desirable property of being relatively in-
sensitive to outliers or ‘“wild observations.” This paper investigates the effect
of serial dependence in the data on the efficiency of the following estimators:
the mean, median, trimmed mean, the average of two symmetric percentiles
and the Hodges-Lehmann estimator. We study the estimators when the obser-
vations are assumed to come from a strongly mixing strictly stationary process
(S.S.P.). Gaussian processes are studied in great detail but we also study the
behavior of some of the estimators on a first order autoregressive process with
a double-exponential marginal distribution (F.O.A.D.P.). One general result
(Theorem 4.1) states that for any Gaussian process for which all the serial cor-
relations {p,} are nonnegative, the efficiency of any linear combination of the
order statistics relative to the mean is greater than the corresponding efficiency
in the case of independent observations. The same result holds for the efficiency
of the Hodges-Lehmann estimator. On the other hand, on first order autore-
gressive Gaussian processes (F.O.A.G.P.’s) as p approaches —1, the efficiency
of any finite linear combination of sample percentiles relative to the mean ap-
proaches 0. The corresponding efficiencies of the Hodges-Lehmann estimator
and the trimmed mean have a nonzero limit.

Onthe F.O.A.D.P., the median is the most efficient estimator studied, although
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it is not the best possible one. For all values of p, the median is twice as efficient
as the mean while the Hodges-Lehmann estimator (HL) is always more efficient
than the mean but less efficient than the median. In contrast with the Gaussian
case, the relative efficiency of the HL estimator gets worse as p — +-1 and better
as p— —1.

Using the probabilistic results of [5] the asymptotic theory of all estimators
studied is derived. Linear combinations of order statistics are discussed in Sec-
tion 2 and the Hodges-Lehmann estimator in Section 3.

Sections 4 and 5 are devoted to a study of the relative efficiency of our esti-
mators on Gaussian and double-exponential processes.

The last section (6) of the paper is concerned with various models of contam-
ination which lead to dependent processes. Recently, Hoyland [10] studied the
behavior of the HL estimator in a contamination model which is a special case
of our first model. The second model leads to a stationary process which has a
contaminated normal (in the sense of Tukey [16]) marginal distribution.

2. The asymptotic distribution of a general linear estimator. In [5] we
proved that the empiric cdf formed from a strong mixing A, process converges
to a Gaussian process. This implies that any sufficiently smooth linear combi-
nation of the order statistics is asymptotically normally distributed. In this
section we derive an expression for the asymptotic variance of any linear com-
bination of order statistics. We do not, however, investigate the exact conditions
required for its validity. After deriving some general formulas we specialize to
Gaussian processes in order to illustrate their use on Gaussian processes.

If X,, < --+ < X, are the order statistics from a sample of size n from a
S.S8.P., a linear estimator W is a statistic of the form ([4])
(2.1 W=ntZiwX,,
where
2.2) w,.=nu["‘1,i] i=1,..,n
n n

and v is a measure of variation 1 and finite total variation on [0, 1]. If 1¢ (0, 1),
then X, for i = [n2] is the sample Ath fractile. If W, and W, denote the ath and
Bth sample fractiles and x = F~'(a), y = F~'(B) the population fractiles, the
asymptotic joint distribution of W, and W, is given by

THEOREM 2.1. If f is continuous at x and y, then the sample fractiles from a
strongly mixing A, process are asymptotically jointly normally distributed with means
x and y and covariance given by

(2.3) nt e PIX, <x, X, <yl —aB
JE()
Proor. For each observation X, define the indicator rv’s
(2.4) Y(a)=1, X <x Y =1, X<y

=0, otherwise, =0, otherwise.
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Using the Bahadur [1] approach to the representation of a quantile (see also [6],
[12], [15])

2:5) Wy—x ~ —[tf(0)]7S, Wy =y~ =[rf()I7S,,

where

(2.6) Si= XNialYda) —e] and S = Fp,[Yi(h) — B].

The rv’s S, ond S, are jointly asymptotically normally distributed and the cal-
culation of their covariance proceeds as follows:

(2.7) Cov (S,, ;) = nt ir, 2in., Cov [Y(a@), Yi(B)
= n7 RN (n — |g]) Cov [Yy(a), Y, (B)]
— 22 . Cov [Yy(a), Y ,(B)] as n—oo.

As Cov [Yy(a), Y (B)] = P[X, < x, X, < y] — af, substituting (2.7) into (2.5)
yields (2.3).

In particular we have

CorOLLARY 2.1. If Z,,, i =1, ..., k are the A,th sample percentiles and if
Stw, =1, then W = Y %_,w,Z, is asymptotically normally distributed with mean

k_,w,F~Y(4,), and variance
PLX, < F7X(4), X, < F7Y(3y)] — 44,

SIF A TF(4))]

provided that {X,} is a strongly mixing A, S.S.P. with a continuous density at F~*(2,),
i=1,.--, k.

1 w
28) i D Wiw; Do

REMARK. Actually Theorem 2.1 and its Corollary are valid for S.S.P.’s satis-
fying the conditions of Theorem 2.1 of [5].

At this point we shall operate heuristically. Assuming that v is sufficiently
regular, the general linear estimator W based on the measure v will have asymp-
totic variance

29) VW) ~ D 33y e < PU@ X, < FUE] = B ).
2.9 V(W) ~ S5 AR (a) du(p)

REMARK. Ify isa positive measure and all rv’s X, and X, are positive quadrant
dependent ([13]) then the variance of W is greater than in the case of independent
observations.

The interchange of summation and integration is valid in the case of a finite
number of sample percentiles but requires justification in general. For estimators
such as the trimmed mean, if the density is sufficiently smooth at the trimming
points, formula (2.9) holds. At this point it may be instructive to note that the
term in (2.9) for ¢ = 0 is the variance in the case of independent observations
so that (2.9) can be regarded as the variance in the independent case with cor-
rection terms for each “qth order dependence.”

For purposes of calculation it is often convenient to express the measure v on
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(0, 1) in terms of an equivalent measure ¢ on (— oo, o) defined by

BIFR)] = f(x) dpux) .
In terms of g, (2.9) becomes
(2.10) V(W) ~ Yoew 20 (%0 {P[X, < X, X, < ]
— P[X, < X][P[X, < y]}dp(x) dp(y) -

In order to use formula (2.10) one needs a reasonable expression for P[.X, < x,
X, < y] — P[X, < x]P[X, < y]. Fortunately, for normal rv’s we have

LemMMA 2.1. If X and Y are two correlated standard normal 1v’s with correlation
coefficient v, then

(2.11)  PX<a,Y<b]—PX<alP[Y< b]
= 21; exp[—(a® + b%)/2] Zioi Hii(a)H,_4(b) ]g'f ’

where H,(a) is the kth Hermite polynomial.

Proor. The bivariate normal density function can be expressed in terms of
the Hermite polynomials as follows ([8]):

@r)X(1 — 1)+ exp[—(x* + ) — 27)/2(1 — 77)]
(2.12) = (2r)™ exp[—(x* + /2] Tnp LT

= ¢(x, 5, 7).
The probability desired is

2.13) (% e [9(x p, 1) — e(0)p(y)] dx dy .
= (% 0. @a)texp[—(x* 4+ ¥H)/2] Dem Hk(x)f!k(}')’? dxdy,

where ¢(x) denotes the standard normal density. Integrating (2.13), after inter-
changing the summation and integration operations, yields the right side of
(2.11).

REMARK. Formula (2.11) remains valid when » = +1.
Before discussing some examples we introduce an assumption on the measure

¢ which allows us to freely interchange summation and integration operations.
Letting

(2.14) u(x) = §gdu(t)y, x>0,
= {.dpu(n), x<0,

and its “total variation function”

(2.15) £ = e, x>0,
= {2 [d/l](t) , x<0,
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we shall assume that p*(x) is in L? w.r.t. the normal density function ¢(x) =
(2m)~te~=*2, Substituting (2.11) into (2.12) yields

PROPOSITION 2.1. The asymptotic variance of a general linear estimator on
Gaussian processes such that 3, |0,| < oo is given by

(216) V(W) ~ D7oe Tim 1= () = Din 15 Lo (000)"
where
¢ = [1Z0 Hea(¥)e(x) dp(x)]' -

ReEMARK 1. The assumption that g(x) is in L? guarantees that 37, c,/k!
converges.

