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COMPARING SEQUENTIAL AND NON-SEQUENTIAL TESTS'

By RoBERT H. BERK
Rutgers University

Sequential tests for one-sided hypotheses are compared, asymptotically,
with non-sequential counterparts. An analog of Pitman efficiency is ob-
tained, as is another comparison that has no purely non-sequential analog.
With these methods of comparison, the limiting relative efficiency of the
sequential test is never less than one and for most parameter values, it is
infinite. An asymptotic notion of minimal relative efficiency is also
considered.

1. Introduction. Asymptotic comparisons of sequential and non-sequential
tests for composite hypotheses have been given for the normal case by Bechhofer
(1960) and, somewhat more generally, by Berk (1973). In these studies, it is
shown that the Wald SPRT for testing one-sided composite hypotheses can have
limiting relative efficiency (l.r.e.) less than one (in fact, zero at some parameter
points) against a corresponding non-sequential test. The corresponding non-
sequential test is UMP or LMP for testing the hypotheses. It is “matched” with
the SPRT by selecting two parameter points (typically, those defining the SPRT)
and matching the error rates there of the two tests. The respective (expected)
sample sizes required by the two tests are then compared as the error rates are
made to approach zero in a prescribed manner.

In this paper we develop alternative ways of comparing sequential and non-
sequential tests of one-sided hypotheses. Our comparisons are somewhat more
favorable to the SPRT, since its l.r.e. is at least unity and is, in fact, infinite
for most parameter points.

We work within the following framework. Let X, X, --- be a sequence of
i.i.d. copies of a random variable X, supposed to have a distribution given by
the pdf f(x|60), where @ is a parameter ranging in ©, a subinterval of R. (The
pdfs are with respect to a dominating measure 1.) We consider testing the
hypothesis H, : § = 6* against the one-sided alternative H,: 6 > 0*. Among all
level a sequential tests of H,(vs. H,), we consider those whose expected stopping
times under #* are bounded by a given finite constant, say v. There is, in
general, no UMP sequential test of H, vs. H, in this class, although as shown in
Berk (1975), under certain regularity conditions [for the model f(x | 8)], there is
a LMP sequential test. The LMP sequential test has a stopping time of the form

N =inf{n: S, ¢ (—a, a,)},
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where S, = 317 0 log f(X;|0)/00|,. H,is rejected if Sy > a, and «, and a, (> 0)
are chosen to satisfy the constraints P(S, = @,) = a« and EN = ». (Probabilities
and expectations, unless otherwise indicated, are under 6*.) For convenience,
we state the required regularity conditions: Let

K(9]0%) = Elog [f(X]|0%)[f(X]0)] -
AssUMPTION 1. limsup,_,. K(6|6*)/(0 — 6*)* < co.
ASSUMPTION 2. f(X].) is a.e. 4 differentiable at §*.

AssuMPTION 3. The power function of every non-sequential test (of H, vs H,)
is differentiable at 6* under the integral sign.

Let r(X) = 0 log f(X|60)/d0|,» and I* = Er(X).
ASSUMPTION 4. 0 < I < oo.

With these conditions, {S,} is, under 6*, a zero-mean random walk and we
have the following no-overshoot approximations:

(1.1) P(Sy = a,) = af(a, + ay),
EN = a,a,/I*.

As shown in Berk (1975), when f(x|#) is an exponeatial model, there are pa-
rameter points 6, < 0* < 6, and corresponding error rates «, and a, so that the
LMP sequential test is a Wald SPRT of H,': 6 = 6, vs H: § = 0, for the given
error rates.

