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ON FUNCTIONS OF ORDER STATISTICS FOR
MIXING PROCESSES!

By K. L. MEHRA AND M. SUDHAKARA RAO?
The University of Alberta

Recent results of Shorack (Ann. Math. Statist. (1972) 412-427) on the
asymptotic normality of functions of order statistics are extended to sta-
tionary ¢-mixing processes and to a class of strong mixing processes. The
results of this paper are based on the weak convergence of empirical pro-
cesses relative to the metric d, as developed in Fears and Mehra (Ann.
Statist. (1974) 586-596). Some remarks on trimmed and Winsorized means
in the strong mixing case are also included.

1. Introduction and notation. The asymptotic normality of functions of order
statistics for sequences of i.i.d. rv’s has been studied by a number of authors,
e.g., Bickel (1967), Chernoff, Gastwirth and Johns (1967), Stigler (1969) and
Shorack (1972). In the last of these papers, Shorack uses very effectively the
weak convergence properties of empirical processes developed in [9] to prove
two quite general—and so far the best—theorems of this kind for the case of
independent rv’s. The object of the present paper is to prove similar results
for stationary sequences {X,: n = 1,2, ...} of rv’s under ¢-mixing and strong
mixing types of dependence. In this connection, we refer the reader also to a
paper by Gastwirth and Rubin (1969) where the authors have studied, using
different methods, certain types of functions of order statistics from stationary
Gaussian processes (see Section 4 of [6]). No attempt will be made to discuss
their results here.

Let M* and My, be og-algebras generated, respectively, by {X,;: 1 < i
and {X;: i = k + n}. Then {X,} is ¢-mixing if

IA

k}

(1.1) sup{|P(B| A) — P(B)|: Ac M}*, Be M.} < 6.,
and strong-mixing if
(1.2) sup {|[P(B n A) — P(B)P(4)|: Ae M, Be M3} < a,,

for all positive integers k and n, where ¢, and «, are non-increasing functions
of positive integers with 0 < ¢, «, < 1 and lim,__, ¢, = lim,_ . a, = 0. (In
(1.1) |P(B| A) — P(B)| is defined to be zero for P(4) = 0.) For a discussion of
mixing conditions see Ibragimov [7] and Rosenblatt [11].

The function spaces C = C[0, 1] with supremum metric p and D = DJ[0, 1]
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with Skorohod metric d are as given in [2]. If Y, and Y are random functions,
we write Y, =, Y to denote the weak convergence of Y, to Y relative to the
metric §, as n— co. Where no confusion is possible X, K, K,, etc., denote
generic constants.

Throughout below &, &,, - - - will denote uniform [0, 1]rv’s. Let{§,: n = 1}
be a stationary ¢-mixing (strong mixing) sequence of such variables and define
L) = n iy fpqs 011 Let Ut)=niT,() — 1] and V() =
m[T,~%(t) — ¢], 0 < ¢ < 1, be the corresponding empirical and quantile pro-
cesses. Furthersetfor0 < s, 1 <1

(1.3) o(s, 1) = [(S A 1) — s1] + X 5a [Fii(s, 1) — st] + D152, [Fiy(t, 5) — st],
where F;(s, t) = P[§, < 5, &; < 1], and whenever |o(s, 1)] < oo, define a tied
down Gaussian random function {Uy(#): 0 < r < 1} in D by

(1.4) E[U(H] =0, E[U(s)Uy()] = a(s, 1) .
For a fixed § (0 < ¢ < $), we also define
(1.5) q(t, 0) = K[t(1 — 0]+, 0<tr<t,

where K is a constant.