REMARK 2. If du(x) is a symmetric measure, i.e., the original measure v gives
equal weight to the ith and (n + 1 — i)st order statistics, that its odd Fourier-
Hermite coefficients vanish, so that only terms involving c,,,, appear in (2.16).

REMARK 3. As the exact conditions for the validity of expression (2.16) for the
asymptotic variance are not known in complete generality, we note that whenever
the regularity conditions of Theorem 2.1 and }] |p,| < co, the mean, trimmed
mean and any finite linear combination of sample percentiles are asymptotically
normally distributed with the stated asymptotic variance.

We now discuss several special estimators on normal processes.

ExampLE 1. Consider the mean, X. Here du(x) = 1. Since Hy(x) = 1,¢, = 1
while ¢, = 0 if k = 1. Thus, V(ntX) = 3] p,, as is well known.

ExaMpLE 2. The median M is represented by a measure dy(x) which places an
atom of mass (2x)? at O so that ¢,,,, = H3(0) = (2k — 1)!! while ¢,, = 0. For
each g in the right side of (2.16), we have

@k =D s

(2.17) Dik=o W jgi = arcsin p,,
and summing over q yields

1 .
(2.18) V(M) ~ — D r—w arcsin py;, .

To illustrate the use of (2.18) consider a simple moving average process. Let
{Z.} be i.i.d. standard normal rv’s and let X, = (m + 1)"¥Z, + m + Z,), etc.
Then p_, = p, = 1 — |k|/(m + 1) if |k| < m + 1 and O otherwise. Thus (2.18)
becomes

e oL (aspon(i- L))

which can be regarded as the variance in the case of independent observations
plus a correction factor. As the variance of the sample mean, X, is (m + 1)/n,
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the reciprocal of the efficiency of the median to the mean is

(2.20) VM) _ 2 Zraresin (j/(m + 1)) + /2
' VX)) m+ 1 '

When m goes to infinity at a smaller rate than n, formula (2.20) is a Riemann
approximation to

(2.21) 2 {larcsinxdx = 7 — 2 ~ 1.14.

It is interesting to notice that the efficiency of M to X as m approaches oo is
about 87.79, which is much higher than the efficiency (63.69;) when the ob-
servations are independent.

We now give an example which shows that Gaussian processes exist for which
the asymptotic efficiency of the median relative to the mean can be arbitrarily
close to one. We choose the p, > 0 in a manner that the piecewise linear func-
tion connecting them will be convex. Then, by Polya’s theorem, the {p,} will
be the correlation sequence of a stationary process. Of course, p, = 1. For
k = 1 define

(K4 Dy K T\
(2.22) pk—p(KJrk)m— (K+k , 0<p <

o1
5 <K + 1>l+£
K+2
where ¢ will be chosen to be arbitrarily small and K large. Using Riemann ap-

proximations we obtain

(2.23) > ®, arcsin p, = % + 2 .7 arcsin p<

K+1>1+f
K+ k

~ % + 2K {7 arcsin px~0+9 dx

and

(2.24) S 0p ~ 1+ 2K (2 £ dx.
x1+e

V(M)/V(X) can be made arbitrarily close to

n—o0

By choosing K large, the ratio lim

{ arcsin px~ 1+ dx

(2.25)
0 S«In x—(1+e) a’x

As arcsiny < y + (37 — 1))?, the ratio (2.25) is
~1 ~1
(2.26) < o gr = D2 A+ 397 + (1 — 1),;5(2 + 3¢)1,
oe! 2

which can be made arbitrarily close to 1, by choosing ¢ sufficiently small.

ExamrLE 3. Consider a finite combination of sample percentiles, i.e., let v give
weight w; to x,, where i = [n4,], 0 < 4, < --- < 4, < 1 and let a, = ®(1)),
then du(x) = 0 if x + a; and dp(a,) = w,o(a,)~". In thiscase c, = [>T w,H,_(a,)]
Later we shall study the average of two symmetric percentiles, W(a), where
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A=a,l=1—a,a,= —a,and w, = w, = L. Since H,(—a) = H,,(a), while
1 2
Hy(—a) = —Hy,1(a), ¢ = 0 and ¢y, = Hii(a), so that
w Hi(a w
(2.27) VW) = T MO (57w o)

ExaMmpLE 4. One of the most widely studied robust estimators is the trimmed
mean, defined by

(2.28) T = (1 — 2a)~" {Z x dF,(x) ,

where A, is the sample ath quantile, B, is the sample (1 — a)th quantile and
F,(x) is the empiric cdf. In terms of measures, dv(x) = (I — 2a)~'du for
a<u<l—a and O elsewhere, while du(x) = (1 — 2a)~'. Thus, ¢, =
(1 = 2a)7 7§, H,_,(x)¢(x) dx]* which is 0 for even k and equals 4(1 —
2a)~*H};_,(a)p*a) for odd k > 1, while ¢; = 1. Thus

4e—? s ng_l(a)
(1 = 2a)'r =77 (2j + 1)!
where T, = (1 — 2a)7'[{°, x*dF(x) + 2aa’] is the variance in the independent
case.

(2:29)  V(riT(a)) ~ T, + 2 L. (o) + L1 (0

3. The Hodges-Lehmann estimator. One robust estimator which has received
much attention recently is the Hodges-Lehmann [9] estimator which is derived
from the Wilcoxon test. If X;, - - ., X, are n observations from F(x), the Hodges-
Lehmann estimator, HL, is the median of all the pairwise averages of the X’s,
ie.,

3.1) HL = med {ﬁ_"i}

2 i,d=1
In this section we shall give general conditions for the asymptotic normality of
HL and show that they are satisfied by strongly mixing Gaussian processes such
that 3] |o,| < co. Moreover, we shall evaluate explicitly the asymptotic variance
of HL for these Gaussian processes and the autoregressive double-exponential
process so that the effect of serial correlation in the data can be explored nu-
merically.

Instead of working with the Hodges-Lehmann estimator it is more convenient
to discuss an asymptotically equivalent estimator which is defined in terms of
the empiric cdf F, () by '

(3.2) M* = 2 HL = median {F,(f)  F,(1)} ,

where * denotes convolution. The estimator HL* is the median of all pairwise
averages, where the average of a pair of distinct observations is counted twice
while the individual observations are counted once. This is just a consequence
of the fact that F, x F, places mass 2n~* at the (}) points of the form x; + x; if
i # j, and places mass n~* at the n points of the form 2x,. If M* denotes the
median of F, «F,, i.e., F, xF,(M*)=%, then HL* = M*/2. The idea
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underlying the proof of asymptotic normality of HL* is similar to the proof of
asymptotic normality of the sign test. The number of pairs of observations X;,
X; such that X; + X; < 0 is n*F, x F,(0) and should be asymptotically normally
distributed. Using the density g(0) of F x F at 0 in place of f(0), one can convert
the asymptotic normality of F, x F,(0) into the asymptotic normality of M*.

The results in [5] imply that HL* is asymptotically normal; however, HL* is
asymptotically normal under weaker conditions. In terms of the conditions on
the empiric process

(3.3) G, (1) = nt[F,(t) — F(1)]
in a neighborhood of 0, we have

THEOREM 3.1. The estimator, HL*, is asymptotically normally distributed when-
ever the following conditions are satisfied.

(3.4a) (G, x F)(0) is asymptotically normally distributed,
(3.4b) there exist two sequences of reals w, and 2, such that
w,—0, A,—o00 but A,n*—0,

SUPs<a,n-t PG, * F(x) — (G, * F)©0)| >w,}—0,
and

(3.4¢) SUPy<a,n-t P{In7¥G, % Go(x)| > w,} — 0 as n— oo,

(3.44d) (F x F)(0) exists.
Moreover,

3.5) ntH* 4+ G, » F(0)/(F x F)'(0) —, 0
and

(3.6) ntH* ~ N(0, o?)

where o* is the variance of (G, » F)(0)/(F x F)'(0).
Before giving the proof we should like to discuss the assumptions. Clearly,
(3.7) F,xF,=FxF + 2n7G,xF + n7'G, x G, .