We study the l.r.e. of such LMP sequential tests, as compared with the cor-
responding LMP or UMP non-sequential test which, for a given n, rejects H, if
S, = ¢,. (The constant c, is chosen to give level a.) Just how to choose a
“corresponding” non-sequential test (i.e., n) poses something of a problem. In
the Pitman approach to limiting relative efficiencies for non-sequential tests,
one can generally adjust the sample sizes of two competing tests to make their
power curves uniformly close (i.e., to coincide, asymptotically). The limiting
ratio of sample sizes required to do this then gives the Pitman efficiency. Such
a matching is generally not possible when comparing a sequential test with a
non-sequential test. Unlike the purely non-sequential case, the limiting power
curves are not of the same “shape” and cannot be made uniformly close, no
matter how one adjusts sample sizes or stopping boundaries. Thus any method
of matching a sequential and non-sequential test is bound to have a high degree
of arbitrariness associated with it. We consider two possible ways of matching
in Section 2. The first we discuss gives (as shown in Section 3) an analog of the
Pitman efficiency. The other method seems to have no purely non-sequential
analog.

2. Limitingrelative efficiencies. We obtaina notion of I.r.e. for the sequential

LMP test, compared with its non-sequential analog, by matching the levels of
the two tests and also the slopes of their power curves at §*. This method of
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matching is suggested by the fact that both tests are LMP, so that these slopes
are natural aspects of the power curve to consider. The matching of slopes is
done asymptotically, as a, A a, — co (and consequently, as EN, n and the slope
become large).

Under the assumptions in Section 1, any sequential test of H, vs H, whose
expected stopping time Et is finite has a power curve differentiable at 6*.
Moreover, if ¢, is the critical function of the test, the slope of the power curve
at 6* is given by E¢,S,. This result is due to Abraham (1969). In particular,
the LMP sequential test has critical function 1, ., and slope

2.1 m = ES,* = a,P(Sy = a,) = a,a,/(a, + a,)
while the non-sequential test based on n observations has slope
(2.2) = ES, 1 s, -

It is shown in Berk (1973) that the approximations in (1.1) are asymptotic
equalities if @, and a, tend to oo so that a,/(a, + a,) - a € (0, 1). (In particular,
the LMP sequential test is then asymptotically level «.) We establish a similar
result for (2.1).

LemMma 2.1. Ifa = a, A a,— oo and a,/(a, + a,) — a € (0, 1), then ES,*/(a, +
a,) — a(l — a).

Proor. It follows from the proof of Theorem 2.4 in Berk (1973) that the
overshoot A+ = Sy* — a,1(5,2,, satisfies EA* = o(a). Thus ES,*/(a, + a,) —
a,P(Sy = a,)/(a, + a;) = o(1) and the conclusion then follows from the fact that
a,/(a, + a;) > 1 — « and that P(S, = a,) equals (or approaches) a. [

We need a corresponding asymptotic expression for s in (2.2), for large n.
We obtain this by noting that under 6*, U, = §,/In* converges in law to U ~
N(0, 1). Thus for a level a test, we have c, ~ z,In*, where z, is the upper a-
point of the N(0, 1) distribution. Then# = In*EU,1, , , where k, = c,/In* ~
z,. Since EU,* =1 for all n, {U,} is uniformly integrable and consequently
lim, ifnt = IEUL y,, , = Ip(z,), where ¢(+) is the N(0, 1) pdf. Thus
(2.3) m ~ Inte(z,) .

We now proceed to compare the sequential and non-sequential LMP tests,
matching levels and slopes asymptotically. As a, A a, — oo with a,/(a, + a,) —
a, it follows from Lemma 2.1 that m ~ a(l — a)(a, + a,). Combining this with
(2.3), to obtain equal slopes, asymptotically, for the sequentialand non-sequential

tests, we must, for given a, and a,, choose a sample size 7 for the non-sequential
test so that

(2.4) Iitp(z,) ~ a(l — a)(a, + a,) .
Since EN ~ a,a,/I* ~ a(l — a)(a, + a,)*/I?, we have, in view of (2.4),

(2.5) AJEN ~ a(l — a)/o*(z,) .
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Thus the RHS of (2.5), which we denote by e(a), is the l.r.e. under §* of the
level @ sequential LMP test, compared with the LMP non-sequential test (having,
asymptotically the same slope). Some values of e(«) are tabled below in Section
4. It is not difficult to verify that e(a) > 1 for all a € (0, 1). (One can equiva-
lently verify, by differentiating both sides, the inequality ®(x)[1 — ®(x)] >
©%x), where @ is the N(0, 1) df.) Hence the L.r.e. at §* for the sequential test
is greater than one.

