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TAIL PROBABILITIES OF NONCENTRAL QUADRATIC FORMS!

By RUDOLF BERAN
University of California, Berkeley

Let S(6) = X o+*+*nr, by?) be a positive linear combination of inde-
pendent noncentral chi-square random variables. This note derives two
representations for the tail probabilities P[S(b) > x], a Taylor series in the
noncentrality parameters and a limiting form of this series for large x.
An application of the latter result to statistical tests of Cramér-von Mises
type is discussed.

1. Introduction. Let S(b) = X, 0,%,%n,, b,?), where b = {b%r =1}, 1 =
o:>02> .- >0, ,.n.02< o0, Y, bk, < co,and the {y,n,, b,%);r = 1}
areindependent noncentral chi-square random variables whose degrees of freedom
and noncentrality parameters are indicated by the arguments #,, b,% respectively.
It is assumed that the range of the summation defining S(b) is either the set of
all positive integers or a finite subset of these. This note derives two represen-
tations for the tail probabilities P[S(b) > x], a Taylor series in the noncentrality
parameters and a limiting form of this series for large x. An application of the
latter result to statistical test of Cramér-von Mises type is discussed in Section 3.

2. The representations. Let G(x) = P[S(0) > x] and, more generally, let

G g OPLE 0,702, + 2 2052, 0(r, 1)) > x],

where (i, j) is the Kronecker delta and the {y,%(+) r = 1} are independent central
chi-square random variables whose degrees of freedom are given by the argu-
ment. Let G, .. . (x) denote the kth derivative of G (x) with respect

Pyatgsee
to x.

THEOREM 1. If 37,06, < oo,
(2‘1) P[S(b) > X] = ZI?:O ('_ l)k(k!)_l Zrl,rz,n-.rk arlarz ot arkG;ﬁfrz,n«,rk(x) ’

where a, = b, % ,* and the series converges uniformly in x and uniformly over every
set of the form {b: >}, b* < c}. Moreover, for 1 < j < kand k = 1,

(2:2) —203.G e () = G () — G i () -

T11Tg " 71579

[STESTRIE A

Proor. The characteristic function of S(b) is
(2.3) o(t, b) = [TI, (1 — 20,%t)~""*] exp[ )], b,% %it(1l — 20,%t)7"] .
Since

(2.4) P[S(b) > x] — 1 = (27)~* {=,, (it)X(e~** — 1)o(t, b) dt ,
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existence of the derivatives {G{¥, .. ., (x); k = 1} follows from the inequality
le(t, 0)] < (1 + 4r)~* and dominated convergence. The relations (2.2) are
proved by considering the corresponding characteristic functions. Expanding
the exponential factor in (2.3) in powers of the exponent yields a series represen-
tation for ¢(z, b). Let ¢, (¢, b) denote the sum of the first m terms of this series.
A careful analysis establishes lim,, .., {=.. |¢|~*|¢(, b) — ¢@,(t, b)| dt = 0 uniformly
over every set of the form {b: ), b,* < c}. The series representation (2.1) is
implied by this limit and (2.4).

Another representation for P[S(b) > x] obtainable from the characteristic
function ¢(¢, b) under the assumption )], b,* < oo is

P[S(b) > x] = exp[—27" X, b,"]
X Do Q)T X, 02,07, B G (%)

the series converging uniformly in x and uniformly over every set of the form
{6: 23, b,> < c}. Expanding the exponential factor in this expression into a
series, collecting terms and applying (2.2) to the coefficients of these terms,
yields (2.1) formally.

If the {s,?} and {n,} are such that G(x) can be evaluated explicitly, then it is
possible, in principle, to calculate the {G, , ... (x)} by repeated convolution
with suitably scaled chi-square distributions having 2 degrees of freedom.
Another possibility, when x is large, is to approximate the individual terms of
(2.1) by simpler expressions. Let A(0) = [],.,(1 — ¢,%) "% Zolotarev (1961)
and Hoeffding (1964) have shown that for large x,

2.5) G prgeesry(¥) ~ AQ0) TG (1 — o7 )=070073?

X Py’ + 2 X5 0(1, 7)) > x].
By I’Hospital’s rule, the same asymptotic relation holds between the kth deriva-
tive with respect to x of both sides. Substituting these asymptotic approximations

into (2.1), then collecting the terms associated with the various powers of 5?2,
and finally simplifying the collected coefficients by using

2.6) PLm) > x] ~ (—2 LA > 4 k1

leads heuristically to the following theorem.
THEOREM 2.