Assumptions (b) and (c) state that there is a neighborhood about zero of order
larger than n~* such that in the neighborhood G, * F is essentially (G,  F)(0)
while nY(G, = G,) is essentially 0. Thus, in a neighborhood of order greater
than n—t, (F, x F,) — (F % F) differs from the random variable 2n~*G, x F(0) by
terms of order o,(n~%). Asymptotic normality of the sign-type statistic then
follows from the first assumption and the fourth assumption (d) guarantees the
asymptotic normality of H*.

Proor. Letting a denote (F x F)'(0), by the definition of a derivative and
assumption (d), there exists a sequence p, — 0 such that

(3:8) |(F « F)(x) — (F x F)(0) — ax| < p,
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for |x| < 2,n~*. Next select a sequence Q,, — o slowly so that

3.9) Q. SUP <z -t P{(G, * F)(x) — (G, F)©0)| > w,}—0,

(3.10) 0, sup,, <z .-t P{In7HG, « G(x))| > w,}—0,

and Q, p, — 0. The existence of a sequence Q, satisfying conditions (3.9) and
(3.10) follows from assumptions (b) and (c) respectively. Finally, select a se-
quence h, — 0 such that Q,k, — oo, Q,h, < 4, and Q, 4,0, — 0. (The interval
(—Q,h,nt, Q,h,nt) is the desired neighborhood of zero which is larger than
n-t.) At all points of the form

o 0,=k=0.,

(3.11) x =
n

relations (3.9) and (3.10) imply that
(3.12) |F, % F,(x) — F x F(x) — 2n7}G, x F(0)| < 3w,n"*

except with small probability. Substituting (3.8) in (3.12), shows that with large
probability (w.L.p.)

(3.13) |F, « F,(x) — F % F0) — ax — 2n~4G, x F)(0)| < p,|x| + 3w,nt.
In particular, it follows from (3.13) that w.L.p. if F, x F,(x) < 3, then

(3.14) ax + 2n=¥G, * F)(0) < p,|x| + 3w,nt
while if F, x F,(x) = }, then

(3.15) ax + 204G, x F)(0) = —p,|x| — 3w,n7t.
Thus, w.1.p.

(3.16)  n[(F, * F,)(Q.h,n7%) — 3]

> aQ,h, + 2(G, « F)(0) — 0,0k, — 3w, >0
since (G, * F)(0) has bounded variance, p,Q,k, — 0, w, — 0 but aQ,h, — co.
Similarly w.L.p.
(317) n&[(Fn * F‘n)(—thnn—é) - %] < 0 ’
so that w.l.p. M* lies in the interval [—Q,A,/n}, Q,k,[n*] and there exists a k
such that

(3.18) n~tkh, < M* < n¥k + )h,, —Q,<k=0,.
Let

(3.19) Y = nd(aM* + 2n~4(G, = F)(0)) .

Since (F, * F,)((k + 1)h,n"*) = 4, it follows from (3.11) that w.l.p.
(3.20) Y= p,Q,hk, — 3w, — b, .

As (F, * F,)(kh,n"*) < 1, (3.14) implies that w.l.p.
(3'21) Y § annhn + 3wn + hn *
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As h,, w, and p,Q,h, all approach 0 as n — oo, (3.20) and (3.21) imply that
(Y) — 0 in probability. Hence

(3.22) nimr 1 2GxF)O0) o
44

or

(3.23) wHL* + 2C*xF)O) _, o
[24

and the asymptotic distribution of n*HL* is that of (G, x F)(0)/a.

In the appendix we verify that the assumptions of Theorem 3.1 are satisfied
by strongly mixing Gaussian processes such that Y. |o,| < co. A similar (but
simpler) argument will show that the first order autoregressive double-exponen-
tial process also obeys Theorem 3.1 so that HL is asymptotically normally
distributed for data from the processes we shall discuss. We now proceed to
calculate the variance of the asymptotic distribution of HL for observations
from these processes.

In order to calculate the variance of F x G,(0), we express it as

(3.24) FxG,(0) =nt 37 {F(X)) — E[F(—X)]}.

In particular, when f is symmetric about 0,

(3.25) F % G(0) = n™* T, (F(X,) — )

and

(3.26) Var [F « G,(0)] = % 2 i E[F(X) — 3[F(X;) — 3]

A non-trivial use of the representation (3.26) occurs in the derivation of the
asymptotic variance of HL on double-exponential first order autoregressive data.
Specifically, we have

THEOREM 3.2. When {X,}isa F.O.A.D.P. the asymptotic variance of the Hodges—
Lehmann estimator is given by

37
(3.27)  nV[HL] ~ 4 + 1_3_”_!; _3 ( o _P.__> if 0>0

@+ oy
and
. LY ,
(3.28) nV[HL] ~ 3 317 o <P|Jl - -(ﬁ)wj‘l‘)?) if p<O0.

Proor (Outline). From (3.23), nV[HL] = 16V[F « G,(0)] on double-exponen-
tial data. Since the cdf of the double-exponential distribution is

(3.29) Fuy =1+ 3(1 —e™)ysgnu,
(3.26) becomes
(3.30)  AV[F x G,(0)] = (}) D51 T E[(1 — e74)(1 — e7"¥) sgn (¥; Yy)] -
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Using the Markov nature of the process and letting n — oo, one obtains
(3:31)  V[FxG0)] ~ (}) Tiew E[(1 — e7a)(1 — e~s) sgn (¥, Y,)] .

The integrals in (3.31) are evaluated using the representation given in [6], [7].
For Gaussian processes it is more convenient to make a direct computation in
terms of the rv’s which indicate whether (X; + X;) is less than 0 (the median) and
convert this to obtain the asymptotic variance of M*. Of course HL* = M*/2.
Let

(3.32) I;=+1, if (X,+X;)>0,
=1, if (X;+ X;)<0,
and S = Zall pairs Iij'
The random variables X;, X,, X;, X, are jointly Gaussian so the covariance
matrix of the two random variables X; + X; and X, + X, is

2(1 + pj;-4) 7
(3-33) ( 7 | 2(1 + plk—ll)> ’

where y = p_y + P;_y + Pu-y + 0;-x and the correlation between X; + X;
and X, + X is

(3.34) p* = r .
2(1 + o (1 + o)}

Using
Cov (I, I,) = 4P[X, + X; >0, X, + X, >0] — })

2 .
= 2 arcsin p* ,
T

and counting the contribution of the various terms to Var (S) one can show that
(3.35) n~®Var (S) ~ 8 >3, arcsin % .
T

Now the statistic corresponding to the sign test statistic is the number $* of
pairwise means (or pairwise sums) that are < 0. Essentially, $* = 4n® — }S so
that

(3.36) n=®Var (§*%) ~ 2 37, arcsin %ﬂ .
T

The same derivation as given in Section 2,” with n replaced by n* and f(0) re-
placed by the density of X; + X; at 0, which is =* in the normal case by Lemma
3.1 yields

(3.37) Var (M*) = n~'8 ¥, arcsin %’ﬁ'_ .
As HL* = M*/2, the asymptotic variance of n*HL is given by

(3.38) Var (n’HL) ~ 2 Z;:=_m arcsin %ﬂ .
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4. The efficiency of the estimators relative to the mean in Gaussian processes.
In this section we study the efficiency of our estimators relative to X Gaussian
processes. In particular, their behavior on the F.O.A.G.P. is analyzed in detail.
We first show that all linear estimators are efficiency-robust against positive
dependence (all p, > 0). We then specialize to data from a F.0.A.G.P. and
evaluate the relative efficiency of our estimators for various values of p. A short
table, Table 4.1 is presented which summarizes the behavior of the median M,
the Hodges-Lehmann estimator HL, the mid-mean (25%, trimmed mean), the
59 trimmed mean and the average of the 25th and 75th percentiles for various
values of p. A more extensive survey of the behavior of the a-trimmed mean,
T(a), and the average of two symmetric percentiles, W(a), as a (the fractile used
for trimming or averaging) varies is presented in Table 4.2. For the estimator
W(a) it turns out that the optimum choice of « in the case of independent obser-
vations remains nearly optimum for small values of p. The behavior of the
relative efficiencies of our estimators as p — —1 is also quite interesting. As
p— —1, the A.R.E. of the median or any finite linear combination of sample
percentiles approaches 0 while that of HL or T(a) approaches a finite limit (see
the Appendices). This is in sharp contrast with the case of independent obser-
vations where the efficiency of M to X is always > } provided that the density
sampled is symmetric and unimodal.