For ¢ > 0*, the comparison is even more dramatic. Typically, w(f) =
E,r(x) > 0 for § > 6*. In this case, it follows from Theorem 2.1 of Berk (1973)
that E;N ~ a,/p(0) as a = a, A a,— co. Thus for § > 0*, E,N = O(a), while
it can be seen from (2.4) that # = O(a?). Thus for § > 6*, the sequential test
hasl.r.e. co. Hence the L.r.e. for the sequential test exceeds one at all parameter
points and is, in fact, infinite except at §*.

These considerations may also be extended to distributions outside the
model. Suppose X ~ f. If E,r(X) = 0, it follows again from Theorem 2.1
of Berk (1973) that E,N = O(a) and hence A/E;N — co. If E;,r(X) = 0and 0 <
E,r(X) < o0, E;N ~ a,a,|E;r¥(X) ~ (1 — a)(a, + a,)*/E;r*(X) and A/E;N ~
a(l — a)E, r’(X)[I*¢*(z,) > 0.

This comparison, while very favorable to the sequential test, is not entirely
fair. For in matching slopes, it turns out in many examples that the non-
sequential test has greater power at all § > 6*. Thus the non-sequential test,
in essence, performs better, so it is not surprising that it requires a larger sample
size. (However, this does not necessarily lead one to anticipate an l.r.e. of co
for the sequential test.) For this reason, we examine another way of comparing
the sequential and non-sequential tests that, in a sense, better matches the power
curves.

Our second comparison matches levels and (expected) sample sizes under 6*.
That is, we compare the level a sequential and non-sequential LMP tests, both
of which (under 6*) use EN observations. Our comparison is again asymptotic;
the L.r.e. of the sequential test at ¢ is now lim, EN/E,N. (The limit is taken as
a — o0.) This comparison is somewhat fairer to the non-sequential test. Since
the sequential test is LMP among all tests for the given EN, it follows that in
some neigborhood of #*, the sequential test is more powerful than the non-
sequential test. By contrast, the non-sequential test is typically more powerful
for larger parameter values.

As above, we have EN = O(a®), while if 6 + 0, E;N = O(a). Thus the l.r.e.
of the sequential test is

(2.6) lim, ENJE,N = 1 if 0 =0*
=oco if 6> 6*.
Thus the only apparent change from the previous notion of efficiency is that

the L.r.e. at 6* decreases from e(a) to 1. For distributions outside the model,
the only change is when E,r(X) = 0. Then lim, ENJE;N = E,r(X)/I’ > 0.
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3. Slopesand Pitmanefficiency. Weshow in thissection that for non-sequential
tests, matching levels and slopes typically gives the Pitman efficiency as the
L.r.e. Thus the first l.r.e. obtained in Section 2 can be considered a form of
Pitman efficiency for the sequential test, compared with the non-sequential test.
However, unlike the purely non-sequential case, this latter L.r.e. depends on a.

Suppose then that {7} is a sequence of test statistics for testing H, vs H,, T,
being a function of X, ..., X,. We assume large values of 7, are significant.
Suppose further that ET, = 0, ET,? = 1 and that T, converges in law to N(O0, 1).
In fact, we suppose more: that (U,, T,) — (U, T), where U, = S,/In* and
(U, T) ~ N(0,0,1,1, p). Thus a level « test based on T, rejects if T, = k,,
where k, ~ z,. It follows from Abraham’s theorem that the slope of this test is

(3.1) m, = ESnl(T,ngk,n) = In&EUnl(Tnzkn) .

Since (U,, T,) converges in law and {U,} is uniformly integrable, it follows that
EU, 1 2, — EUl 43, ,. Moreover, we may write U = pT + (1 — o)V, where
T and ¥V are independent N(0, 1). Thus EUl ., , = EpT1;;,, = pe(2,). It
follows from (3.1) and the preceding that

3.2) m, ~ Intpo(z,) .