2. Functions of OS under ¢-mixing. In this section we shall establish that
the two main theorems of Shorack [13], concerning the asymptotic normality
of functions of order statistics, remain valid under ¢-mixing with only slight
variations in conditions. For the sake of brevity we shall explicitly prove only
two simple versions of these theorems for the case g, = g. (See Remark 2.1.)
Let &, §ugs - - -5 £4n denote the OS based on the first né;’s of a uniform stationary
¢-mixing {§;} and 0 < p, < p, < --- < p, be £ teal numbers, where « (= 0)
remains fixed. Consider the statistic

2.1 T,=n"3"7,¢,:96) + 21 g(Eﬂ,[npk]-'-l) ,

where g € & = the class of functions on (0, 1) which are of bounded variation
on (n, 1 — n) for every » > 0, and ¢,;’s and d,,’s are suitable constants. If g =
F-', with F a continuous distribution function (df), 7, is a linear function of
OS from some ¢-mixing stationary process {X,}, with X, = F-%¢&,). It is also
important to note that given a random process {X,}, with each marginal df
F, = Z(X,) continuous, there exists a uniform process {¢,} such that <({X,)} =
AAF,(§,)); if {X,} is stationary ¢-mixing, so is {£,}. Thus the present ap-
proach based on the transformation X, = F,~%(§,) does not restrict any further
the generality of these theorems in the ¢-mixing case. (The preceding notation
and remarks apply also to the strong mixing case in Section 3.)

Throughout we shall keep the notation of [13], unless it is necessary to do
otherwise. We also use the following condition on the mixing coefficient ¢.

(2.2) L ngi(n) < oo
We refer to [5] for the proof of the following proposition.
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PROPOSITION 2.1. Let g = q(t, 0) for a fixed 0 < 0 < % and let a stationary ¢-
mixing sequence {£,} satisfy the condition (2.2). Then (U,/q) =, (U,/q) where U, is
a Gaussian random function given by (1.4). Further P[(U,/q) e C] = P[U,e C] = 1.

COROLLARY 2.1. Under the conditions of Proposition 2.1,
V.=V, where V,= —U,.
Proor. Since U, =, U, under the conditions of the proposition, the proof
follows from Theorem 1 of Ver Vaat [17]. [J

Let po,(f> 9) = o(f19> 9/9) and similarly for d,. Since (D, d) is a complete
separable metric space, the conclusion of Proposition 2.1 can be strengthened
as in [5] (Corollary 2.1) to

(2'3) dq(Um 00) a.s. 0 and pq(ﬁm Uo) a.s. 0,

as n — oo, where U, and U, are now processes equivalent in the sense of Skorohod
(see [5]) to U, and U, respectively. We shall, in the sequel, deal only with these
special processes with ~ suppressed for convenience.

We now turn to the convergence of the quantile process {V,(f): 0 < ¢ < 1}
relative to the general metrics o, and d,. Let f* denote the restriction of any
function f on [0, 1] to [1/n, 1 — (1/n)] (and O elsewhere).

LemMA 2.1. Under the hypotheses of Proposition 2.1
(2.4) 0, V¥ Vo) =, 0,
as n — co, where V, is as defined in Corollary 2.1 and q by (1.5).

Proor. First note that (2.4) holds if

(2.5) 0UX(T,™), Up) =, 0, as n— oo,

where we have set U *(T",~") = (U,(T',7Y))*. For, we have ¥, = —U, and
Vat) = =UT,7(0) + n¥(T, o T,7Y(0) — 1),

so that

[V (1) — Vo) = |UXT,T) — U(0)] + nF|(Ty, 0 T3 (1) — 0)*] .
We thus have

-1

pulV* V) S 0 US04+ mi g () [ =0,

as n — oo, in view of (2.5) and the fact that ng—*(1/n) — 0, as n — co. Thus
(2.4) holds if (2.5) is satisfied. The proof of (2.5) is similar to that of Theorem
2.2 of [9] since for e > 0, 0 < 0 < %, there exists a 8 > 0 such that for suffi-
ciently large n

(2.6) P[P,;l(t) < B0 for 13> i] >1—¢
n

holds (see (3.4) of [5]), as noted in the proof of Theorem 3.1 of [5]. []
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The following two lemmas correspond to Lemma A.3 of [13].

LEMMA 2.2. Let {€,} be stationary ¢-mixing satisfying (2.2). Then, for given
¢ > 0, there exist a 2 =14, 0 < A< 1, and a set S, , with P[S, ] > 1 — ¢ such
that on S, ,

@.7) H<T,()<1— 21 —4¢) forall 0<t<1.

