EXPONENTIALLY BOUNDED STOPPING TIME OF THE SEQUENTIAL t-TEST¹

By R. A. WIJSMAN

University of Illinois at Urbana-Champaign

Let N be the stopping time of the sequential t-test, based on the i.i.d. sequence Z_1, Z_2, \dots , for testing that the ratio of mean to standard deviation in a normal population equals γ_1 against the alternative that it equals γ_2 . Let P be the actual distribution of the Z_i (not necessarily normal). It is proved that if $\gamma_1^2 \neq \gamma_2^2$ and P is an arbitrary unbounded distribution, then there exist constants c > 0 and $\rho < 1$ such that $P(N > n) < c\rho^n$, $n = 1, 2, \dots$

Let Z, Z_1, Z_2, \cdots be independent and identically distributed real valued random variables, with common distribution P. Define

(1)
$$T_{n} = \frac{\frac{1}{n} \sum_{i=1}^{n} Z_{i}}{\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{2}\right)^{\frac{1}{2}}}.$$

If it is assumed that P is normal with mean ζ and standard deviation σ , then the distribution of the sequence (T_1, T_2, \cdots) depends only on $\gamma = \zeta/\sigma$. For testing the hypothesis $H_1: \gamma = \gamma_1$ against the alternative $H_2: \gamma = \gamma_2$ the sequential t-test is the sequential probability ratio test based on (T_1, T_2, \cdots) . That is, if L_n is the log probability ratio of (T_1, \cdots, T_n) , sampling continues as long as

$$(2) l_1 < L_n < l_2$$

for some chosen stopping bounds l_1 , l_2 , and $H_1(H_2)$ is accepted the first time that $L_n \leq l_1 (\geq l_2)$. Let N be the smallest $n \geq 1$ such that (2) is violated; N will be called the stopping time.

The true distribution P does not necessarily belong to the above normal model. It is desired to prove that for every conceivable distribution P and any choice of stopping bounds l_1 , l_2 there exist constants c > 0 and $\rho < 1$ such that

$$(3) P(N > n) < c\rho^n, n = 1, 2, \cdots.$$

We shall, however, exclude P such that P(Z=0)=1, since for Z_1, Z_2, \cdots degenerate at 0, T_n given by (1) is undefined. If for every choice of stopping bounds l_1 , l_2 there exist c, ρ to satisfy (3) we shall say that N is exponentially bounded under P. If not, P will be called obstructive. In [1], [5] it was shown that if P is such that Z^2 has finite moment generating function in a neighborhood of 0 and P does not belong to a certain family of two-point distributions,

Key words and phrases. Sequential t-test, stopping time, exponentially bounded.

Received April 1974; revised January 1975.

¹ Research supported by the National Science Foundation under Grant GP 28154. AMS 1970 subject classifications. Primary 62L10, F05; Secondary 62A05.

then N is exponentially bounded under P. Furthermore, those two-point distributions mentioned in the previous sentence were shown in [6] to be obstructive. It had been speculated that N is exponentially bounded under every unbounded P, i.e. every P such that P(|Z| > B) > 0 for every real P. However, Lai [2] demonstrated the existence of unbounded obstructive distributions P in the case P in the case P in the case P under additional conditions on P. We shall show now that if P in the conditions on P are needed to obtain (3).

THEOREM. Let Z, Z_1, Z_2, \cdots be i.i.d. with unbounded distribution P and let N be the smallest integer $n \ge 1$ for which (2) is violated. If $\gamma_1^2 \ne \gamma_2^2$ then N is exponentially bounded under P.

