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POWER OF ANALYSIS OF VARIANCE TEST PROCEDURES
FOR INCOMPLETELY SPECIFIED FIXED MODELS

By RoNALD MEAD, T. A. BANCROFT
AND CHIEN-PAI HAN

lowa State University

Derivations are given of the size and power of a test of a hypothesis
for an incompletely specified fixed linear model. Such a testing procedure
involves a test of a hypothesis of main interest subsequent to a preliminary
test to determine the inclusion or not of a term in the tentatively specified
complete fixed linear model. An evaluation of the formulas of the size and
power was made over a wide range of values of the parameters involved,
and recommendations concerning the choice of a proper significance level
are given. One important objective of this study for the fixed model was
to parallel as nearly as feasible the study given by Bozivich, H., Bancroft,
T. A. and Hartley, H. O. (1956), Ann. Math. Statist. 27 1017-1043 for the
random model, and to compare the two. It should be noted that the results
and recomendations for the fixed model are quite different from those given
in the 1956 paper for the random model.

1. Introduction.

1.1. Description of a pooling procedure. The simplest situation of a pooling
procedure for the testing hypotheses using analysis of variance techniques may
be described as follows: We are given three mean squares, Vy, V,, V;, with
corresponding degrees of freedom, n,, n,, n,, and expectations ¢,%, 6, 0. We
would like to test the hypothesis H,: ¢, = ¢,*, which can be done by comparing
V, with ¥V, by the F-test. It is now suspected that ¢,> = ¢,’. If this is indeed the
case it would be to our advantage to pool ¥, and ¥, and compare ¥, with V' =
(n,Vy + n,V,)/(n, + n,). If we are not completely certain that ¢,* = ¢,* it would
seem reasonable to perform a preliminary test. If the hypothesis H': o," = 0,
is accepted, we would pool ¥, and ¥, and calculate F = V,/V to test H,: o’ =
o,’; otherwise we would use F = V,/V,.

The form of the preliminary test depends on the model being considered. For
the random model this pooling situation can be displayed as in Table 1; for the
fixed model, as in Table 2. As can be seen from the expected mean squares,
for the random model the preliminary test is the test of Hy: ¢, = 0,* against
H/: 0> o} and uses the statistic F = V,/V, with n, and n, degrees of freedom.
In Table 2 2, > 0 is the noncentrality parameter of a noncentral y*. For the
fixed model the preliminary hypothesis is H,': o,* = o,* versus H,: 0> > 0;’
and the statistic is F = V,/V, with n, and n, degrees of freedom.
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TABLE 1
Analysis of variance, random model
Source of Variation d.f. Mean Square E.M.S.
Treatments n3 Vs 32 = g2
Error ny Ve g2? = 012
Doubtful Error m Vi a1?
TABLE 2
Analysis of variable, fixed model
Source of Variation d.f. Mean Square E.M.S.
T 223
reatments ng Vs g =022 (1 + T
3
24
Doubtful Error m V1 012 = 022 (1 + _n—>
1
Error ne Ve a2?

Bozivich, Bancroft, and Hartley (1956) discussed the random model case in
considerable detail. They derived and evaluated formulas for the size and power
of the procedure over a wide range of the parameters and they also made some
recommendations concerning the choice of a significance level for the prelimi-
nary test. Another frequently occurring type of model is the mixed model.
Bozivich, et al. showed how to reduce the mixed model to the random model,
and the results in their paper could be used in such a situation.

The purpose of this paper is to parallel as nearly as feasible for the fixed model,
what Bozivich, et al. did for the random model.

1.2. More precise formulation. Let us assume a fixed model. For simplicity
of illustration, we let

Yip =p+ a4+ B+ (aB); + €iju»
Yuay=X;8; = Xi(aB); = X, (aB); =0, and
& ~ NID(0, 0)) ,
i=12,.---,Lj=1,2,.-.,J, k= 1,2,...,K,

for which the sum of squares can be partitioned as shown in the structure of
the analysis of variance in Table 2. Our example above implies a two-way classi-
fication with equal numbers and more than one replication per cell. Considering
a as the row effect and § as the column effect, then we may view either a or
as the “treatment” and (af) as the set of terms which make the row x column
interaction mean square ¥, a “doubtful error.”