Proor. By symmetry of the graphs of I', and T',-%, it is easy to see that (2.7)
is equivalent to

(2.8) 1 —n==T,(t)—t<¥t forall 0511,

where 2 = (1/4) — 1 > 0. For0 <t <% (3 <1< 1) (2.8) is implied by
(2.9) D) —d < (00— < (1—02).
We, therefore, need to prove only that for some 2’ > 0 and n sufficiently large
(2.10) PIT,() —f < 12 for 0< <32 1— (5f2);

that the inequality in parenthesis in (2.9) holds for } < ¢ < 1 with probability
= 1 — (¢/2) follows by symmetry. Consequently, (2.8) will hold with prob-
ability > 1 — ¢ and the proof would be complete.

Let W, (1) = T'\(r) — tand p; = s[(I;,<n/t) — (I za/9)]fOT0 < s < 1 < 4,0 =
1,2, .-+, n. Since |p| <1 and E(p?) = § - E|p,| = s¥s~* — '), so that pro-
ceeding as for (2.11) of [5], we obtain

Ely vl < K¢[”2E2(7712) + nE(p?)],
which implies (since Y7, 7, = ns[(W,(£)[t) — (W.,(s)/s)]) that

4 1/1 1\? 1 1 1 :|
<K,| = ——— —_— == =)
- ”[n“(s t> +n3sz(s t>

@.11) EIE/T(Q_ _ H’_S(S_)

similar arguments yield

w.(0 |* 1 1
(2.12) B[O < [+ )
Further, for integers 1 < j < k < M/2, where M is assumed to satisfy
(2.13) 0<ag=nMc<b < o (ay> b, to be chosen later) ,
set s = j/M and t = k/M. Since (k/j(k — j)) < (k/(k — 1)) < 2, we have from
(2.11)
2.1 B[ FM) _ WG| (1 LY
(kM) (JIM) Ik
and, for 1 < k < M/2, from (2.12)
(2.15) E|WakiM) |* K,,(i)z.
(k/M) k
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Now considering the variables

w.(M) — W.(M) Wi~ 1)/M)

(1/M) (i/M) (¢ — 1)/M)

and applying Theorem 12.2 of Billingsley [2] to (2.14) and (2.15) (with u, = 1,
u, = (1/(1 — 1) — (1)1)) for | = 2), we obtain for ¢ > 1

W(iIM K 2\T
(2.16) P|:max1§i§M/2 LAGL] 2 c:] = c—f[l + (l N ﬁ)] '

2<i< M2,

b

(i/M)
Now proceeding as for (2.15) of [5] we get
W(t W, (i/M
(2.17) SUPq/m stsy o )| < 3maXigiconm—1 —"-(i—)| +1.

! (i/M)

Also, proceeding as for (2.19) of [5] and using (2.13) we get

0]z s ()2

(2.18) P [SuPo<t<(1/m

Now let b, = ¢/4, a, = ¢/8 and choose ¢ = c(¢, ¢) so large that K,/(c — 1)* < ¢/4.
Since for suitably large n and M (2.13) would hold for above choices of @, and
by, (2.10) follows from (2.16)—(2.18) with 2 = 2¢. The proof is complete. []

LEmMMA 2.3. Let {§,} be as in Lemma 2.2. Then, for given ¢ > 0 and 7, v, with
0< 7,7y < 3, thereexist a B = P(z;, 75, €) (0 < B < ) and, for sufficiently large
n, a set S, , such that on S, ,

(2.19) A <T,()<1—Bl—n*2  for 0<T ()<1.

Proor. Clearly it is sufficient to prove, for given ¢ >0 and 7, 0 < 7 < §,
the existence of a 8 such that for sufficiently large n

(2.20) P[T,(f) = B+ for T (1) >0]=1—c¢.

Now by the “symmetry” of the graphs of I', and I',~! again, for any strictly
increasing continuous function p on [0, 1] we have

(2.21) {F,:l(t) < p(1) for + = %} = {t < T.(p(r)) for p(t) = &}
={p () ET,(t) for t = ¢&,}.

