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UNBIASEDNESS OF THE CHI-SQUARE, LIKELIHOOD RATIO,
AND OTHER GOODNESS OF FIT TESTS FOR
THE EQUAL CELL CASE

By ARTHUR COHEN! AND H. B. SACKROWITZ

Rutgers University

The chi-square test, likelihood ratio test, and other goodness of fit tests
in a family are shown to have monotonic power functions, and hence are
unbiased, for testing a simple hypothesis that all cell probabilities are equal.
The chi-square test is also shown to be Type D for this situation.

1. Introduction and summary. Let X = (X}, X,, - - -, X};) be a random sample
of size N from a population whose cumulative distribution function is F(x).
Partition the real line into k class intervals such that the probability that X falls
into the ith class interval is p, under F(x). Let n = n(X) = (n,(X), - - -, n(X)),
where n,(X) is the number of observations in the sample falling into the ith class
interval. Let Fy(x) denote a specified distribution with cell probabilities p,,, i =
1,2, ..., k. Consider the case where all p,, = 1/k. We wish to test the hy-
pothesis H,: p, = 1/k,i=1,2, --., k. Leth;,, i=1,2, ...,k beconvex func-
tions of a single nonnegative variable. We study tests of the form, reject H, if

(1.1) Ty = Nt hin) > ¢
where ¢ is a positive constant and h = (A, &, - - -, &;).

We prove the following:

(1) For the tests in (1.1) the power functions are monotone on all lines passing
through the null point p, = (1/k, 1/k, - - -, 1/k), in the sense that the power func-
tions increase away from the null point in either direction. This property implies
unbiasedness of the tests (1.1). Mann and Wald (1942) claimed to have proven
this for the chi-square test. However, as pointed out by Kendall and Stuart
(1967), Mann and Wald proved only the local unbiased property of the chi-
square test.

(2) The chi-square test (k;(n;) = n*/p;) is Type D when allp,, = 1/k. A type
D test is locally strictly unbiased and among all tests (of the same size) with this
property, it maximizes the determinant of the matrix of second partial derivatives
of the power function evaluated at the null point. (See Lehmann (1959) page
342.)

This result is particularly interesting since this demonstrates an optimum local
property of the chi-square test and also demonstrates an optimum property for
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fixed N and fixed k. Hoeffding (1965) and Bahadur (1967) show that the likelihood
ratio test (LRT) (k,(n,) = n,log (n,/p,,)) is preferable to the chi-square test as
N — oo, k remains fixed, and one uses their criteria of efficiency. They demon-
strate an asymptotic nonlocal optimality property of the LRT. Morris (1966)
describes some situations where k — co in such a way that N/k is moderate, in
which the chi-square test appears preferable to the LRT.

In Section 2 we prove the unbiasedness result. In Section 3 we prove the

Type D result.

2. Power function property and unbiasedness. In this section we show that
the power function of the test (1.1) has the following property: On any line
passing through the null point p,, the power function increases away from the
null point. Clearly such a property implies that the test (1.1) is unbiased.

We assume throughout this section that the critical constant ¢ is chosen so
that the test neither always accepts nor always rejects. To prove the result we
need the following lemmas.

LeEMMA 2.1. Let h be a convex function. Let z have a binomial distribution with
parameters v and  where, 0 = . Then for any real number d,
(2.1 Ph(z+1)+h(v —2) >d) —Ph(v —z+ 1)+ h(z) >d) = 0.
Proor. Consider
(2.2) AZ) =[h(z + 1) + h(v — 2)] — [R(» — z + 1) + A(2)] .
First we note that A((v/2) — r) = —A((v/2) + r) for all . In addition, for r > 0,
writing ((v/2) — r + 1) and ((v/2) + r) as convex combinations of ((+/2) 4 r + 1)
and ((v/2) — r), the convexity of ~ implies
23) A2 —r) =[(E2) —r+ D)+ k((/2) + 1]
—[B(/2) +r+ 1) + R((»2) -] 0.
Thus A(z) £ 0 for z < v/2, A(z) = 0 for z > v/2, and A(v/2) = 0.
Define the sets D,, D, by
D,={z:hz+ 1)+ h(v—2)>d, k(v —z+ 1) + h(z) < d},
Dy={z:h(z+ 1)+ h(v—2)<d,h(v —z+ 1) + h(z) > d}.
Note that D,, D, may be empty. We may now write
(2.4) Ph(z + 1) + k(v — z) > d) — P(h(v — z + 1) + h(z) > d)
=PizeD,) — P(zeD,).
By our established properties of A(z) it follows that D, < [0, v/2), D, < (v/2, v],
and D, = {z: (v — z) e D;}. Since 6 > %,
(2.5) P(zeD)) — P(zeD,) = 0.
Thus from (2.5) and (2.4), (2.1) is proved. This completes the proof of the lemma.