We wish to test the hypothesis H,: ¢ = 0,’ against the alternative H,: ¢, >
o,’. Then, if in Table 2 it is assumed that 2, > 0, the appropriate test procedure
is to calculate F, = V,/V, and reject H, if F, > F(a, n,, n,) where F(a, ny, n,) is
the upper 100« percent point of the central F-distribution with (n,, n,) degrees
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of freedom. This test proceure is called the never-pool test. If, however, it is
assumed that 2, = 0, the expectation of V| is ¢,°. In this case the test criterion
would be F, = (n, + n,)V,/(m, V, + n,V,) and we reject H, if F, = F(a, ny, n, +
n;). We call this the always-pool test.

Frequently the experimenter is not willing to make any assumptions about 2,.
In such case he may wish to test the hypothesis H,': ¢, = ¢,’. This test is re-
ferred to as the preliminary test of significance. The final test (of H,) depends
on the outcome of the preliminary test. If H/ is rejected we use the test statistic
Fy, = V,|V,; otherwise, we use F, = (n, + m,)Vy/(n, V, + n,V,) for testing ¢,* = o,%.
This test is called the sometimes-pool test.

In our example of the two-way table we realize that having rejected H/, i.e.,
having noted that some interactions are present, an investigator may proceed to
study the nature of these interactions. This study may cause him to lose interest
in the overall differences between rows, and in the test F, = V,/V,, because the
presence of interactions implies that the differences between rows vary in some
way from column to column, so that a more detailed summary of results is
needed. The present investigation applies to cases where overall row compari-
sons are of interest whether interactions are present or not.

The essential features of the sometimes-pool test procedure related to the fixed
model may be summarized by

(i) The error mean square V, is distributed as y,%,/n, where y,’ is the central
x* for n, degrees of freedom, while the other two mean squares V; (i = 1 or 3) are
distributed as y,"%0,*/n, where y,”* is the noncentral y* based on n; degrees of free-
dom and noncentrality parameter

The three V; are independent.

(ii) The main purpose of the analysis is to test the null hypothesis ¢ = o,’
against the alternative o,* > 0,

(iii) The error mean square ¥, has an expectation ¢, which is smaller than
or equal to the expectation ¢,* of the doubtful error mean square V.

Clearly there are a number of models which satisfy the above conditions in
addition to the example we have given above. Another example would be a
polynomial regression model with more than one y value for each x value. In
this situation the doubtful mean square would be the mean square due to lack
of fit. The true error would be the within mean square. This procedure can
be extended to a case of test of departure from linear regression in covariance
analysis. (See Snedecor and Cochran (1967), page 460.)

1.3. Related papers and objectives of the present study. The problem to be dis-
cussed here is from the general area of incompletely specified models involving
the use of preliminary tests of significance. Work in this area includes studies
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by Bancroft (1944), (1953), Paull (1950), Bechhofer (1951), Bozivich (1955),
Lemus (1955), Bozivich, Bancroft, Hartley, and Huntsberger (1956), and others.
Bozivich evaluated the size and power for many combinations of parameters for
incompletely specified random models and made recommendations concerning
the use of such models. For the fixed model, Bechhofer obtained the power in
closed form for only a few special cases so that all numerical comparisons are
restricted to small degrees of freedom and to the case ¢, = 0,%.

Bancroft (1953) employed Patnaik’s approximation to the noncentral y* to
develop approximate expressions for the power integrals in the case of Model I.
He also made some empirical checks of the agreement between the exact and
approximate values. These results are also given in the Wright Air Development
Center Report by Bozivich, Bancroft, Hartley, and Huntsberger. Lemus gave
a detailed derivation of these formulas and included some tabled values of the
power. He also made some comparisons of the results from the approximate
formulas with the result of a direct series evaluation. For [n,, n,, n;] = [4, 6, 2],
[6, 6, 6], [8, 6, 8] and [4,, 4] = [.6, 1], [.06, .06], [.05, .05], [03, .03], the max-
imal deviations of the approximation from the direct series evaluation for P,
and P, (defined in equation (2)) were .006 and .001 respectively.

The objective of the present study is to use the formulas of Bancroft in evalu-
ating the power and the size of the sometimes-pool test. Numerical computations
were carried out on an IBM 360 at the Iowa State University Computation Center
for various values of degrees of freedom and parameters. It is shown that the
power gain when n, < n, is generally negligible. When n, > n,, there may be
substantial gain in power as compared with the never-pool test.