PROOF. As in [2], Theorem 3, the problem can be redefined as follows: Let N be the smallest integer $n \ge 1$ such that

$$(4) n|T_n - \lambda| < \frac{1}{2}d$$

is violated, where λ is a given nonzero number depending on γ_1 and γ_2 ; to prove (3) for every d > 0. Without loss of generality we shall assume $\lambda > 0$. It is convenient to denote

$$(5) t = \frac{1}{2}\lambda.$$

Consider the function

(6)
$$f(y) = y\left(1 - \left(\frac{y}{1+y}\right)^{\frac{1}{2}}\right), \quad y \ge 0.$$

It is elementary to show that f(y) increases monotonically to the limit $\frac{1}{2}$ as $y \to \infty$. Let $y_0 > 1$ be such that

(7)
$$f(y_0) > \frac{3}{8}$$
.

Choose integers r and n_0 such that

$$(8) r > \frac{8d}{t},$$

with t defined in (5), and

$$(9) n_0 > y_0 r.$$

Let B and B_1 be positive numbers such that

(10)
$$P(|Z| < \frac{1}{8}Bt) = p_1 > 0,$$

(11)
$$P\left(B\frac{4}{t} < |Z| < \frac{1}{r}B_1\right) = p_2 > 0.$$

(The choice for B is always possible because P is unbounded.) Finally, choose B_2 such that

$$(12) B_2 > y_0 B_1^2.$$

Let A_n be the event [N > n] and C_n the event

(13)
$$C_n = \left[\sum_{i=1}^n Z_i^2 > B_2 \right],$$

 C_n^c its complement. Since Z is not degenerate at 0, it follows from [4] that the sequence $\{PC_n^c, n = 1, 2, \dots\}$ is exponentially bounded:

(14)
$$PC_n^c < c_1 \rho_1^n, \qquad n = 1, 2, \cdots$$

for some $c_1 > 0$, $\rho_1 < 1$. The task is to prove

(15)
$$PA_n < c\rho^n, \qquad n = 1, 2, \cdots, \text{ for some } c > 0, \rho < 1.$$

Following the ideas of Stein [4] and Sethuraman [3] it is proved in the lemma at the end of the paper that it suffices to show that there exists p > 0 and n_0 such that for $n \ge n_0$

(16)
$$P(A_{n+r} C_{n+r} | A_n C_n) \leq 1 - p.$$

From the definition (13) of C_n it follows that $C_n \subset C_{n+1}$. Therefore, (16) is the same as $P(A_{n+r} | A_n C_n) \leq 1 - p$, or as

$$(17) P(A_{n+r}^c | A_n C_n) \ge p.$$

Denoting

$$(18) L_n = n(T_n - \lambda),$$

we have (consulting (4)) that given A_n , the event A_{n+r}^c is implied by $|L_{n+r} - L_m| > d$. Thus, the left hand side of (17) is at least as large as

(19)
$$P(|L_{n+r} - L_n| > d | A_n C_n).$$

From (18) follows

(20)
$$L_{n+r} - L_n = (n+r)(T_{n+r} - T_n) + r(T_n - \lambda).$$

It will be assumed in the following that $n \ge n_0$ and that A_n happens. Since (4) is then satisfied we have $|T_n - \lambda| < d/2n \le d/2n_0$. From (8), (9), and $y_0 > 1$ it is deduced that $d/2n_0 < \frac{1}{16}t < \frac{1}{8}t$. The inequality $|T_n - 2t| < \frac{1}{8}t$ implies first of all $T_n > t$, and secondly $r|T_n - \lambda| < \frac{1}{8}rt$. Then if the first term on the right hand side of (20) is in absolute value $> \frac{1}{4}rt$ we have $|L_{n+r} - L_n| > \frac{1}{8}rt > d$, by (8). The inequality $(n+r)|T_{n+r} - T_n| > \frac{1}{4}rt$ is, in turn, implied by $n|T_{n+r} - T_n| > \frac{1}{4}rt$, which is implied by $n(T_n - T_{n+r}) > \frac{1}{4}rt$. Therefore, (19) is at least as large as

(21)
$$P(n(T_n - T_{n+r}) > \frac{1}{4}rt | A_n C_n)$$

and it suffices to show that (21) is $\geq p$ for some p > 0.