Note that if § < 6 < 1 and if D, contains at least one integer then (2.5) > 0
which implies (2.1) > 0.
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LEMMA 2.2. Consider the test (1.1) with h, = h. If the size of the test is > 0,
then the power of the test is 1 for{p: p; = 1,p,=0,i#j,j=1,..-,k.}

Proor. Since the size of the test is > 0 there must exist some point (n,, g, - - -,
n,) for which (1.1) rejects. By the convexity of # we have #(N) + (k — 1)4(0) =
2k h(n;) for all (n,, - - -, n,) such that 3%, n, = N. Thus the point n* = (n,,
n, -+, m), for which n; = N, n, = 0, i == j must be a point for which (1.1)
rejects. This completes the proofas P(n; = N, n, = 0,i # j) = 1, whenp; = 1.

Now we are ready to prove

THEOREM 2.1. Consider the test of H, given in (1.1) with h, = h. Then on any
line passing through p,, the power function of the test increases away from the null
point.

ProofF. Let R = {(n,, ny, - -+, m): Ty = 3%, h(n;) > c}. Also let the line, in
the parameter space of vectors p, passing through p, be represented by the points
(@t + (1/k), a,t + (1/k), - - -, a,t 4 (1/k)), where the a, are fixed, ((—1/ka;) <
t < (k — 1)jka)),i=1,2, ...,k and X% (a;t + (1/k)) = 1. This latter condi-
tion implies 3}, a, = 0. Now the power of the given test at any point on the
line passing through p, is
(2-6) 2 (NYITima nt) THEo (@t + (1/k))™

Differentiate in (2.6) with respect to 7 and find that the derivative is

2 (NI nt) Ztaani(ast + (k)" T15o, 500 (a5t + (1/k))"

2.7 = N2z Zimaa{l(N — DY e 15t (ne — D@t + (1K)
X IT%-1,50: (@52 + (1/k)"5} .

(Note that in (2.7) and what follows, all terms involving (n, — 1) are zero when
n; = 0.) Since the bracketed term on the r.h.s. of (2.7) is a multinomial density
for my=n,— 1, my =n;, for j#1i, j=1,2,...,k, and probabilities p, =
(a;t + (1/k)), (2.7) may be rewritten as
(2-8) N Ziaa Pr{Xi e h(my) + h(m;, + 1) > c},
where Pr is with respect to the distribution of the m,.

Let J, be those indices i = 1, 2, - .-, k for which @, > 0, and J_ be those in-
dicesi = 1,2, - -, k for which ¢, < 0. Since not all @, = 0, and Y% a, = 0,
J, and J_ are not empty. Alsolet 4 = 2iier, @ = — Xlies_a;. Nowfixar > 0.
Then (2.8) may be written as

N[ Zies, @ Pr{Xh, ;i h(m;) + h(m; + 1) > c}
+ 2ies_ @ Pr{T5, juih(m;) + h(m; 4+ 1) > c}]
2.9 = NA[min, ., , Pr{35_, ;. A(m;) + h(m; + 1) > ¢}
— max;.; Pr{X%., ;..h(m;) 4+ h(m; + 1) > c}]
= NA[Pr {35y juiy B(my) + k(my) + 1) > c}
— Pr{¥i s Bmy) + k(m, + 1) > c}],
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where i, and i, are indices in J,, J_ respectively which give the min and max
respectively for the relevant probability. Thus the theorem will be proved for
t > 0, provided the term in brackets on the r.h.s. of (2.9) is greater than zero.
Therefore write this term as

§ [Pr {h(m,, + 1) + h(m,) > c
— Diwigag B(my) | myy j =1, <« -, k, j 5 i, 1}
(2.10) — Pr{h(m;, + 1) + h(m,) > ¢
— Dty ) My =1, ook iy )]
X dP(m;, j=1, -, k,j# iy iy) .

On examining the integrand we realize that for fixed m;, j =1, ---, k, j #
iy, 1, the pair (m,, m;) have a (conditional) two-dimensional multinomial dis-
tribution with parameters N — 1 — 3., ; m;; 0 = (a,t + 1/k)/[(a;) + a;)t +
2/k], 1 — 0, (equivalently we can think of m, as having a binomial distribution).
In fact we may write the integrand as

@.11)  Pr{h(z + 1) + k(v — 2) > d} — Pr{h(v — z + 1) + h(z) > d},

where d = ¢ — 3},,; ;, #(m;) and z has a binomial distribution with parameters
yv=N-—-1— Dl jnigi, My 0. Sincea, > 0> a, we have # > 1. Thus by Lemma
2.1 the integrand is always nonnegative. Hence, by virtue of (2.11) and (2.10)
we conclude that (2.9) is greater than or equal to zero for ¢ > 0. Thus the
power function is nondecreasing as ¢ ranges over positive values.

We now let ¢ > 0, be such that p = (a,¢ + 1/k, a,t + 1/k, - - -, a,t 4 1]k) is
an interior point of the parameter space and argue that the integrand of (2.10)
is greater than zero at some points (m;, j = 1, 2, -, k, J # Iy, i) With positive
probability. Suppose not. This means that

(2.12)  Pr(Xja,jeg H(my) 4 h(my, 4+ 1) > )
= P (Shogivq, hm;) + h(my, + 1) > ¢) .