2. Exact and approximate formulas for power. Fixed model.

2.1. Mathematical formulation of the pooling procedure. As stated in Section
1, we are interested in testing H,: ¢ = 0,’ (see Table 2) against the alternative
H,: 0} > 0. The test procedure with sometimes pooling ¥, and V, is as fol-
lows: Reject H, if
(1) either {V,/V, = F(a,, n, n,) and V,/V, = F(a,, ns, n,)}

or {ViVa < F(ay, ny, my) and ViV = F(ag, ng, ny + n,)}
where V = (n,V, + n,V,)/(n, + n,) and F(a, n;, n;) is the upper 100a percent
point of the F-distribution with n, numerator degrees of freedom and n; denomi-
nator degrees of freedom.

The power of the test procedure, in general the probability of rejecting H,,
may be written as the sum of the probabilities associated with the two mutually
exclusive events given in (1), namely

) P, = Prob {V |V, = F(ay, n,, n,) and V,/V, = F(a,, ny, n,)} and
P, = Prob {V |V, < F(ay, n;, n,) and V,/V = F(as, ng, n, + n,)} .

This probability is a function of the degrees of freedom, n,, n,, and n,, the
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noncentrality parameters, 4, and 2;, and the levels of significance a;, a,, and a,.
Of the eight parameters only the significance levels can be considered under our
control. To simplify computations we will try to keep the size near 0.05; a
convenient way of doing this is to set @, = a, = 0.05. We will then consider
several values of a; with the expectation of determining a value which will in-
crease the power as much as possible without disturbing the size excessively.

2.2. Recursion formulas for P, and P,. Patnaik (1949) showed that the sum of
squares n,V; (i = 1 or 3) with a noncentral chi-square distribution is approxi-
mately distributed as ¢,’C;y}, where v; = n; + 447/(n; + 44) and C;, =1+
22;/(n; 4+ 24;). Following Bancroft (1953), we employ this approximation to
derive the recursion formulas for P, and P,.

Defining the following new variables

(3) ul,::ML, u2= anl . w:_fz_l/'2
nV,C, n,V,C, 20,7
and the new constants
4) ut=_"_F,  (a,) ut = _F,  (a)
v ny Cy raa ' n, C, e
ng

u3° =

Fn3,n]+n2(a3)

n + n,
and integrating out w, we obtain, from the joint density of n,V;/C, 0> ~ Xy
i = 1,2, 3, the joint density of u, and u,

(3) Sy, wy) = K'uprs=tut i1 4wy + u,)~H00tmtw
where K" = I'{3(v; + 1y + v)}[T(3v)L(3m)T(395)]17
In terms of the new variables, the rejection region given in (1) may be restated
as: Reject H, if
(6) either {u’ <u, < o0 and u° < u, < oo}
or {0§u2<u2° and u3°(l+cﬂ§ul<oo}.

3
With this definition, P, and P,, the two components of the lower P, may be re-
written as integrals, over the proper limits given in (6), of the joint density of
u, and u,. To further simplify evaluation of these expressions Lemus (1955) gave
the following set of recursion formulas. For P;:

1 14 x\oh
7 P(a+1,b)=Pfab :
@ (@4 1,0) = Fa )+(a+l)B(a+l,%n2)< X, )

X (ﬁj_){&_—!)*““ Ip(a+1+4m,b+ 1)
1

1+ uf X — 1+ uy

— — 1 . —
a_%v?,—l, b-—fvl_'l’ Xl 2_1+u10+u20

Sl 4w
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and B and I, denote the complete Beta function and normalized incomplete
Beta function, respectively. The necessary initial value is given by

(8) P,0, b) = (M

'}"2
< > Lp(dm b+ 1)

The corresponding formulas for P, are

) Pya, b) = (1 — T)Pya — 1, b) + TPya, b — 1)
T(1 — Q)'Qin
— (bB(le)n——% ? T (b + %y, a + 1)
s olts
with
S NS S O ' ) S
1+ u C, + Cuy Cy(1 + u) + u(1 + Cuy)
The two initial values are
— X1 —
Pya, 0) = IXZ'(%nz’ a+1)— Qi”zlxs(%nz, a+1)
(11) _ |:XQX3Tj|i”z(l _ T)a+1+in2{IX3,(%n2, a+1)
. —
- IX((%nz’ a + 1)}
where
= X1-0) P/
T T— X,(1—20)
[ T(Xs_T) XI_X3_T

PT(I =TT - X(1-20)’ -1
These recursion formulas were used to develop a set of master tables for com-

puting P, and P,.
3. Discussion of the size and power of the sometimes-pool test.