In order to discuss the efficiency of linear estimators we require

Lemma 4.1. If S is any estimator such that

(4.1) V(ntS) ~ X7 = 9(0,) »
where g(p) is a function satisfying g(0) < pg(1), then

(4.2) lim, ., V(") _ Ze-a 900 < 41
VR T ntee,
In particular, Lemma 4.1 is applicable whenever g(p)/p is an increasing func-

tion of p. Typically g(1) is the asymptotic variance of niS in the case of inde-
pendent observations. We next apply Lemma 4.1 to derive

THEOREM 4.1. The efficiency of any unbiased linear combination of the order
statistics (obeying (2.9)) relative to X on strong mixing Gaussian process such that
Pr =0 for all k and 3} |p,| < oo is always greater than or equal to its value when
the observations are independent.

Proor. The variance of ntW, for any linear combination W, is given by (2.17).
Setting

(4.3) 9(p) = zck—f’

and recalling that ¢, > 0, the result follows from Lemma 4.1.

REMARK. This efficiency-robustness result depends heavily on the assumption
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that the process is Gaussian. The fact that on F.O.A.D.P.’s, the efficiency of
M to X always is 2 suggests that this result will not be generally true.

Using formula (3.38) the analog for the Hodges-Lehmann estimator can be
obtained. We state

THEOREM 4.2. The efficiency of the Hodges—Lehmann estimator, HL, to the
sample mean X, on strongly mixing Gaussian S.S.P.’s such that p, = 0 for all k and
21 o < oo, is always greater than or equal to its value, 3|r, in the case of i.i.d.
Gaussian observations.

For the remainder of the section we shall assume that the { X;} are a F.O.A.G.P.
Two important linear estimators are the average of the ath and (1 — a)th quan-
tile, W(«), and the a-trimmed mean, T(«), the average of all observations between
the ath and (1 — a)th quantiles. For convenience we specialize the results in
Section 2 in

ProrositioN 4.1. On F.O.A.G.P.’s,

gy 0T H@
(4.4) V(n*W(O()) ~ nwae* + 2 2i5=0 1 — pratl ’ (21 _Jl_ 1)!

2 4e=* - Hi;(a) P
45)  V(nT(a)) ~ T - @it '
(43) VO T@) ~ Tok o5t G e Bl G ) T g

An interesting and readily derived general result is

ProposITION 4.2. On F.O.A.G.P.’s, the asymptotic variance of any unbiased
linear estimator approaches oo as p — 1 and the asymptotic variance of any sym-
metric estimator approaches 0 as p — —1.

Usually robustness results study the efficiency of an estimator relative to the
optimum one. As X is asymptotically efficient for Gaussian processes one needs
the reciprocal of the efficiency of any unbiased linear estimator (W) which is
given by
(4.6) lim, ., VW) _ s @ L ef 1—p

V(ntX) Kl 1 —pF 1+4+p

as V(ntX) = (1 — p)/(1 + p). An interesting monotonicity property of the rela-
tive efficiency is based on the following elementary

LEMMA 4.2.

l
Forall 1>0 L+po 1T—p decreases as p goes from

_.
|
.QN
—_
+
i)

0 o 1.

l
Forodd 1>0 L+p 1—p decreases as p goes from

—1 to +1.
Applying Lemma 4.2 to expression (4.6) yields
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CoROLLARY 4.1. The efficiency of any unbiased linear estimator W relative to X
on data from a F.O.A.G.P. is an increasing function of p for 0 < p < 1. If Wis
a symmetric linear estimator the relative efficiency is a monotonically increasing func-

tion of p for —1 < p < 1.

Proor. The first part of the Corollary is trivial as ¢, = 0 and each term in
(4.6) decreases as p increases. The second part of the Corollary follows as
¢y, = 0 for symmetric estimators.

Corollary 4.1 implies that for any symmetric linear combination of the order
statistics the situations when p approaches +1 and —1 yield bounds for the
relative efficiency. Using L’Hospital’s rule we can derive

THEOREM 4.3. The reciprocal of the efficiency of any symmetric linear estimator
relative to X as p — +1 or —1 is given by

. V(ntw) o Cojn
4.7 1 ) =1 4 it ,
*-7) et ) + i 2+ D)+ 1!
and
, V(niW) . Oy
4.8 1 — L = © T2l
(4.8) m,_,_, V(n%X) Zg—o (2].)!

Expression (4.8) may be infinite.

Expressions (4.7) and (4.8) can be evaluated for the median without recourse
to the explicit values of ¢,; ;. As this analysis also applies to the HL estimator
we formally present

THEOREM 4.4. If p > 0, then V(X) < V(H) < V(M),

, V(X) 2
4.9 lim, ,, %) — 2 9184
+9) TY(M) T xlog2
and
. V(X)
4.10 lim, ,, %) 9853,
( ) 1 p—+1 V(H)

ProOOF. As nV(M) ~ 3 arcsin p*, and nV(H) ~ 2 3 arcsin (0*/2) the first as-
sertion follows from the elementary inequality: x < 2 arcsin (x/2) < arcsin x.
The limiting efficiencies are evaluated by using the fact that the arcsin function
has a Taylor series, i.c.,

(4.11) arcsin x = > 5., a;x¥*,

In terms of this expansion,

(4.12) V(M) = Xp._.arcsin ot = X, a; 5, (094 = ¥ a %’Z; .
Thus, the reciprocal of the efficiency is asymptotically

‘V(k]\_l)_: Y. a 14 4 1—p

(4.13) = . .
V(X) 1 —p*t 14 p
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As p — +1, the jth term approaches a;/(2j + 1), so that
V(Xy

4.14 lim
(4.14) TR = S T
From the expansion (4.11), it follows that
; x4 1 ., arcsin I gin-

4.15 . CZJX —_ x__*yd — = (sin 1z cotzdz.
@15) 3 i G =g cotzds
Evaluation of (4.15) at x = 1 yields

. ) _
4.16 lim 9 =(;"?zcotzd :'10 2.
10 lime gy = By T et = g e

Similarly, the asymptotic variance of the Hodges-Lehmann estimator is ex-

pressible as
okl 1 2541

(4.17) V(H) = 2 3 7-_. arcsin %_ = );a;27% l_j—_—zﬁ .

Proceeding as before the reciprocal of the limiting relative efficiency is ob-
tained by evaluating expression (4.15) at x = 4. Thus,
VH) _
Xy
where the B; are the Bernoulli numbers.