It is convenient to denote

(22)
$$V = \sum_{i=1}^{n+r} Z_i$$
, $W = \sum_{i=1}^{n+r} Z_i^2$, $X = \sum_{i=1}^{n} Z_i^2$.

Then, employing the function f given in (6), the following expression is computed

from (1):

(23)
$$n(T_n - T_{n+r}) = rT_n f\left(\frac{n}{r}\right) + \left(\frac{n}{n+r}\right)^{\frac{1}{2}} T_n \frac{W}{n^{-1}X} f\left(\frac{X}{W}\right)$$
$$-\left(\frac{n}{n+r} \frac{X}{X+W}\right)^{\frac{1}{2}} \frac{V}{(n^{-1}X)^{\frac{1}{2}}}.$$

The first term on the right hand side in (23) is $> rtf(n_0/r) > rtf(y_0) > \frac{3}{8}rt$, using (9) and (7). The second term on the right hand side in (23) is ≥ 0 . Therefore, if $P(Z < 0) = p_0 > 0$, then $P(V < 0) \geq p_0^r = p > 0$ so that the right hand side of (23) is $> \frac{3}{8}rt$ with probability at least p. Using the independence of (Z_1, \dots, Z_n) and $(Z_{n+1}, \dots, Z_{n+r})$ it is seen that (21) is at least p so that the theorem is proved if P(Z < 0) > 0.

Assume now that $P(Z \ge 0) = 1$, then also $P(V \ge 0) = 1$. In that case (23) can be replaced by the inequality

(24)
$$n(T_n - T_{n+r}) > \frac{3}{8}rt + \left(\frac{n}{n+r}\right)^{\frac{1}{2}} \frac{tW}{n^{-1}X} f\left(\frac{X}{W}\right) - \frac{V}{(n^{-1}X)^{\frac{1}{2}}}.$$

We shall treat separately the two cases $X/n > B^2$ and $\leq B^2$.

Case 1: $X/n > B^2$. From (10) and $Z \ge 0$ follows $P(Z_{n+i} < \frac{1}{8}Bt, i = 1, \dots, r) = p_1^r = p > 0$, so that $P(V < \frac{1}{8}Brt) \ge p$. If the event $[V < \frac{1}{8}Brt]$ happens then the third term on the right hand side in (24) is $y > -\frac{1}{8}rt$, so that the right hand side is $y \ge \frac{1}{4}rt$, and it follows that (21) is $y \ge p$.

Case 2: $X/n \le B^2$. From (11) follows that the event

$$\frac{4r}{t}B < V < B_1 \quad .$$

happens with probability $p \ge p_2^r > 0$. From the definition (22) of V and W we have $V^2 \le rW$. This, together with the lower bound for V in (25), implies that $V(n/X)^{\frac{1}{2}} < tWn^{\frac{1}{2}}/(4BX^{\frac{1}{2}}) \le ntW/(4X)$, the last inequality due to the conditioning $X/n \le B^2$. On the right hand side in (24) the third term is therefore > -ntW/(4X). In the second term on the right hand side, $(n/(n+r))^{\frac{1}{2}} \ge (n_0/(n_0+r))^{\frac{1}{2}} > \frac{2}{3}$, using (9) and $y_0 > 1$. Furthermore, $W \le V^2$, and $V < B_1$ by the upper bound in (25), so $W < B_1^2$. Since the conditioning $A_n C_n$ implies C_n , which by the definitions (13) and (22) implies $X > B_2$, it follows that $f(X/W) > f(B_2/B_1^2) > f(y_0) > \frac{3}{8}$, using (12) and (7). The second term on the right hand side in (24) is therefore $\ge ntW/(4X)$ so that the sum of second and third terms is ≥ 0 . Thus, the right hand side of (24) is $\ge \frac{3}{8}rt$ so that (21) is at least p. This concludes the proof of the theorem.

The following lemma was needed in the proof the theorem.