Suppose now {7} is another sequence of statistics for testing H, vs H,. We
assume the same normalizations for 7, and in particular, that (U,, T,) converges
in law to N(0, 0, 1, 1, p). Thus the slope for the second test sequence satisfies

3.3) m, ~ Intpo(z,) .

It is then clear that to equalize, asymptotically, the levels and slopes of the two
test sequences, one must choose sample sizes n and 74, respectively, satisfying

Afn ~ 0Yp" .
Thus p?/p? is the Lr.e. of {T,} to {T,}.

We show next that this l.r.e. is typically the Pitman efficiency. We have p =
EUT = lim EU,T,. The latter equality follows from weak convergence and
uniform integrability: {U,?} uniformly integrable and {T,} L,-bounded entails
the uniform integrability of {U,T,}. Assuming one can differentiate across the
expectation, EU, T, = ES, T,/In* = (In*)~'0E,T,/00|,. Assuming the analogous
facts hold also for {7},

p*p* = [lim, OE, T,/d0|,.)*/[lim, OE, T,/36|,.] ,

which is the usual expression for the Pitman efficiency of {7} to {7,}. This
connection between slopes and Pitman efficiency has been previously noted by
Stuart (1954).

4. Limiting minimal efficiency. Under the considerations in Section 2, the
Lr.e. of the sequential test is never less than one, even under the more stringent
of the two notions of lL.r.e. discussed there: lim, EN/E,N = 1 for all 6. We
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shall see, however, that the sequential test need not be uniformly more efficient,
asymptotically, by considering its limiting minimal efficiency (l.m.e.) in this
case. This is defined as lim, inf, EN/E,N = lim, EN/sup, E,N. We show that
n(e) = lim, sup, E, N/EN can exceed one, so that the maximal (expected) sample
size required by the sequential test can exceed that required by the correspond-
ing non-sequential test. Equivalently, 1/5(a), the l.m.e. of the sequential test,
can be less than one. Note that in view of (2.6), the interval {#: E,N > EN}
must shrink to {#*} as @ — co. The analog of Pitman efficiency discussed in
Section 2 gives a somewhat different result. The corresponding l.m.e. is
lim, Ai/sup, EN = e(a)/n(a). In contrast with the preceding, this .m.e. is typi-
cally greater than one. Some values of y(a) and the l.m.e.’s 1/y(a) and e(a)/n(a)
are tabulated below.

We give specific considerations for the symmetric binomial problem of testing
H,:p =4 vs Hy: p> 4. Because of invariance-principle considerations, which
we do not enter into here, we conjecture that our results apply to the class of
tests discussed in this paper. For the symmetric binomial problem, r(X) =
4X — 2 and we can, for convenience, write N =inf{n: 37 (2X; — 1)¢
(—ay, a;)}. Note that 2X — 1 assumes only the values =+ 1 and is symmetric
when p = p* = . Thus N is the stopping time associated with the classical
gambler’s ruin problem. We clearly can, without loss of generality, take a, and
a, to be positive integers. Then we have the following exact formulas (see, e.g.
Feller (1968)). The power of the LMP sequential test at p is given by

(4.1) B(p) = [1 — (¢/P)11 — (a/p)*+**],
g=1—pand

(4.2) E,N = (a,+ a)[B(p) — a]/(2p — 1) .
Here a, the level of the test, is given by

4.3) a = af(a, + a,)

and

4.4 EN = a,a,.

(Equations (4.3) and (4.4) can be formally obtained from (4.1) and (4.2) by
continuity at p = %.) Letting a, + a, = k and, for p = , v = 1 log (p/q), we
have

(4.5) Bp) =1 —e>H)(1 —e), p+4
=a, p = %

and

(4.6) E,N=k[B(p) —al/2p—1), p+}%
= Ka(l — a), p=%.

