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MARKOYV DECISION PROCESSES WITH A NEW OPTIMALITY
CRITERION: CONTINUOUS TIME

By STRATTON C. JAQUETTE
Cornell University

Standard finite state and action continuous time Markov decision
processes with discounting are studied using a new optimality criterion
called moment optimality. A policy is moment optimal if it lexicographi-
cally maximizes the sequence of signed moments of total discounted return
with a positive (negative) sign if the moment is odd (even). It is shown
constructively that a stationary policy is moment optimal among the class
of piecewise constant policies by examining the negative of the Laplace
transform of the total return random variable and its Taylor series
expansion.

1. Introduction. This paper is concerned with finite state and action continu-
ous time Markov decision processes where future returns are discounted. We
study a new optimality criterion, moment optimality, for continuous time
processes and follow the development for the discrete time case given in Jaquette
(1973). This paper incorporates some of the results of the author’s dissertation
(1971).

The Markov decision processes as well as most of the definitions and notation
needed to develop the results of this paper are given in Section 2. Section 3
contains the result that there is a stationary policy which is moment optimal
among the class of stationary policies. The method of proof is constructive.
In Section 4 we extend these results to show that stationary policies are moment
optimal in the wider class of piecewise constant policies.

2. Preliminaries and notations. We consider a standard Markov decision
process. We assume that the stochastic process has a finite state space denoted
by S, S ={1,2, ...,s}. The process starts at time ¢ = 0 and can jump from
state to state at any point in time. At each instant of time an action is selected
and applied to the Markov process. We assume that there are perhaps distinct
finite action sets 4, available only when the process is in state i but at any
instant in time. We define the set F by F = X:_,4,. We call the elements of
F action vectors and let f denote an element of F. The ith component of f,
denoted f{(i), is the action taken if the process is in state i.

A policy is a mapping from the titne axis into the set F. If z is a policy, then
=(f) is the action vector used at time t£. We only admit measurable policies in
the discussions here; the policy = is admissible if the set {¢t: 7(f) = f} = =~'(f) is
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a Lebesgue measurable set of the nonnegative real line for each fe F. We let
f= denote the stationary policy such that f=(f) = f for all r and let X () denote
the random state of the process at time ¢ when the policy = is used.

The transition probabilities are also determined by the policy. If fe F is the
action vector used at some point in time, then Q, will represent the infinitesimal
generator of the Markov process at that point in time. We let Q, = {g(j |{, f(i))}
and assume that 0 < ¢(j|i,a) < oo for j = i and that 3}5_, ¢(j|i,a) = 0 for
any aec 4.

Infinitesimal generators have been studied extensively; we use results discussed
in Miller (1968) and Dynkin (1961). We know that for any measurable policy
there exists a unique absolutely continuous Markov transition function satisfy-
ing P(s, t) = I + Q,,(t — ) + o(t — 5) for almost all s(t > s). P(s, t) is the
matrix of transition probabilities, P(s, ) = {p,;}, where p,, is the probability
that the process will be in state j at time ¢ given that the process was in state i
at time s and the policy 7 is used in the interval (s, 7). We also know that
(d/dt)P(s, t) = P(s, 1)Q,,, for almost all .

The action applied to the process at any point in time determines the rate at
which returns are earned and the transition probability rates at that point in
time. We denote by r(i, f(i)) the rate of return earned when the process is in
state i and action f(i) is applied. Thus r, is the vector with ith component
r(i, f(i)). We assume discounting so that, if a(a > 0) is the discounting rate, a
unit of return earned at time ¢ has present worth e=«*. The total discounted
return random variable, R(x), is defined by:

(2.1) R(7) = (5 Iy o Xp(H)e 0 dt

where X, (¢) is the vector whose ith component is 1 if X (f) = i and 0 otherwise.
The composition operator o indicates componentwise multiplication of vectors
of the same dimension, i.e. u o v has ith component u,v,.

We can characterize the total discounted return random vector R(x) given in
(2.1) by its moments. Let M,(7) be the nth moment of R(z) with M,(7) =
E[R(7)"] for n =1,2, ... and My7) =1 where R(z)" = R(7) o R(7) o -+ o
R(7). We also consider vectors N, () : N,(7) = (—1)"*M,(z) (n =0, 1,2, .. .)
and use the collection of vectors N(=):

N(7) = (Ny(x), Ny(x), - - -, Ny(x), - - -) -

We also use the negative of the Laplace transform of the total discounted return
random vector, R, which we define as

(2.2) U,(}) = —E[exp(—R(x))] .