3.1. Size. The size of the sometimes-pool test can be obtained from P, and
P,. The probability of a type I error is computed by setting o, = ¢,. When it
is plotted on a graph, it is called the size curve by Bozivich et al. (1956). We
shall adopt this name. The behavior of the size curve is illustrated in Figures
1 and 2. The degrees of freedom in Figure 1 are-n, = 9, n, = 16 and n; = 3,
which is obtained by letting / = 4, J =4 and K = 2 in the model in Section
1.2. Here the degrees of freedom for the doubtful error (n,) are smaller than
the degrees of freedom of the error (n,). This is a common case in fixed models.
In Figure 2, we let n, = 21, n, = 8 and n; = 7. Here n, is larger than n,. It can
occur in a two-way classification with unequal and proportional subclass fre-
quencies. This would occur when the experimenter repeated some, but not all,
of the treatments the same number of times in each block in a randomized block
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‘ W ay = 010
@la; =025
Blay = 050
09
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03|
01
I | ] |
I » 010
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Fi1G. 1. Size curve [ny, nz, ns] = [9, 16, 3] a2 = a3 = .05.
SIZE
Y
(tha;= 0.10
f2l a;= 025
18l a;= 0.50
a1
(2l
9]
3
07
-06 — ——
.03
.01
1 ! L L L 012
1.0 1.5 2.0 25 3.0

Fi1G. 2. Size curve [ny, nz, ns] = [21, 8, 7] az = as = .05.

design. An example of such a situation is given in Bancroft (1968, problem 1.1
on page 30). In fact we have used that example for setting up the degrees of
freedom in Figure 2. In our computation, we let a, = a; = .05 and «, = .10,
.25, .50. By examining these figures (other figures, not shown here, were also
examined for values of [n, n,, n,] = [2, 6, 2]; [6, 12, 2]; [6, 12, 3]; [9, 8, 3)), it
is seen that the probability of a type I error is the largest (size peak) at 0, =
o}/a,? = 1; it decreases rather rapidly to .05 as ,, increases. This behavior is
very different from that of the random model. As Bozivich et al. (1956) showed,
the size curve in the random model has its minimum at ¢,*> = ¢,%, then it increases
to a maximum before it decreases to .05. In the fixed model, the value of the
size at its peak is less than .10 for the cases considered. The size curve is usually
above .05 except for the case [n,, ny, n;] = [9, 16, 3] and &, = .10 where the size
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curve is slightly less than .05 (it is .048) when 6, is large. Hence we may say
that the sometimes-pool test in the fixed model is not conservative in type I
error. (By conservative, we mean that the type I error falls below the nominal
level .05.)

3.2. Power. We now consider the comparison of power between the some-
times-pool test and the never-pool test. In making this comparison we assume
that the experimenter will use either the never-pool test procedure or the some-
times-pool test procedure; that is, he will not use the always-pool test procedure,
since the never-pool test procedure gives unbiased estimates of error variance
whether interaction is present or not and is usually used in practice. In Bozivich
et al. (1956), the comparison was made when the parameter 6,, = ¢,*/0,’ is fixed.
Similarly, we shall first consider the fixed parameter case, then consider the case
when 6,, is not fixed.

TABLE 3
Power comparison of the sometimes-pool test and the never-pool test
[nl, na, na] = [21, 8, 7] ap = 25 az = ag = .05

Os2
612 Test

1.00 1.20 1.43 1.81 2.15 3.41

1.00 s.p. .099 155 215 342 .450 72
n.p. .099 146 204 .305 .395 678

1.20 s.p- .074 131 197 .305 .402 .728
n.p. 074 112 .160 247 .328 .605

1.43 s.p. .066 .110 .168 .280 .376 714
n.p. .066 .100 145 227 .304 576

1.81 s.p. .058 .093 142 232 319 674
n.p. .058 .089 130 206 279 544

2.15 s.p- .055 .087 129 215 292 .645
n.p. .055 .085 124 .198 269 .531

3.41 s.p. .052 .081 118 189 255 .559
n.p. .052 .081 119 .190 259 S17

When 4, is fixed, the method of power comparison is to evaluate the size of
the sometimes-pool test for this fixed #,,, then for this level of size, evaluate the
power curve of the never-pool test for given 6,, = 0,’/s,’; this power is then
directly comparable with that of the sometimes-pool test corresponding to the
fixed value of ¢,,. Table 3 gives an example to illustrate the power comparison
for [n,, ny, ng] = [21, 8, 7], @y = .25 and a, = a; = .05. The power of the some-
times-pool test in Table 3 is always larger than that of the never-pool test except
for 6,, = 3.41. The difference of the two power curves is the power gain.
Figures 3, 4, 5 and 6 demonstrate the power gain as a function of «, for [n, n,,
ng] = [21, 8, 7]. It is seen that on the whole the power gain is largest when
a, = .25. By examining the graphs, the power gain increases as 0,, increases.
The gain is large for small values of 6,,, say 1.0 < 6,, < 1.6, then it decreases
to zero as 0,, increases.
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POWER GAIN
4