We show that p(a) = lim, sup, E, N/EN exists and is related to a similar quantity
for a Wiener process.
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Since2p — 1 = (e* — 1)/(e* + 1)and (2/x) — 1 < (e® 4 1)/(e* — 1) < (2/x) +
I, |(2p — 1)"* — v7! £ 1 and it then follows from (4.5) and (4.6) that

4.7 |E,N — k[B,(kv) — a]/v| £ k,

where

(4.8) Buo(p) = (1 —e /(1 —e ™), p+0
=a, [l = 0

is the probability that a standard Wiener process with drift ¢ per unit time hits
1 — « before hitting —a. We note too that for these boundaries, the expected
hitting time for the Wiener process is

(4.9) B, =[Bu(e) — alfpr, p#0
=a(l —a), p2=0.

(These formulas for the Wiener process can be obtained from Wald’s no-over-
shoot expressions, which are exact in this case.) It follows from (4.6) and (4.7)
that
(4.10)  |sup, E,N/EN — sup, [B,(z) — al/pa(l — )| < 1/ka(l — a) .
Since lim, k = oo, it follows that
(4.11) n(a) = lim, sup, E, NJEN

= sup, [B,(#) — a]/pa(l — @) = sup, E,t/E,7 .
Thus in the symmetric binomial case, the ratio sup, £, N/EN behaves, asymptoti-
cally, like the corresponding (non-asymptotic) ratio for the Wiener process given
by the RHS of (4.11).

Some values of »(a) are tabulated below, together with p,, the value of p for
which E,c attains its maximum. (The tabulated values for y, were obtained by
an iterative method.) Values of e(a), the l.r.e. at 8* (see Section 2) are also
given, together with the .m.e.s 1/5(a) and e(a)/p(a). As an aside, we remark
that it can be seen from (4.7) that when £ is large, for p,, the value maximizing
E,N, wehavey, = 11og (p./q9.) = po/k + o(1/k), hence that p, = L + u,/2k +
o(1/k).

a .50 .25 .10 .05 .025 .01  .005 .00l
e 0 112 239 355 48 7.4 103 22.7
() 1 1.09 1.32 148 1.61 174 1.81 191
e(a) 1.57 1.86 2.92 4.54 7.14 139 23.8  87.9
1/n(a) 1 92 .76 .68 .62 .58 .55 .52

e@)/n@)  1.57 1.70 221 3.07 4.43 8.0l 13.2  46.0

As suggested by the table, y(a) increases from 1 as a decreases from }.
Moreover:

LemMma 4.1. lim,_, 7(a) = 2.
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Proor. From (4.8) and (4.9) we have

(4.12) E,t|Eyt = [2/(1 — a)]2ap) ' [(1 — e /(1 — e™) — a]

= [2/(1 — @)e(a, 2p)
where

c(a, x) = (ax)7[(1 — e )/(1 — e7*) — a]

=1 = e — e®))ax — (1 — €%)/x] .
It is easily seen intuitively and may be checked from (4.12) that when « < §,
E,t < E,t for p < 0. We need only consider a < } and thus, in determining
sup, E,t, confine attention to ¢ > 0. Since fory > 0, (1 — e7¥)/y < 1, we have
for x > 0,

cla, x) £ (1 — e [1 — (1 — e™?)/x]

=(l—es'—1/x<1.

Thus for a £ 1, »(a) £ 2/(1 — a); hence limsup,_,n(a) < 2. Also, since
c(a, x) >0,
e(a, (2/a)) = (1 — e*h/2a)t — (a/2)}
=1— 2a),

since for y >0, (1 — e ¥)/y =1 — y/2. Thus p(a) = 2¢(a, (2/a)})/(1 — a) =
2[1 — 2a)t}/(1 — @) and lim inf, ,p(a) = 2. [

By a more careful analysis of c(a, x), the following asymptotic expansions
(for small @) may be obtained.

(4.13) te = (20)~ + L + 11(22)}/72 + 43a/270 + O(a?)
and
(4.14)  g(a) = 2[1 — (2a)* + 4a/3 — 35a(2a)/36 + 182a%/135] + O(a?) .

The bracketed term of (4.14) gives a reasonable approximation for a < .1.
E.g., we obtain 7(.1) = 1.312, compared with the more precise value 1.316.
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