From formula (4.17) we see that the reciprocal of the efficiency of the Hodges-

Lehmann estimator is given by a formula of the same type as (4.6). As p — —1,
the asymptotic efficiencies of M and HL are given by

THEOREM 4.5. If p < 0, then V(X) < V(HL) < V(M),

741
(4.18) lim, , =2\ zcotzdz = 2[4 — M] ,

2+ 1)l

(4.19) tim, ., /&) _
(M)

and

(4.20) vx) _ 3

'yHL) 2

The behavior of the median as p — —1 is quite interesting because n times
its variance decreases to zero as p — — | and yet its efficiency relative to X ap-
proaches 0. In the Appendices we show that this characteristic of any finite
linear combination of sample percentilés. As robustness studies are usually
concerned with the sensitivity of procedures to small departures from the basic
assumptions we present Table 4.1 of the efficiencies of several robust estimators
for various values of p. All these estimators, which are robust against outliers,
are robust against positive serial correlation. For all p, the 5%, trimmed mean is
the most robust as one would expect as it is the estimator which is “nearest” X.
For small p, i.e., —.3 < p < 4.3, the relative efficiency of the HL estimator
is within 3.59, of value in the case of i.i.d. observations. The efficiencies of
the other estimators appear to be more sensitive.
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TABLE 4.1
The asymptotic efficiency of some estimators relative to X
on first order autoregressive Gaussian processes

o M H 7 e MidMean G tiles
-1.0 .0000 .8660 .9000 .5000 .0000
-.9 L1517 .8673 L9129 .5418 .2423
-.8 .2214 .8714 .9200 .5688 .3608
-7 .2801 .8783 .9267 .5995 .4559
—.6 .3344 .8875 .9337 .6332 .5323
-.5 .3868 .8985 .9408 .6686 .5952
—.4 .4384 .9106 .9482 . 7047 .6489
-.3 .4895 .9229 .9556 . 7407 .6960
—-.2 .5399 .9348 .9626 L7753 L1377
—.1 .5892 .9456 .9690 .8076 .7749
0 .6363 .9549 .9744 .8367 .8079
1 .6815 .9628 .9790 .8622 .8370
.2 .7234 .9691 .9826 .8838 .8627
.3 .7619 .9740 .9854 .9018 .8853
4 .7967 .9778 .9875 .9164 .9051
.5 .8278 .9806 .9891 .9230 .9225
.6 .8549 .9826 .9903 .9367 .9377
N .8780 .9839 .9910 .9430 .9510
.8 .8968 .9847 L9915 .9471 .9624
.9 .9109 .9851 L9918 .9493 L9715
1.0 .9184 .9853 L9919 .9501 .9766

The results in Table 4.1 do not provide a comprehensive survey of the be-
havior of the estimators T(«) and W{(a) since one is interested in the optimal
choice of a and how this value changes with p. In the case of independent
normal observations, Mosteller [14] showed that the optimal choice of a for
W(a) is about .27. Of course, the optimal choice of a for T(a) is 0 since 7(0)
is the asymptotically efficient estimator X.

It is interesting to observe that the optimal choice of & for W(a) does not vary
very much from its value in the independent case. When p = .9, the optimal
value for a is about .20 and when p = —.9, the optimal choice for a is about
.35. Moreover, for.2 < a < .4, the efficiency of W(a) is always higher than
the efficiency of the median. Since W(.27) or any approximation to it such as
W(.25), is only slightly harder to compute than the median and is quite a bit
more efficient than the median for independent and first order autoregressive
Gaussian data, its use in practice as a quick estimator can be recommended.
For small p, —.2 < p < .2, an interpolation showed that W(.27) remains nearly
optimum. Finally, a glance at Table 4.1 shows that W{(.25) behaves very simi-
larly to 7(.25) on most first order autoregressive processes so that our results
also support the claims in recent literature [2], [4], [11], [16] concerning the
robustness properties of the mid-mean, 7(.25).

The results reported above are based on Table 4.2.
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TABLE 4.2
The asymptotic efficiency of W() and T(a) relative to X

o T(.10)  W(.10)  T(.2) w(.2) T(.3) w(.3) T(.4) W(.4)

-1 .8000 .0000 .6000 .0000 .4000 .0000 .2000 .0000
-.9 .8221 1341 .6363 .2131 4476 .2683 .2739 .2817
-.8 .8345 .1967 .6574 .3146 .4833 .3936 .3323 .3622
-7 .8464 2511 .6806 .4037 .5226 .4807 .3872 4212
—.6 .8592 .3044 .7068 .4823 .5634 .5470 .4384 4737
—-.5 .8732 .3581 7352 .5507 .6049 .6021 .4883 .5234
—.4 .8882 .4120 .7649 .6100 .6466 .6509 .5374 57117
-.3 .9034 .4652 7947 .6619 .6877 .6952 .5856 .6186
—-.2 .9180 5173 .8234 .7075 L1274 .7358 .6326 .6638
-.1 .9314 .5677 .8500 .7479 .7647 L1727 .6775 .7067

0 .9430 .6160 .8736 .7838 . 7987 .8059 .7196 .7463
.1 .9528 .6621 .8940 .8158 .8289 .8353 .7581 .7823
.2 .9608 . 7060 9111 .8446 .8550 .8610 7927 .8142
.3 .9670 L7473 .9250 .8703 .8772 .8831 .8232 .8421
-4 .9720 .7858 .9361 .8936 .8956 .9021 .8496 .8660
.5 .9754 .8210 .9446 .9147 .9103 .9183 .8720 .8860
.6 .9780 .8524 .9509 .9332 .9219 .9320 .8904 .9025
7 .9797 .8794 .9554 .9497 .9304 .9434 .9050 .9156
.8 .9808 .9016 .9582 .9637 .9362 19530 L9158 .9253
.9 .9814 .9180 .9598 .9745 .9395 .9607 .9227 .9320

1.0 .9816 .9269 .9602 .9804 .9406 .9652 L9252 .9356

5. The behavior of some estimators on the first order autoregressive double-
exponential process. So far we have only studied Gaussian processes. In order
to investigate the effect that the marginal distribution has on our results, in this
section we summarize the behavior of some robust estimators on the first order
autoregressive process with double-exponential marginal (F.O.A.D.P.). As this
process is a rather special one we shall omit proofs. Not surprisingly the results
indicate that the median, M, remains the best estimator of the four estimators
studied. More interesting is the fact that the HL estimator is more efficient
than the mean, X, for all values of p so that it retains its desirable robustness
property. In contrast with the Gaussian situation, however, the efficiency of
the HL estimator to M (the best one considered) decreases as p — 4-1 and in-
creases as p — —1. In the case of independent observations from a double-
exponential distribution the efficiency of the HL estimator to the median is 759,.
In the case of observations from a F.O.A.D.P., as p — -+ 1 this efficiency drops
to 69.89%, while it rises to 909, as p — —1.

The basic tool needed to derive the asymptotic variances of the estimators is
given in [6] and [7]. Briefly, the result says that the F.O.A.D.P. satisfies a
stochastic difference equation of the form

Xi=pX,_, 4+ (@04 (1 —9q)e),

where 0 stands for a rv which is degenerate at the origin and ¢, is an independent
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double-exponential rv. Thus, a F.O.A.D.P. exists and the error term is a mix-
ture of a degenerate rv and a double-exponential rv. Using this representation
and formula (2.3) one obtains

THEOREM 5.1. The average W(«a) of the upper and lower 100ath percentiles on
a F.O.A.D.P. is asymptotically normally distributed with expectation the mean of
the process and asymptotic variance given by
lim, ., nV[W(a)] = X5 . (0™ cosh vp'* + sinh yp!*)
o . p2d p2j+l - p2j+1 p2i+1
B e R e T

where v is the upper ath point of the double-exponential distribution.

Our first result shows that, as is the case of independent observations, the
median is the most efficient estimator of the form W(2). Specifically, one can
derive

PROPOSITION 5.1. The median has the minimum asymptotic variance of any aver-
age of two symmetric percentiles on any F.O.A.D.P.

When we compare the efficiency of any estimator W(a) to the median as p
varies we obtain the following analog of Corollary 4.1:

PROPOSITION 5.2. The efficiency of any average of two symmetric order statistics,
W(a), to M on F.O.A.D.P.’s is an increasing function of p.