2.7) lim, ., LS > X1 _ 44,
Py*(ny, b") > x]

where A(b) = A(0) exp[}., 5, 0,%0,%2(1 — 0,%)7'] and the convergence is uniform
over every set of the form {b: ¥, b%,* < c}.

Proor. Instead of pursuing the heuristic derivation, we give a direct proof
using the general method developed by Hoeffding (1964) in treating P[S(0) > x].
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The density of y,%(n,, ;%) is

(2.8)  p(x; ny, b2 = exp(—b12/2)2—”1”’H,,1(bl xt)xm/*-1 exp(—x/2) if x>0,
=0, if x<0,

where

b, xt/2)%

2.9 H,(bxt) = 3o, (&

( ) ”1( 1 ) Zk—o k!(nl/Z — 1 + k)!

— (blx%/2)—%1/2+11nl/2_1(b1x’k) ,

b, being the positive square root of b,*and /,(+) being the modified Bessel function
of the first kind and order v (see Whittaker and Watson (1927), pages 372-373).
Thus

(2.10)  H, (byxY) = [=T((n, — 1)/2)]
{5 cosh [b, xt cos (¢)] sinm=*(r)dr  if n, =2
= n~t cosh (b, x?) if n=1.
Let p, and pg,;, denote the densities of U = 3;,.,0,%,%n,, b,") and of S(b)

respectively. Note that A(b) = E[exp(U/2)]. Since pgg,(x) = §§ p(x — p;
ny, b*)py(y) dy, it follows from (2.8) that

@10 Bl g1y, ) expOIRPAN) Ay x>0,
P(x; m, byY)
where W(x, y) = H, (b,(x — y)})/H, (b,x?) has as its range the interval [0, 1].
Thus, if n; = 2, ps,)(x) < A(b)p(x; ny, b?) for every x, implying P[S(b) > x] <
AB)PL(m, b > ]
Choose arbitrary d € (0, 1). The difference pg,,(x)/p(x; ny, 6,2) — A(b), x > 0,

can be expressed as the sum of four integrals:

Vi= om [(L = yfxym — 1]W(x, ) exp(y/2)po(y) dy
(2.12) Vo= 15 (L = y[x)" =" W(x, y) exp(y/2)pu(y) dy

Ve = §8° [W(x, y) — 1] exp(y/2)pu(y) dy

Vi= =5 exp(y/2)py(y) dy -
Now, [V)| < x'max[l, (1 — &)™/ . |n/2 — 1] - E[Uexp(U/2)] and |V,| <
x~'0-*E[U exp(U/2)], where
(2.13)  E[Uexp(U]2)] = AB)[ Lrzan,0, (1 — 0,57 + 3,206,%0,%(1 — 0,977 .

For x > 0, 0 < y/x < ¢ and arbitrary 8 > 0,

_cosh (B(x — ) — —4g9-101 _ -
(2.14) 0<1 ot (T < x~#82-Y(1 — &)=ty

In view of this and (2.10),
Vol < x7%6,27%(1 — 8)*E[Uexp(U/2)] .
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The remaining integral V, satisfies

Vel = x7107*B(1, my/2) sup,z.. [y exp(y/2)py(y)]

where B(-, -) denotes the usual beta function.

If U = 0,’2*(ny, by), then from (2.8) and (2.10), |V,| is o(x~"), uniformly over
every set of the form {b: 37, 6,%,* < c}. In general, let p, denote the density
of W = o [x(ny 65°) + %°(n3s 6] + 1,50 0,.%,.%n,, b,%). The densities of
0505 (ng, by%) and o’y %(ny, b;%) are, respectively, o,7p(a,%x; ny, b?) and o,~*p(0,x;
n,, b,%). Because of (2.8) and (2.10), for x > 0,
0;7°p(a57°x; ny, b5%)

0,7 p(0,7%x; ng, byY)

=< (0y/a;)" exp[by(o,™" — 0,7 )Xt — 27Y(0, 2 — g, Hx],

(2.15)

the right side of which is bounded from above for every x > 0 by K(b?2) =
(95/05)" exp[b,*(9, — 03)27(0, + 0;)7"], a monotone increasing function of b2
Hence p,(x) < K(b,*)py(x) for every x > 0. Since n, 4+ n, > 2, the remark
following (2.11) implies in the present context that

PW(X) = B(b)azv P(O'z—ZX; ny, + ng, b, + b32) s
where

B(6) = [z (1 — 0,%/05") ™" "] exp[ 1,24 b,%0,72(0;* — 0,5)7'] .

