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EXPONENTIALLY BOUNDED STOPPING TIME
OF THE SEQUENTIAL ¢-TEST!

By R. A. WiisMAN

University of Illinois at Urbana-Champaign

Let N be the stopping time of the sequential ¢-test, based on the i.i.d.
sequence Zy, Zs, - - +, for testing that the ratio of mean to standard deviation
in a normal population equals 7; agaist the alternative that it equals 2. Let
P be the actual distribution of the Z; (not necessarily normal). It is proved
that if 7,2 # r2? and P is an arbitrary unbounded distribution, then there
exist constants ¢ > 0 and p < 1 such that P(N > n) < cor,n =1,2, ---.

Let Z, Z,, Z,, - - - be independent and identically distributed real valued ran-
dom variables, with common distribution P. Define
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If it is assumed that P is normal with mean { and standard deviation ¢, then the
distribution of the sequence (T, T, - - -) depends only on y = {/s. For testing
the hypothesis H,: y = r, against the alternative H,: y = r, the sequential ¢-test
is the sequential probability ratio test based on (T,, T,, ---). That is, if L, is
the log probability ratio of (T, - - -, T,), sampling continues as long as

) L<L, <1
for some chosen stopping bounds /,, /,, and H, (H,) is accepted the first time that
L, <1, (=1). Let N be the smallest n > 1 such that (2) is violated; N will be
called the stopping time.

The true distribution P does not necessarily belong to the above normal model.
It is desired to prove that for every conceivable distribution P and any choice of
stopping bounds /,, /, there exist constants ¢ > 0 and p < 1 such that

3) P(N > n) < co™, n=12,....

We shall, however, exclude P such that P(Z = 0) = 1, since for Z,, Z,, - - -
degenerate at 0, 7, given by (1) is undefined. If for every choice of stopping
bounds /,, /, there exist ¢, p to satisfy (3) we shall say that N is exponentially
bounded under P. If not, P will be called obstructive. In [1], [5] it was shown
that if P is such that Z* has finite moment generating function in a neighbor-
hood of 0 and P does not belong to a certain family of two-point distributions,
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then N is exponentially bounded under P. Furthermore, those two-point distri-
butions mentioned in the previous sentence were shown in [6] to be obstructive.
It had been speculated that N is exponentially bounded under every unbounded
P, i.e. every P such that P(|Z| > B) > 0 for every real B. However, Lai [2]
demonstrated the existence of unbounded obstructive distributions P in the case
7. = —7,- He also proved exponential boundedness of N in the case y,* # 7,
under additional conditions on P. We shall show now that if 7,? = 7,2, then no
conditions on P are needed to obtain (3).

THEOREM. Let Z,Z,, Z,, - .. be i.i.d. with unbounded distribution P and let N
be the smallest integer n = 1 for which (2) is violated. If y.* +# 7, then N is ex-
ponentially bounded under P.

Proor. As in [2], Theorem 3, the problem can be redefined as follows: Let
N be the smallest integer n = 1 such that
“4) n|T, — 4| < 3d

is violated, where 2 is a given nonzero number depending on y, and y,; to prove
(3) for every d > 0. Without loss of generality we shall assume 2 > 0. It is
convenient to denote

(5) t=42.
Consider the function
3
6 =y(1 = (—2-Y), y=>o.
©) 0 =y(1-(5)). =z

It is elementary to show that f(y) increases monotonically to the limit 4 as y— co.
Let y, > 1 be such that

(™) S >3-

Choose integers r and n, such that

® r>*4,
t

with ¢ defined in (5), and
®) Mo > Yo -
Let B and B, be positive numbers such that
(10) Kz] <§B)=p. >0,

4
(11) P<BT<'Z|<%B1>=P2>O-

(The choice for B is always possible because P is unbounded.) Finally, choose
B, such that

(12) B, > y,B*.
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Let A, be the event [N > n] and C, the event
(13) C,=[XtZ'> B,

C,° its complement. Since Z is not degenerate at 0, it follows from [4] that the
sequence {PC,°, n = 1, 2, - ..} is exponentially bounded:

(14) PC < ¢, n=12,...
for some ¢; > 0, p, < 1. The task is to prove
(15) P4, < cp™, n=1,2,..., forsome ¢ >0,p< 1.

Following the ideas of Stein [4] and Sethuraman [3] it is proved in the lemma
at the end of the paper that it suffices to show that there exists p > 0 and n,

such that for n = n,
(16) P(An+r 'n+rIA C)<1—P

From the definition (13) of C, it follows that C, c C,,;. Therefore, (16) is the
same as P(4,.,,|4,C,) =1 — p,oras

(17) P4, ,.14,C)=p.
Denoting
(18) L,=nT, -2,

we have (consulting (4)) that given 4,, the event 45, is implied by |L,,, —
L,| > d. Thus, the left hand side of (17) is at least as large as

(19) P(lL'/H-'r - Lnl > dl Ancn) .
From (18) follows
(20) Ln (n + r)( ndr T Tn) + r(Tn - /{) .