The asymptotic variance of the Hodges-Lehmann estimator was given in
(3.27). It is always more efficient than X but less efficient than the median.
Using the methods of the previous section one obtains

THEOREM 5.2. On data from a F.O.A.D.P. the limiting ratios of the asymptotic
variances of the estimators considered, as p — +1 are given by
lim,_,, V(X)/V(M) = 2,
lim, ., V(H)/V(M) = 2[31og () — 4] = 1.4328,
sinh v o pi+l
TR e
where v is the upper ath fractile of the double-exponential cdf,

V(H)|V(M) = 10/9

lim,_,, V[W(«)/V(M) =

lim,,_,
and

lim, _, V[W(«)]/V(M) = coshy + ve .

o——1

In Table 5.1 we present the asymptotic efficiency of the HL estimator and
several averages of symmetric percentiles, W(.45), W(.4), W(.25), and W(.1)
relative to M for various choices of p. One interesting observation is that all the
estimators seem rather more sensitive to small values of p than in the Gaussian
case. For instance, for Gaussian data the HL estimator has efficiency .995 at
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TABLE 5.1
The A.R.E. of the estimators H, W(.45), W(.4), W(.25) and W(.1) relative to M

I VIM)IV(H) V(M)[V(W(45)) VIM)[V(W(4) VIM/VW(.25) V(IM)/V(W(.1)

-1 .9000 .8908 .7669 .3793 .0939

-.9 .8991 .8908 .7672 .3804 .0948

-.8 .8961 .8912 .7684 .3842 .0975

-.5 .8653 .8938 777 4142 1192

—-.3 .8210 .8965 L7871 .4476 .1460

—.1 L7709 .8990 .7962 .4837 .1810

0 .7500 .9000 .8000 .5000 .2000

+.1 .7336 .9008 .8031 5142 .2139

.3 L7134 .9020 .8075 .5355 .2527

.5 .7038 .9027 .8099 .5483 .2775

.8 .6986 .9031 .8114 .5564 .2958

.9 .6981 .9031 .8116 .5572 .2978

1.0 .6979 .9031 .8116 .5574 .2984
p=0,.866at p= —1 and .923 at p = —.3 so that about 369, of the total
change in efficiency is attained when p = —.3. In the double-exponential case
479, of the total change in efficiency already occursat p = —.3. This behavior

is characteristic of all the estimators.

Probably the most basic conclusion that can be drawn from Table 5.1 is that
the efficiency of the HL estimator decreases as o increases which is the exact
opposite of its behavior in the Gaussian case. This suggests that it is not possible
to find one estimator which will be robust against positive serial correlations for
all autoregressive procosses. As the relative efficiency of the HL estimator to
the median appears to be a monotonically decreasing function of p achieving its
minimum value .6979 at p = 1, it appears to be more suitable than the ordinary
mean for general use. Moreover, the efficiency of the HL estimator on Gaussian
processes is much superior to the median or the average of two symmetric per-
centiles (especially when p is negative).

6. Two models allowing for contaminated observations. In this section we
study two processes which are models of a basic sequence of i.i.d. rv’s {¢;} which
are subject to possible contamination. The first process assumes that the obser-
vations come in groups. Each group has a common contaminant and the size
of a group is determined by a discrete renewal process. This model can be con-
sidered as a generalization of Hoyland’s [10] results when each group has the
same size (¢). The second model assumes that the process alternates between
groups of observations with a common contaminant and groups of uncontami-
nated observations. The stationary marginal distribution of the second process
is a contaminated normal distribution, in the sense of Tukey [16] when the {¢,}
and the contaminant are normally distributed (with different variances)-

Our general results imply that for the first process the efficiency of any linear
combination of the order statistics or the HL estimator, relative to X is greater
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than its relative efficiency in the case of independent observations whenever the
¢; and the contaminant are normally distributed.

Process 1. Assume that a process is composed of phases whose lengths (L,,
L,, --.) form a discrete renewal process, i.e., the probability that a phase lasts
for j observations is p; = P(L = j). When a phase begins a contaminant U is
added to a basic sequence ¢, of i.i.d. rv’s throughout that phase. Letting N(i)
denote the number of renewals (phases) that have occurred by time /, the process
X, is representable as

(6.1) Xy =Uyy + ¢

Whenever E(L) is finite the process will be asymptotically stationary. Indeed,
by choosing the stationary distribution for the renewal process as the time until
the first renewal occurs, the process can be made strictly stationary from time 0.
We denote the generating function of L by ¢(z) = X3 p;z? and discuss the as-
ymptotic behavior of X, M and HL when ¢ ~ 7(0, ¢?) and U ~ (0, ¢%). It will
be convenient to assume that e? 4 ¢ = 1 and we let r = ¢*/0® 4- ¢*. The as-
ymptotic behavior of the three estimators is given in

PROPOSITION 6.1. When the observations are from Process 1, as n — oo

6.2) V) ~ (1 + re(1)f'(1)

T 2 (1) .
6.3) V(M) _2_;<1 + — Warcsm r)
and

~F 6 ") aresin ©-
(6.4) V(HL) 3n<1 + o L aresin 2).

ProOOF. As usual
6.5) BV(R) = Si, V(X) + 5 Diss Cov (X, X;).

If X; and X; are not in the same phase, they are independent. When X, and X
are in the same phase, Cov (X;, X;) =r. As n— oo, the number of different
phases is approximately n/E(L) = n/¢'(1). The average number of ordered pairs
of distinct observations that occur in a phase is E(L(L — 1)) = ¢”’(1). Hence,
as n — oo

(66) ZZi*i Cov (Xi7 Xj) ~ M 5
¢'(1)
and

To derive (6.3), consider the sign test statistic S,. Its variance is

(6.8) V(S,) = Zijma () + 2w [P(X: > 0, X; > 0) — 4.
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The terms in the second sum on the right side of (6.8) are 0 unless i and j are
in the same phase, in which case P(X; > 0,X; > 0) — 1 = 1/2zrarcsinr.
Counting the number of correlated X,’s as in the preceding paragraph yields

(6.9) V(S,) ~ = <1 + 2 2 arcsin r)
4 ¢'(l) =
and (6.3) follows from (6.9).
The derivation of (6.4) follows the one in Section 3. There is one simplifi-
cation. In calculating the variance of )] /,;, one need only calculate

(6.10) Zii[PXi+Y>0,X+2>0) — 4]

where Y, Z are independent of X, X; and of each other and have the stationary
distribution of the process. The number of other term is of lower order. When
i=j, PX+Y>0,X+ Z>0)=1as all the rv’s are symmetric. If i and j
are not in the same phase P(X; 4+ Y > 0, X; 4 Z > 0) = +. When X and X;
are in the same phase they are correlated and X; 4 Y, X; 4+ Z will be jointly
normally distributed (conditionally) with correlation r/2. Thus, P(X; + Y > 0,
X; + Z > 0) — + = 1/2r arcsin r/2 when i, j are in the same phase, and the
variance of the appropriate sign test statistic is

(6.11) n <i -+ iwarcsinj—).
12 2z ¢'(1) 2
Converting this to the variance of the HL estimator as before yields (6.4).

From formulas (6.2), (6.3) and (6.4) it follows that for small r, if ¢”(1)/¢’(1)
approaches oo, the three estimators exhibit the same behavior. As np(1)/¢’(1)
is the expected number of correlations it is apparent that the variances of the
estimators really depend on the total amount of correlation between the obser-
vations rather than just on r. In other words, a few really large groups (i.e.
¢"'(1) large) has a greater effect than many small groups. Also, for any fixed
value of r, the efficiency of both M and HL relative to X is an increasing function
of ¢(1)/¢/(1).

Usually we are concerned with values of r > 3, i.e., the contaminant ordi-
narily has a larger variance than the underlying i.i.d. rv’s. As r— 1, all the
terms in the parentheses in formulas (6.2), (6.3) and (6.4) approach [1 + ¢"'(1)/
¢’(1)] so that their relative efficiencies reduce to their efficiencies in the case of
independent observations. This is expected as each group is essentially one ob-
servation from the contaminant.

In order to illustrate the results, we present the A.R.E.’s of M and HL to X
for various values of r and = = ¢'(1)/[¢’(1) 4 ¢"(1)] in Table 6.1. Of course,
for any r the A.R.E. is monotone decreasing in ¢ as r is a decreasing function
of ¢"(1)/g'(1).

In all cases, except = = 0, the efficiencies approach the case of i.i.d. obser-
vations where r = O or 1. For moderate values of , i.e., ¢""(1)/¢’(1) is not large,
the A.R.E.’s of both estimators are not greatly increased compared to the
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independent case. However, for small values of z the effect of large values
of ¢”(1) takes over. In the limiting case, = = 0, when r is small the A.R.E.’s
approach one.