In view of (2.21), with p(¢) = *~"J¢, ' = (¢/(1 + 7)) and ¢ = B, (2.20) is
equivalent to

2.22) P[P,;l(t) < r-lc for t = i] >1—e,
n

which is the same as (2.6) with 8 = 1/c, § = <'. []
The first theorem. Let J,, J and p, be defined as in [13] page 413, and set for
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0l
(2.23) B(t) = Kt~*(1 — #)~", where b,6, >0, and
L(t) = Kt~ (1 — f)~t+ma, where r, > b, and r, > b,.
Further let
(2.24) 0" = 5 §ha(t, 9)J(s)J(2) dg(s) dg(r) + 2 i1 d9'(pi) §o o(1: pi)I(7) dg(2)
+ X D5 dd; ()9 (P)o(p; Pe) s

where a(s, t) is defined by (1.3).

THEOREM 2.1. Let {§,} be a stationary ¢-mixing uniform process satisfying (2.2).
If assumptions 1, 2 and 4 of [13] (page 413) hold, with g, = g and D(t) replaced by

L(t) of (2.23), then
n¥(T, — p,) = N0, o*),

where T, is defined by (2.1), and o* given by (2.24) is finite.

Proor. Since the proof is analogous to that of Theorem 1 of [13], we shall
touch only those points where the present proof departs from that of [13]: Con-
sidering the decomposition of n}[T, — p,] on page 414 of [13], note that, in view
of Lemma 2.3, we have in the present case

(2.25) Youl 4,5| < Ki-t04e0(1 — f)=0a0+0 — KB,

where 7, = r, — b, 7, = r, — b, and y,, is the indicator function of the set S, ,
of Lemma 2.3. In view of (2.3) and P[(Uy/q) € C] = 1, (2.25) permits the appli-
cation of the dominated convergence theorem, as in [13], to conclude that
Ane Sy — S a.s. and therefore S, —,§. That y,,, 7,, —, 0 is also similar: From
(2.22) we obtain, for an arbitrary ¢’ >0 dnd 0 < ' < 28'/(1 + 25),
P[n&»" > 5] — 0, asn — 0, for every » > 0. Consequently, since on the event
A, =1{,, < 3 A p)} with P(4,) — 1 as n — oo we have

T = K[nSH‘fl/”’-i”]”l-(*’ + (ngﬂzfl)é for b1 =1, and
rm S n(né&i)t for b <1,
it follows that, as n — oo, 7,, and analogously 7,, —, 0. The rest of the proof
does not require any change. []
The second theorem. We now consider the statistic (2.1) with x = 0 and g a
fixed left continuous function on (0, 1) viz.,
(2.26) Ty =1 2lke1 € 9(€ns) >

where
¢ =n{im C,dv (with {§.dv=,; d) 1<ign,

for some sequence {C,} of measurable functions on (0, 1) and a signed measure
v defined on (0, 1). Let C be a fixed measurable function on (0, 1) and set

(2.27) p=\39Cdy and
o = (} $3a(t, )9’ (D)9’ (5)C()C(s) dv(?) dv(s) ,
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where o(t, 5) is defined by (1.3). Let g, and ¢, denote the corresponding quan-
tities in which C is replaced by C,. Assume that

(i) gis absolutely continuous on (e, 1 —¢) for all ¢ > 0,

g’ exists a.e. |v| and |g'| < R a.e. w.r.t. (|v| + Lebesgue
(2.28) measure), where R is a reproducing U-shaped function.

(ii) For large n, |C,| < ¢ a.e. |v| with {§qR¢ d]y| < oo,

where g is defined by (1.5).

THEOREM 2.2. Let {£,} be as in Theorem 2.1 satisfying (2.2). If the assumption
(2.28) above and assumptions (E2a), (E3) and (E4) of [13] pages 420-421 hold,
then ¢* < oo and
(2.29) (T, — p) = N(O, ¢, as n— oo,
where y and o® are defined by (2.27). If only assumptions (2.28) above and (E2a)
of [13] hold, then [n¥(T, — p,)/0,] = N(0, 1) provided lim inf, ., ¢, > 0.