Hence |V,| is o(x~") uniformly over every set of the form {6: ¥, b,%5,* < c}.
From the foregoing analysis of the {V';}, we conclude that | p,,(x)/p(x; n,, b,%) —
A(b)| is O(x~*) uniformly over every set of the form {6: Y7, b,%,* < ¢}. Theorem

2 follows from this fact and Cauchy’s mean value theorem.

r

3. Statistical application. The large sample theory of tests such as the
Cramér-von Mises goodness-of-fit and two-sample tests exemplifies the following
general situation (see Durbin and Knott (1972) or Beran (1975) for examples).
For every integer v = 1, §, is a test statistic used to discriminate between hy-
pothesis H, and alternative X,, large values of S, favoring K,. As v — oo, the
limiting distributions of S, under H, and under K, are the same as the distri-
butions of S(0) and S(b) respectively, with & = {b,% r > 1} determined by the
sequence of alternatives {K,; v > 1}. Moreover, S, can be represented (using
Parseval’s theorem in the Cramér-von Mises case) as a sum S, = 37, 0,2T,(r)
such that under H, and under K,, the sequence {s,’T,(r); r > 1} converges in
distribution in the /-topology to, respectively, the sequence {0, (n,); r = 1}
and the sequence {s,%,%(n,, b,%); r = 1}.

Theorem 2 yields some interesting information concerning the asymptotic
power of tests based upon S,. Let c(a), d,(a) be constants such that P[S(0) >
c(@)] = Ply,*(n,) > d,(a)] = afor0 < a < 1. Under K,, the asymptotic powers
of the level a S,-test and the level a T, (r)-test are, respectively, P[S(b) > c(a)]
and P[y(n,, b,%) > d,(@)].
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COROLLARY.
3.1 lim,_, — PI5@) > @] _ ¢,
Plys(ny, 6,°) > dy(a)]
where C(b) = exp[}],.,5,%0,(2(1 — 0,%)""] and the convergence is uniform over
every set of the form {b: ¥, b, < c}.

Proor. In view of Theorem 2, it is enough to show that

(3.2) lim, , Pldne b)) > d(@] _ |
AQ)P[r(my, b7) > ()]
uniformly over every set of the form {6, < c}. Let D(a) = ¢(a) — d,(a). From
Theorem 2 specialized to the case & = 0, we have, for small a, P[y3(n,) >
dy(a)] = a ~ A(0)P[x,%(n,) > c(@)]. Since P[y,*(n,) > x] ~ 2p(x; n,, 0) for large x,
it follows that lim,_, D(a) = 2 log A(0). (For further details regarding this point,
see the proof of Theorem 4 in Beran (1975).)
L’Hospital’s rule and (2.8) imply

(3-3) Ply*(ny, by%) > x] ~ eXp(—blz/Z)I‘(nl/Z)H”l(blx*)P[xlz(nl) > x]
for large x. For arbitrary § > 0,
cosh (f(c(a) — D(a)
cosh (B(c(a))?)

The desired uniform limit (3.2) follows from (3.3), (3.4), (2.10) and the previous
paragraph. This completes the proof.

The corollary above justifies the following general conclusions for sufficiently
small a:

) < 2-1d,-Ya)D(a)B .

(3.4) 0<1-—

(i) The asymptotic power of the level a S, -test approximately equals or
exceeds that of the level a T,(1)-test, depending upon the values of {6,% r = 2}.

(ii) If {K,} is such that 6> = 0 but 5,* + 0 for some r > 2, the asymptotic
power of the level a S,-test is a small fraction of that of the level a T,(r)-test.

Thus, although the S§,-test is asymptotically strictly unbiased against every
alternative sequence {K,} for which some 4,% 0, the test is not very efficient
when b, = 0 and a is small. Numerical studies by Durbin and Knott (1972)
and by Stephens (1973) of the asymptotic powers of the Cramér-von Mises,
Anderson Darling, and Watson goodness-of-fit tests under normal location and
scale alternatives support these conclusion for & = .05.
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