Process 1 can be regarded as a generalization of Hoyland’s [10] model, in
which L is a constant c. He studied the Hodges-Lehmann estimator but gives
a formula for arbitrary distributions which essentially replaces 1/2z arcsin r/2
by P(X; + Y > 0, X; + Z > 0) — %, where X, and X; are in the same contam-
ination period and used the general conversion factor of the density of X; + X;
at 0, i.e., {=, f*(¢) dt in the conversion of the sign type statistic to the Hodges-
Lehmann estimate. The asymptotic variance of the median given in (6.3) can
also be generalized to an arbitrary marginal distribution and is

* 1 (1) >
(63 arom (5 )
where 2 = P[X, > 0, X; > 0] — } when X, and X; are in the same contamina-
tion period. Of course, in Hoyland’s case, ¢ (1)[¢’(1)]"* = ¢ — 1.

It may be instructive to compare the effect of having random group sizes in
place of constant group sizes on the variances of our estimators. If we take a
geometric distribution for L with average group size ¢, then p = 1/c and ¢"'(1)/
¢'(1) = 2(c — 1). Thus the factor due to dependence is doubled if the size of a
group is geometrically distributed with mean ¢ rather than always equal to c.

TABLE 6.1
The A.R.E.’s of M and HL for Process 1
V(X)/V(M)
T
r
0 .1 .2 .3 .5 .7 1.
0 1.0 .637 .637 .637 .637 .637 .637
.1 .998 767 710 .683 .658 .646 .637
3 .985 .858 .789 .745 .693 .663 .637
) .955 875 .819 175 716 .676 .637
.7 .903 .854 .813 779 L1725 .683 .637
.9 .804 .781 .760 .741 .706 .676 .637
10 .637 .637 .637 .637 .637 .637 .637
V(X)/V(HL)
T
r
0 .1 .2 3 S T 1.
0 1.0 955 955 955 955 955 955
.1 .999+ .976 .967 .963 .959 .957 .955
3 .996 .985 977 972 .964 .960 .955
.5 .989 .983 .978 .973 . 966 .961 955
7 .979 975 972 .970 .965 .960 955
.9 .964 .963 .962 .961 .960 .957 955
1.0 955 955 955 955 .955 .955 .955
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Process 2. The second model assumes the process alternates between two
types of periods (or phases). During the first phase X, equals e, where the ¢,
are i.i.d. standard normal rv’s. During the second phase X; = ¢, + U, where
U is a N(0, ) random variate independent of the ¢, and is a common component
of the observations during the phase. Thus, we have a period of pure obser-
vations followed by a period of contaminated ones and then another period of
pure observations, etc. We shall call the phases in which uncontaminated obser-
vations occur pure periods and the other phases contaminated periods.

While we were motivated by a model which assumed that the lengths of the
two types of periods were determined by two independent renewal processes (the
so-called alternating renewal process) our analysis is more general. Denoting
the starting times of the pure periods by s; and the starting times of the con-
taminated periods by ¢; our analysis will be valid provided that (s;, t;) is a sta-
tionary difference process. Let p equal the (stationary) probability that an index
i is in a contamination period and let y denote the expected number of indices
j # i which lie in the same contamination period as the index i. The number y
is the average number of other observations with which X, has nonzero cor-
relation. In the case when the lengths of the two periods are determined by
renewal processes with generating functions ¥(z) for the length of pure periods
and ¢(z) for the length of contamination periods we have

') ¢"(1)
©612) p=— A anq ;= -
#(1) + ¥(1) o) + v
The marginal distribution of X; is the contaminated normal,

(6.13) gN(0, 1) + pN(O, 1 4 7)

since with probability ¢, X; lies in a pure period and has a unit normal distri-
bution while with probability p, X, lies in a contamination period and has a
distribution with mean 0 and variance 1 4 7. The asymptotic behavior of X,
M and HL for this process is derived by the same methods used in proving
Proposition 6.1. The result is

e"(1)
¢'(1)

PROPOSITION 6.2. When observations come from Process 2 the estimators X M
and HL are asymptotically normally distributed with asymptotic variances given by

o1
(6.14) VX) ~ — (1 + (p +1)1)
6.15) VM)~ T ! [1 + 2T arcsin 7 ]
n 2 (q+p/(1 + 7)) z 1+
and
V(HL)
(6.16) ~ Lz {(1 + i [tf arcsin 7 4 2pg arcsin 7
n 3 m 1479 [2 + 72 + 2P

3 ; Ui 2 2pq P ’
tparesingy 2;;])/(‘1 Taxay Ty v)*) f-
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REMARKS. As the variance, 7, of the contaminating distribution approaches
infinity the variance of X approaches infinity while

(6.17) nV(M)ﬁ%Qj;_T_)-,
and
(6.18) nV(H) — —3’;— (1 + 7(3¢* + 3pg + p?) -

Thus, the efficiency of HL to the median becomes

(6.19) 3 d+7) :

1+ 7(3¢* + 3pg + p?)
In particular, if p > 1 — 24/3, the efficiency of HL to the median is < 1, re-
gardless of the value of y just as in the case of independent contaminated normal
observations [3]. However, the Hodges-Lehmann estimator is more sensitive to
contamination in this model since (6.19) increases as a function of .

REMARK. It should be noted that the analysis given for the two processes in
this section really depended only on the following assumptions on the process
generating the periods. For Process 1 as long as the lengths /; and their squares
[;* obey a law of large numbers the results, suitably interpreted, will hold. For
Process 2 the lengths /; and their squares, /%, generating the contamination
periods must obey a law of large numbers while only the lengths, I, of the
process generating the pure periods need obey a law of large numbers.

APPENDICES

Appendix to Section 3. Verification of the conditions of Theorem 3.1 for strongly
mixing Gaussian processes such that ), |p,| < co. We shall show, in detail, that
conditions (3.4a) and (3.4b) are satisfied. The argument showing the condition
(3.4c) is satisfied is a tedious calculation which is similar to those in [5] and we
omit it. Condition (3.4d) is obviously satisfied.

Verification of condition (a). Letting {X,} denote the rv’s of the process we
have derived the representation

(3.1%) FxG,(0) = n7t 35 {(F(=Xy) — E[F(—Xp)]}-

As the {X,} are strongly mixing, the rv’s F(—X,) are also strongly mixing as
they are functions of X,. The asymptotic normality of the right side of (3.1%)
follows from the Blum-Rosenblatt central limit theorem.

Verification of condition (b). Let
(3.2%) B(x) = sup, |F(x + t) — F(1)| .
When F(f) is the normal cdf, 8(x) < |x|=t.
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Now
Var [F « G,(x) — F x G,(0)]
(3.3 =n7t 3 25 Cov [Fx — X;) — F(=X)][F(x — X;) — F(X;)]
=17t 3 25 W IF(x — x) — F(=x)][F(x — x;) — F(—x;)]
X [dPj(x;5 x;) — dPy(x;) dPy(x;)]
where P,; denotes the joint cdf of X, and X; while P, and P; denote the respec-

tive marginal cdf’s. Applying (3.2*) to the integrand shows that in a small
neighborhood of 0,

(3.4%) Var (F x G,(x) — F % G ,(0))
< n7 (%) Zo 205§V [dPii(x;, x;) — dPi(x;) dP;(x;)] -
Since {{ dP,(x;, x;) — dP;(x;) dP;(x;)| is a function of |p,_;| which is bounded by

a constant K times |o,_;| as long as the |p,| are bounded away from one. Thus,
the right side of (3.4*) is

(354 =B 5T Kl S 00 Tt W Kl < KB

where K’ is another constant. Hence the variance of [G, * F(x) — G, x F(0)] can
be made uniformly small in a neighborhood of the origin. Applying Chebyshev’s
inequality yields

KI 2
(3.6%) P{|G, « F(x) — G, x F(0)[} > _%’L) .

As B(x) — 0 as x — 0, in fact at the same rate, any sequence w, — 0 at a slowet
rate than 2,n~* — 0 will satisfy the conditions.