Proor. Keeping the notation of [13], consider the decomposition of
n¥(T, — p) given by (13) of [13]. Now from Lemma 2.1, we have p (V,*, V) =
0,(1) (Vo = —U,) and p,(Vy, 0) = O,(1). Therefore, under the assumptions of
the theorem 7,* —, T, where T = {3 ¥,9'C dv, by the same arguments as in [13]
provided we show that
(2.30) o 9l4.* — gl dp| —,0,
as n — oo. For (2.30) note that [4,| < R VvV R(I',7%), so that by Lemma 2.2

XSn,slAn*1 é KeR ’
where S, . is the set of Lemma 2.2. Since 4, — ¢’ a.e. |v| for each w € Q and
P[S,.] — 1, (2.30) follows from the preceding inequality, the dominated con-
vergence theorem and assumption (2.28). Since 6, — 0 by assumption (E4), the
proof of (2.29) would be complete if we show that r,,, y,; —,0,as n — oo. To
see this note that by assumption (E2a), 72, = 9%(,,)ch,/n does not exceed
K* 1
(€)= (1 — &)
which converges to zero in probability as n — oo by assumption (E2a) and the
fact that (n§,)~* = 0,(1). This last fact follows from P[¢, < (¢/n)] <

P[Ur, {& < (¢/n)}] = ¢ for every ¢ > 0. Thus y,,, and analogously 7r,,, —, 0.
This proves the first part; the proof of the second assertion is similar. [

REMARK 2.1. All variations, corollaries and applications of the main theorems
of Shorack [13] remain valid in the present context with minor modifications.
A version of Theorem 2.1, as in [13], in which g depends on n also holds under
additional Assumptions 3 and 4 of [13] page 413.

3. Functions of OS under strong mixing. We shall show in this section that
the results of Section 2 continue to hold for stationary strong mixing processes
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{¢€.} provided an additional restriction on the covariances among &,’s (see (3.1)
below) is satisfied and provided the mixing coefficient a(n) | 0, as n — oo, at an
appropriate rate. It is well known, however, (see [18]) that U, —; U, as n — oo,
holds provided a(n) | O sufficiently fast. We believe that the condition on a of
Lemma 3.1 below is the best so far.

LemMa 3.1. Let {§,} be a stationary strong mixing uniform process with
> nfa(n)]P < oo for some 0 < 0 < 1. Then the series (1.1) converges absolutely
and U, =, U, as n — oo, with P[Uye C] = 1.

Proor. The proof can be easily accomplished using Lemma 2.1 of [4] and the
method of proof of Theorem 22.1 of [2]. []

Let corr (&, ) denote the correlation between £ and ». The condition we im-
pose on {£,} is that for all £ measurable _Z;* and all  measurable _#.3,,
3.1 |corr (&, )| < ca’(n), forsome 0<d=<1,

where ¢ is an absolute constant independent of » holds. A well-known result of
Sarmanov (see [8]) states that (3.1) is satisfied by all strong mixing stationary
Gaussian processes with § = 1. The important case of Gaussian processes is
thus covered by the results of this section (cf. Section 4 of [6]).

THEOREM 3.1. Let {£,} be as in Lemma 3.1 with Y, n*a’(n) < oo for a 0 <
0 < 1, g be defined by (1.5) and assume that (3.1) holds. Then (i) p (U,, Uy) —, . 0
and (ii) o, (V,*, V,) =, 0 as n — co.