It will be assumed in the following that n > n, and that 4, happens. Since (4)
is then satisfied we have ]T — 2] < d[2n £ d/2n,. From (8), (9), and y, > 1 it
is deduced that d/2n, < {%¢ < §t. The inequality |T, — 2¢| < 4t implies first of
all T, > ¢, and secondly r| T, — 2| < %rt. Then if the first term on the right
hand side of (20) is in absolute value > irt we have |L,,, — L,| > &rt > d, by
(8). The inequality (n + r)|T,,, — T,| > %rt is, in turn, implied by »|T,,, —
T,| > %rt, which is implied by n(T, — T,,,) > 4rt. Therefore, (19) is at least
as large as

(21) P(n(T,—-T,,,)>4rt|4,C,)

and it suffices to show that (21) is > p for some p > 0.
It is convenient to denote

(22) V=222 W=7z, X=xrZl.

Then, employing the function f given in (6), the following expression is computed



STOPPING TIME SEQUENTIAL /-TEST 1009

from (1):

(23) n(T, — Tyy,) = 1T, f (%) + (n J’: ,)* T, ,%f (%)

_ ( n X )* vV
ntr X+ W/ @mXx)i

The first term on the right hand side in (23) is > rtf(n,/r) > rtf(y,) > §rt, using
(9) and (7). The second term on the right hand side in (23) is = 0. Therefore,
if P(Z < 0) = p, > 0, then P(V < 0) = p,” = p > 0 so that the right hand side
of (23)is > 3 rt with probability at least p. Using the independence of (Z;,- - -, Z,,)
and (Z,,,, + -+, Z,,,) it is seen that (21) is at least p so that the theorem is proved
if (Z < 0)>0.

Assume now that P(Z = 0) = 1, then also P(VV = 0) = 1. In that case (23)
can be replaced by the inequality

oW X v
(24) n(T, — T,yr) > §rt + (,, 4n_ r) = (P—V> C (X

We shall treat separately the two cases X/n > B*and < B*.
Case 1: X/n > B®. From (10) and 2 = O follows P(Z,,, < §Bt,i=1, ---,
r)=p"=p >0, so that P(V < }Brf) = p. If the event [V < {Brt] happens

“then the third term on the right hand side in (24) is > —{r¢, so that the right
hand side is = 1rz, and it follows that (21) is = p.

Case 2: X/n < B®. From (11) follows that the event
(25) Yp<v<s

happens with probability p > p,” > 0. From the definition (22) of V" and W we
have V? < rWw. This, together with the lower bound for ¥ in (25), implies that
V(n/X)} < tWnt|(4BX?) < ntW/[(4X), the last inequality due to the conditioning
X/n < B®. On the right hand side in (24) the third term is therefore
> —ntW/(4X). In the second term on the right hand side, (n/(n + r))} >
(no/(ny + 1))t > %, using (9) and y, > 1. Furthermore, W < V?, and V' < B, by
the upper bound in (25), so W < B;*>. Since the conditioning 4, C, implies C,,
which by the definitions (13) and (22) implies X > B,, it follows that f(X/W) >
f(By/B*) > f(yo) > &, using (12) and (7). The second term on the right hand side
in (24) is therefore = ntW/(4X) so that the sum of second and third terms is
> 0. Thus, the right hand side of (24) is = gr so that (21) is at least p. This
concludes the proof of the theorem.

The following lemma was needed in the proof the theorem.

LemMMa. Let {A,,n=1,2, ...} be a nonincreasing sequence of events and
{C.,n=1,2, ...} a sequence of events such that

(26) PA,C,° < ¢, p,", n=12,..., forsome ¢, >0, p,<1.
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If there exist positive integers n, and r, and a positive number p, such that
27) P4,.,C,..14,C)<1—p if nz=ny,

then

(28) PA, < cp*, n=1,2,..., forsome ¢>0, p<I1.

Proor. For any integer n > 0 we may write

(29) Ay, =D, VE,,
in which

(30) D, = Ay, N2 Cis
(31 E, = 4, Uy C’.

Using the fact that 4,,, C 4, for i < 2nr, (31) provides the inclusion E, =
mr 4, Cc Uk 4,Cf, so that PE, < Y1 P4,CS. Combining this with
(26) yields PE, < Y2 c 0" < 1% ¢,0," = ¢(1 — p,)7'p,"", so that for some

¢ >0,0,<1

(32) PE, < c,p.*"", n=12,--..
In (30) we also use A,,, C 4, fori < 2nrso that D, = N 4,C,. It follows that
(33) PD'n = PAm- Cm- H?=1 P(A('n+j)r C('n+j)r l A(n+j—1)r C(n+j—1)r) .

Now taking n such that nr = n,, (33) combined with (27) implies PD,, < (1 — p)*.
Thus, there exists C, > 0 and p, < 1 such that

34 PD, < ¢y, n=1,2,....
In view of (29), (32), and (34) there exists ¢, > 0 and p, < 1 such that
(33) PA,,, < c,p, n=1,2,....

The desired result (28) follows easily from (35) as in [4], with p = p, and
c=cp "
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