LEMMA. Let $\{A_n, n = 1, 2, \dots\}$ be a nonincreasing sequence of events and $\{C_n, n = 1, 2, \dots\}$ a sequence of events such that

(26)
$$PA_n C_n^c < c_1 \rho_1^n$$
, $n = 1, 2, \dots$, for some $c_1 > 0$, $\rho_1 < 1$.

If there exist positive integers n_0 and r, and a positive number p, such that

(27)
$$P(A_{n+r} C_{n+r} | A_n C_n) < 1 - p \quad \text{if} \quad n \ge n_0,$$

then

(28)
$$PA_n < c\rho^n$$
, $n = 1, 2, \dots$, for some $c > 0$, $\rho < 1$.

PROOF. For any integer n > 0 we may write

$$A_{2nr} = D_n \cup E_n,$$

in which

$$(30) D_n = A_{2nr} \bigcap_{nr}^{2nr} C_i,$$

$$(31) E_n = A_{2nr} \bigcup_{nr}^{2nr} C_i^c.$$

Using the fact that $A_{2nr} \subset A_i$ for $i \leq 2nr$, (31) provides the inclusion $E_n = \bigcup_{nr}^{2nr} A_{2nr} C_i^{\ c} \subset \bigcup_{nr}^{2nr} A_i C_i^{\ c}$, so that $PE_n \leq \sum_{nr}^{2nr} PA_i C_i^{\ c}$. Combining this with (26) yields $PE_n \leq \sum_{nr}^{2nr} c_1 \rho_1^{\ n} \leq \sum_{nr}^{\infty} c_1 \rho_1^{\ n} = c_1 (1 - \rho_1)^{-1} \rho_1^{\ nr}$, so that for some $c_2 > 0$, $\rho_2 < 1$

(32)
$$PE_n < c_2 \rho_2^{2nr}, \qquad n = 1, 2, \cdots$$

In (30) we also use $A_{2nr} \subset A_i$ for $i \leq 2nr$ so that $D_n = \bigcap_{nr}^{2nr} A_i C_i$. It follows that

(33)
$$PD_n = PA_{nr} C_{nr} \prod_{i=1}^n P(A_{(n+i)r} C_{(n+i)r} | A_{(n+i-1)r} C_{(n+j-1)r}).$$

Now taking n such that $nr \ge n_0$, (33) combined with (27) implies $PD_n < (1-p)^n$. Thus, there exists $C_3 > 0$ and $\rho_3 < 1$ such that

(34)
$$PD_n < c_3 \rho_3^{2nr}, \qquad n = 1, 2, \cdots.$$

In view of (29), (32), and (34) there exists $c_4 > 0$ and $\rho_4 < 1$ such that

(35)
$$PA_{2nr} < c_4 \rho_4^{2nr}, \qquad n = 1, 2, \cdots.$$

The desired result (28) follows easily from (35) as in [4], with $\rho = \rho_4$ and $c = c_4 \rho_4^{-2r}$.

REFERENCES

- [1] Berk, R. H. (1970). Stopping times of SPRTS based on exchangeable models. Ann. Math. Statist. 41 979-990.
- [2] LAI, T. L. (1975). Termination, moments and exponential boundedness of the stopping rule for certain invariant sequential probability ratio tests. *Ann. Statist.* 3 581-598.
- [3] SETHURAMAN, J. (1970). Stopping time of a rank-order sequential probability ratio test based on Lehmann alternatives II. Ann. Math. Statist. 41 1322-1333.
- [4] STEIN, C. (1946). A note on cumulative sums. Ann. Math. Statist. 17 498-499.
- [5] WIJSMAN, R. A. (1971). Exponentially bounded stopping time of sequential probability ratio tests for composite hypotheses. *Ann. Math. Statist.* 42 1859–1869.
- [6] WIJSMAN, R. A. (1972). A theorem on obstructive distributions. Ann. Math. Statist. 43 1709-1715.

University of Illinois at Urbana-Champaign Department of Mathematics Urbana, Illinois 61801