Proor. Suppose {Z;} is a stationary strong mixing process with |Z;| < 1 and
set S, = 27, Z,. We will first show that the assumed conditions imply

3.2) E(S,Y) < K,[n*EXZ}?) + nE(Z})],

which inequality is the assertion of Lemma 22.1 of [2]. Consequently, the con-
clusion of Proposition 2.1 and, therefore, all results of Section 2 remain valid
in the present case with K, in place of K,. It remains to prove (3.2): First
note that

(33)  ES,)= X1, EZf + AN E(Z3Z) + 6 X0, EZ2Z)
+ 12 X2 Yicinn B(Z, Z; Z,7)
+ 24 Z Z Z Zi<i<k<l E(Zz Zj Zk Zl) N
Now letting E(Z;?) = t and using the hypothesis |Z;,| < 1 and (3.1), we obtain
(3.4) L E(ZY < nt,
(3:5) 4D Eews E(ZPZ)| + 6|5 S, BZAZ))| < dnze Nz, ad(n) + 6nic?,
L2 2 [B(Z: Z; 2,
(3.6) S 2nEZY - N2 IEZ Zy) + X N D min {|Cov (Z,Z;; Z,),
|Cov (Z;; Z; Z,7), |Cov (2, Z,% Z;)]}
=< nlcc? 37, a’(k) + 6nte Y, kal(k) .
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Similarly we obtain

(3.7) | D Z 2 Dicicea B2 Z; 2, Z)|
= n’PA( Qs (k) + 3ern(Xip, kPa(k)) .
From (3.3) to (3.7), the inequality (3.2) follows. []

Since Lemmas 2.2 and 2.3 also remain valid under the conditions of the pre-
ceding theorem, we can conclude the following:

THEOREM 3.2. Let {£,} be a stationary strong mixing uniform process satisfying
2im=y n?a’(n) < oo and (3.1). Then the conclusions of Theorems 2.1 and 2.2 remain
valid under the same conditions.

4. Trimmed and Winsorized means. The asymptotic joint normality of sam-
ple quantiles and weak convergence of the quantile process on [a, ] with
0 < @ < B < 1, have been proved by Bickel [1] and Shorack [14] in the case of
i.i.d. rv’s and by Sen [12] in the case of ¢-mixing sequences. As pointed out
by Pyke [10], these results are direct consequences of the weak convergence of
empirical processes and the Glivenko-Cantelli lemma so that they are valid even
in the case of strong mixing under certain conditions (for example those of
Lemma 3.1). However, in the ¢-mixing case or the strong mixing Gaussian case
we have stronger results: the weak convergence of quantile processes, proved
by Shorack [14] (Theorem 1 of [14] and its variations) in the more general
supremum and integral metrics, remain valid in the present case with the func-
tion g of Section 1. We omit the details since the proofs are similar to those of
[14] in view of the results of our Sections 2 and 3. Further, in the theory of
robust estimation the trimmed and Winsorized means appear very prominently.
In the i.i.d. case their asymptotic normality is well known (see e.g. [1]). Theo-
rem4.1 below shows that this remains true in the case of strong mixing sequences
since the limiting rv’s, as is easily verified, have normal distribution.

Let {£,} be a uniform process and &,;, 1 < i < n be the OS as defined in
Section 2. Also let g = F-*. For 0 < a < B < 1, consider the trimmed and
Winsorized means

T, = B—l— Zfﬁanﬂ 9(€x) »
n— Xy
Wo = n7a,9(u,) + (0 — Ba)9(Enipsn) + Ll 961

where a,, = [na], 8, = [nB]. Itis to be noted that a.s. convergence results proved
in the theorem below hold only for the specially constructed processes; for the
original processes, only the corresponding weak convergence is implied.

THEOREM 4.1. Suppose {£,} satisfy the conditions of Lemma 3.1. If g is differ-
entiable on (a — ¢, 8 + ¢) for some ¢ > 0, then
n(Ty — 1) >us. (B — @) o g (V1) dt
m(Wo — ) s S8 G OVo(t) dt + ag'(@)V (@) + (1 — B)g'(B)Vu(B) »
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as n — oo, where V, is defined as in Corollary 2.1, and

tr = (B — )7 §G g(r) dr
tw = ag(@) + (1 — B)g(B) + §& 9(z) dt .

Proor. Inview of Lemma 3.1and the Glivenko-Cantelli lemma for stationary
strong mixing rv’s (see [16]), the proof is straightforward. The details are there-
fore omitted. []
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