By symmetry, since determination of D, with p an interior point does not depend
on the pair of indices i, and i, we find Pr (3%, ;., h(m;) + k(m, 4+ 1) > ¢),
i=1,2,.--,k,areallequal. This yields that the L.h.s. of (2.9) and (2.7) equals
zero. This in turn implies that the power function is constant on interior points
and by continuity must be constant everywhere. By the assumption that c is
chosen so that we do not always reject, the constant power would have to be
less than 1. But by Lemma 2.2 we know the power is 1 at some points in the
parameter space. This is a contradiction and so (2.10) is greater than zero which
implies (2.9) is greater than zero, for + > 0. This proves the theorem for ¢ > 0.
For t < 0 a similar argument yields that the derivative in (2.7) is negative. This
completes the proof of the theorem.

REMARK 2.1. The chi-square test, with (n;) = n;?, and the likelihood ratio

test, with A(n;) = n, log n,, clearly satisfy the conditions of the theorem.
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ReMARK 2.2. Kendall and Stuart (1967), page 436, say that the chi-square
test, where p,, are all equal, yields a locally unbiased test. They say that this
is a recommendation of such a class formation since no such result is known to
hold for the chi-square test in general.

One can slightly improve on the latter part of the above remark. That is, if
the p,, are not equal the chi-square test is not likely to be unbiased. In the fol-
lowing simple example it is seen that the chi-square test is not unbiased. Let
k=2, N=3, p, = 1. Choose c so that chi-square rejects if n, = 0,2, 3. The
power of the test is easily computed to be (1 — 3p + 6p* — 3p®) which does not
have its minimum at %.

3. Type D property of the chi-square test. Let ¢(n) denote a test function
and let B,(p,, Py, - -+ Pi—y) denote its power function. Let B = (9*/dp,3p;)B,(p:»
P ***> Pe-)lp=n, and let T', be the (k — 1) x (k — 1) matrix with elements 5.
Let ¢*(n) represent the chi-square test; i.e. ¢*(n) = 1 if n'n > ¢, ¢*(n) = 0 if
n'n < ¢, and ¢*(n) is arbitrary if n'm = ¢. (Assume c is such that the test does
not always accept or does not always reject.). Let a be the size of the test.
Finally, let f, = (N!/TT%., n,!)(1/k¥). Now we prove

THEOREM 3.1. The chi-square test p*(n) is type D.

Proor. In Section 2 we proved that ¢* is strictly unbiased. Therefore we
need only show

3.1) |Ty| = sup, [T

ol -

First we show (3.1) where ¢ is permutation invariant. In this case all gi are
equal fori = 1,2, ...,k — 1 and gy are all equal for all'i, j, i & j. Letting 3],
represent the sum over all possible vectors n,

(3-2) By = Zia p(m)(NYIL n!) TLic pie -
From (3.2) it is easily found that
(3-3) By =k Xa pm)[ny(my, — 1) — 2mymy, 4 n(m, — D)]f,

ﬁ}: = k2 Zn @(ﬂ)[ﬂlnz — nn, — nyn, 'I" nk(nk - 1)]fﬂ .

The permutation invariance of ¢ implies that I', is of the intraclass type and so
', has (k — 2) latent roots equal to §* — g%, and one root equal to g + (k — 2)5".
(See for example, Olkin and Pratt (1958), page 205.) Use permutation invariance
and Y%, n, = N to yield the identity

G4 Z.emmnf, = (Nalkk — 1)) — (1/(k — 1)) 2. p(m)n,’f, .

Permutation invariance (3.3), and (3.4) then yield that

(3.5 B =Bt =K(1/(k — 1)) Z. emn'nf, — Na/k — Nafk(k — 1)}
B+ (k — 28 = k(8" — 7).

From (3.5) it is clear that |I' | is maximized among permutation invariant tests
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by choosing ¢ to maximize

(3-6) Zia p(mu'nf,
subject to 3, ¢(n)f, = a. Since the quantity
3.7 Za (p*(m) — o(m))('n — ¢)f, 2 0,

for all tests ¢ of size a, it follows that ¢* maximizes (3.6).

The proof of the theorem will be completed by showing that if ¢’ is a test
which is not permutation invariant such that |T',,| > |T',.|, then there is a permu-
tation invariant test ¢ such that |I';| > |T',.|. This will be a contradiction.

Letg;,j=1,2,---,(k — 1)! be the elements of the permutation group G.
Let ¢(n) = (1/(k — 1)!) 21452 ¢'(9,(m)). It is known that ¢(m) is invariant.
Furthermore, it is easy to see that I'y = (1/(k — I)!) X' T, , and that
Lol = ool j=1,2, -+, (k — 1) Since the determinant is log concave (see
for example, Marcus and Minc (1964), page 115, (8)), it follows that |I'y| > |T',|.
This provides the contradiction and the proof of the theorem is complete.
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