REMARK. In order to verified condition (3.4b) for data from an arbitrary
continuous distribution one must find a sequence w, approaching 0 at a slower
rate than 8(2,n7%). Then the same argument, replacing o, by ||A(0, k)||;, applies
in general. The customary tedious fourth order moment argument shows that
if 37 A, < oo, then P(|(I/n?)G, « G,(x)| > ¢) — O uniformly in x. In the Gaussian
case, we can use the condition )} |o,| < oo instead.

Appendix to Section 4. This appendix is concerned with the computation of
the limiting A.R.E. of any symmetric linear combination of the order statistics,
W, relative to X on F.O.A.G.P.’s as p —» — 1. First we need

LEMMA 4.1*. The reciprocal of the efficiency of any symmetric estimator relative
to X as p— —1, is given by
1 [ 1
— eXp| —
2x(1 — %)t 2(1 — %)

Proor. Since c,; = 0 for symmetric estimators, (4.8) is just

(4.1%)  lim,_, §§ (x* — 2txy + yz)] dp(x) dp(y) -

*2%) Li- ‘(k — 1)v = iy <Z" ’ )
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and

TR L

i = SHPLY < ¥ <yl = B)P(y)} dpe(x) dpny) 5

where P, denotes the joint cdf of two standard normal rv’s with correlation ¢.
Differentiating (4.3*) with respect to ¢ yields

; 1 1
(4.4%) Te l(k 0 = lim,_, {§ PR
(x* — 2txy + y?)
x exp| - e J o dun .

In order to illustrate the use of Lemma 4.1* we prove

CoROLLARY 4.1*. The efficiency of the a-trimmed mean, relative to X on
F.O.A.G.P.’s, equals (1 — 2a) as p > —1.

Proor. For the a-trimmed mean, let B = ®~Y(1 — a) so that (4.4*) becomes

* 1 (n (a)) -2 14 B B 1
(4.5%) lim, —W (1 —2a)2lim,_, {5, (55 m
(x* — 2txy + ¥%)
X exp[ 20— ) ]dx dy.

The integral is just the probability that two standard normal rv’s with correla-
tion ¢ are both in (—B, B). As t— 1, this approaches the probability that a
single standard normal rv is in (— B, B) which is (1 — 2a).

In order to derive the limiting efficiency of a general linear estimator as p —
—1 we need

LemMMA 4.2*. For any ¢ > 0,

(4.6%) Hmy_y §§amyise filXs y) dp(x) dp(y) = 0.

PROOF. As f(x,y) = 0, (4.6*) certainly holds if the same limit with p re-
placed by p* is valid. Since

(4.7%)  fuxy) = Qa(l — )7
_ (47 _ 4 )2
~ CXP[ 21+ 1) 1“"[ = y)]’
§iz—yise fo(Xs y) dp*(x) dp(y)

(489 (-0 e""[ 2(1t62 t’)]

X {s (2r)- exp[_m’fi_t)] d/,z*(x)}z .
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Integration by parts and applying the Schwarz inequality yields

s @ryrexp[ - X Jauro}

2(1 + 1)
x I A G x* ’
(4.9% = {s 2rp T+ 1 exP[_z(l ¥ t)] s
— {S ,u*(x)e"?“(x) exp[_(x2/4)§(—1+_t t)/(l + t))] dx}

= {S ) (egnz)/: dx} {(2n)%(i ke exP[_ig %i:‘ﬂ dx} '

As the last term of (4.4%) is (1 — 7)~¥(1 + r)~%, the right side of (5.8%) is

2
4.10* S K1+ 071 —1)%ex [—_L}
(4.10%) S KL+ 071 = 07 exp| =Ty
which -0 as ¢t — 1.

In contrast to the limiting behavior of the trimmed mean any estimator based
on a measure with an atom at any single order statistic has limiting efficiency 0
(relative to X). This is shown as follows. As any symmetric unimodal density
is a mixture of uniform densities

1 x? 1
4.11* ——— X [————}z T om d )
(4.11%) s P L 2] = 1y O 400)

where 7 is a probability measure and y,(x) is the indicator of the set {x: |x| < y}.
Substituting (4.11*) into (4.7*) and (4.1*) means that we must prove that

* ; 1 1 _ ) ] te(x =)
(4.12%) hm,am;sss(-z—;);exp[ o M] ) dy ) dix) dp(y)

By the lemma we can restrict ourselves to the region |x — y| < ¢. Letting z =
min (e, w), (4.12*) becomes

. _ 1 1 (Y
(4.13%) llmtqlt—%S{SS(-z;);exP[ m]

% X’(%}Q dp(x) d/z(y)} Z dy(w) .
x w

As t — 1, np(w) places more of its mass in a small neighborhood of the origin so
that the limit in (4.13%)

G 1 _ () x =)
(4.14%)  Tim,_,,, ., §§ (z—n)zexp[: e I)J 2 dp(x)du(y) -

When ¢ = ay, + B, where g, is a unit mass at { and { is not an atom of p,,
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evaluation of the double integral in (4.14*) yields

(4.15%) ‘2‘;)&(22) o BT g (2;)& exp[—yY2(1 + 0)]dp(y)
2 _ ) ax —y)
+ 858 g onp | — S =D ) dia)

The third term is = 0 as it is essentially the limiting efficiency of an estimator
based on p,. As r— 1 and z — 0 the first term is O(1/z) while the second is
O(1/z)o(1) as p, is “smooth” near { ({ not an atom). Thus the reciprocal of the
relative efficiency approaches co. In particular the Winsorized mean and a finite
linear combination of sample percentiles have this property.

A more general condition for the existence of a positive limiting relative ef-
ficiency is formulated in

THEOREM 4.1%. Let A() be the Riemann—Hellinger integral
e =" (dp(x))*
A(p) = { - XE8T))
(#) =1 Q) dx
Then

(i) if p is a positive measure (¢ = p*) and A(y) = oo, the limiting relative ef-
ficiency is 0.

(i) if A(p) exists and is finite and if B(p:*), the upper Riemann—Hellinger integral
corresponding to A, is finite, then the reciprocal of the limiting relative efficiency is A(y).

Proor. Let
o0 z n w z+v n w 1
(4'16*) H#(Z’ t,w, ’U) = Z'IL:I SZI’(ILW+1) zivii&uj-l) (27[)5
X x? Y |d d
oxp| g O ) |4 ().
Clearly
(4.17%) lim,_,. M_— H (z t,w,0) = A(p)
w

if A(y) exists and
(4.18%) lim,_,, ,,,_,0_ H/(z,t,w,0) < B(p) .

Now let # be positive. Then

1 x2+y’]x(x—y)
4.19%) L H(z,4,w,0) < - . dp(x) () ,
@19 o Htw 0) S 8§ s exp| I [ 1D dyny )
(in Figure 1 the right integral is over the whole strip while the left side is over
the shaded area) which, from (4.17*), proves (i).

To prove (ii), let 0 < § < 1 be a fixed number. Define

(4.20%) H(t,w)= ¢ H(z,t,w,0)dz.
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Let s < z, r = z — 5. Then (see Figure 2)
(4.21%) V@ H(z,t,w,0)dz — {§ H,(z2,t,5,0)dz

=7 §§ 1u(x — ) exP[_MJ dp(x) dp(y) — R(w, s, 1),

2(1 + 1)
where
[R(w, s, 1)|
2 2
@220 =2 S S e — ) exp| L | )
<245 (Etmr (atstr exp[— x* 4 )’”]d#*(x) dp*(y)
= z+(n=1r dz+s+nr 2(1 + t) .

< 2H,.(1,r).
Now let s = (1 — d)w, r = ow. From (4.21*) and (4.22%),

@239 | $atx =y exp| 5o du(x) duty)

— L@, wy — A 9)
2rw

< 1 H,.(1,7).
rw

Now
H,(t,r) = w*A(g) + o(w?,
(4.24%) H,(t, 5) = sA(p) + o (W),

H,(t,r) = PB(*) + o(w") ,
$O

425% | i =) exp[—%ﬁ—:%] dux) dp(y) — (1 = 2-) AGr)|

< 0B*(w) + o(1) .
The result follows easily from (4.25%).
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