0.14
lllal = 010

012 - 2la; = 025
010} Bla, = 0.50
0.08
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0.04|-

0.02 —

812

T
10 1.2 14 16 18 20 22 24 26 28 30 32 34
012

FiG. 3. Power gain [n1, nz, ns] = [21, 8, 7] az = a3 = .05 05, = 1.43.

POWER GAIN
3

0.141- {1 ay = 0.10
12l ay =025
0.121— 13 a1 = 050

0.10—

0.06(—
0.04—

0.02(—

(=)

"
10 12 14 16 18 20 22 24 26 28 30 32 34
0.02—

F1G. 4. Power gain [n, nz, ns] = [21, 8, 7] a2 = a3 = .05 032 = 1.81.

The above power comparisons are made for fixed 6,,. The procedure used
was given in the paper by Bozivich er al. (1956). Such a methodological study
is important to experienced experimenters in providing information on power
gain to be expected for a range of values of #,,. In case the investigator has no
knowledge of the value of 6,,, he may treat 6,, as not fixed. Then it would be
necessary to use the size peak in the fixed model at #,, = 1 for the size of the
test. In such case the power of the sometimes-pool test is compared with that
of the never-pool test at that size level. In Table 3 of our example, the power
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POWER GAIN

#
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F1G. 5. Power gain [n1, 13, ns] = [21, 8, 7] az = a3 = .05 032 = 2.15.

POWER GAIN
A

{1 a;= 0.10

12) a,= 0.25

0.14 —

13 = 0.50
0.12 —

0.10 —
0.08 —

0.06 [—

0.02 —

ob—L L 11 > 82
L0 12 14 16 18 20 22 24 26 28 30 32 34

0.02 —

Fi1G. 6. Power gain [nl, ng, ns] = [21, 8, 7] az = az = .05 O3z = 3.41.

of the sometimes-pool test is compared with never-pool at size level .099. Such
a comparison shows that the power gain when 6,, = 1 remains the same as be-
fore. But when 6,, > 1, the power gain reduces because the comparison is made
at a higher level of the never-pool test when 6,, is not fixed. For 6,, > 1, the
sometimes-pool test has smaller power except when 6, is large.

In the above example we let n, > n,, which can occur in designs with unequal
subclass frequencies. One other case we examined is [n,, n,, n,] = [9, 8, 3].
Here the error and doubtful error degrees of freedom are about the same. We
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found that the power gain is positive for most parameter values considered and
a, = .50. When the level of the preliminary test is .25 or .10, the power gain
is negative for most cases.

We also observed the behavior of power for [n,, n,, n;] = [2, 6, 2]; [6, 12, 2];
[6, 12, 3]; [9, 16, 3]. The power gain in these cases is either small or negative.
This may be due to the fact that the doubtful error degrees of freedom are small
relative to the error degrees of freedom; hence the gain in degrees of freedom
for the sometimes-pool test is small. At the same time, the size disturbance has
offset the gain completely. Therefore there is little or no gain for the sometimes-
pool test.

4. Recommendations for the user. The purpose of examining the behavior
of size and power of the sometimes-pool test is to lead us to make recommen-
dations about the level of the preliminary test. Based on the observations we
made earlier, we may make the following general recommendation. When the
doubtful error degrees of freedom are considerably larger than the error degrees
of freedom, say n, > 2n,, the level of the preliminary test should be set about
.25; when n, and n, are about equal, one should choose @, = .50; if n, is smaller
than n, and n, is reasonably large, the never-pool test procedure should be used,
because our evidence is that the power gain is at best small, while there may be
aloss. This recommendation will yield the largest power gain, and on the other
hand, the type I error will be slightly greater than the nominal .05.

The above recommendation provides a warning as regards the indiscriminate
use of preliminary tests in the case of fixed models. In most fixed models, the
doubtful error degrees of freedom are smaller than the error degrees of freedom
and the latter are usually reasonably large. The sometimes-pool test usually
increases the size of the test and it in turn wipes out the power gain resulting
in the small increase in degrees of freedom. This situation is a reverse of the
random models considered by Bozivich er al. (1956) where the doubtful error
degrees of freedom is usually larger.
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