From our definitions it is clear that R(z) is bounded for all policies and that
therefore its Laplace transform exists everywhere. Also since the Laplace
transform is analytic on the interior of its region of convergence, being here
the real line, it follows directly that U (X) exists everywhere with the Taylor
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series expansion given by U (1) = 32, N,(7)A*/n!. Thus we can use U, (1) or
N(x) interchangeably.

We use the complete ordering of vectors, lexicographic ordering, and a slight
generalization of its usual application. Suppose N and M are vectors whose
components are themselves vectors. In this case we write N > M if there is an
integer n such that N, = M, fori < nand N, > M,. We define the relationships
>, <, and < in the obvious fashion.

It will be useful to use N to represent the collection of vector coefficients N,, in
the Taylor series expansion of U(2) = Y 5., N,(2*/n!). It will also be convenient
to use the notation N =, M to mean that N, =M, forn <m. ByN >, M
we mean N ==, M and N > M.

We say that a policy n* is moment optimal if N(z*) > N(r) for all policies z.
It is also convenient to note that N(z*) > N(x) if and only if U,(2) = U,(4)
for all 2 in [0, 4,] for some 2, > 0. This is easy to verify as done in Jaquette
(1973), Lemma 3.6.

The implications of moment optimality are discussed in detail in Jaquette
(1971) and (1973). If a policy is moment optimal, it yields greatest expected
return, minimum second moment or variance among all policies yielding the
greatest expected return, etc. A moment optimal policy is also the optimal
policy which maximizes expected utility of return using an exponential utility
function with suitably low aversion to risk.

We now define several operators and spaces that will be used in our subsequent
development. Define &~ to be the space of analytic functions of the form
Y=o N,(4*/n!) where the N,, are s dimensional vectors, N, = —1, and the sum
converges for all 2. Define the mapping L(f, t), which takes % into itself, as

23)  (L(f; DU)R) = E[exp(—A §i 1, 0 X u(2)e™ do)] o P(1, f)U(e™*D)

where U(2) is an element of .~ and P(z, f) is the probability transition matrix
for time ¢ using the policy f=. It is not hard to verify that L(f, f) maps =" into
itself.

The mapping L(f, t) is monotone, which is simple to verify using the definition
(2.3). Suppose U,, U, e = and U,(2) < U,(2) for 2 € [0, 4], then by examining
(L(f> 1)(U; — Uy))(A) we see that L(f, t)Uy(2) < L(f, )Uy(4) for 1€ [0, 4,].

It is laborious, but not difficult to verify that

Uyte(2) = (L(f, HU)(A) »

where the policy f‘r is the policy that uses f until time ¢+ and then switches to
n. This requires expanding U (2) using (2.1) and (2.2), rewriting this expec-
tation by conditioning on the sample path from time 0 to ¢, judiciously removing
the conditioning where it is not relevant, reducing the conditioning to X(7) in
other places, and observing that the result corresponds to the definition of
L(f, £)U,(4). This allows us to conclude that L(f, t,)L(f, t;) = L(f, t, + 1,).

We also define a criterion operator #, which acts on elements of . For
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any g and U(2) in & define

6,U(2) E% L(g, HUQ)| -

This can be evaluated by laborious formal differentiation of (2.3) and evaluating
at + = 0. The validity of this procedure is a consequence of an application of
the dominated convergence theorem; cf. Loéve (1960) page 126. The result is

(2.4) 6,U(2) = —ar(g) « UQR) + Q,U(}) — al ‘% U() .

Note that by definition 6,U (1) = 0 since L( f, {)Uo(4) = U w(4).

3. Constructing the best stationary policy. We first restrict attention to
stationary policies and show that there is a stationary policy that is moment
optimal within the class of stationary policies. Our proof is by construction.
Since stationary policies will turn out to be optimal in a more general setting,
we allow the following proof to stand for an algorithm to construct a moment
optimal policy.

In this section we will use a criterion called () moment optimality. A policy
=* is called (m) moment optimal if N(z*) >, N(=) for all policies =. It should
be evident that a policy is moment optimal if and only if it is (m) moment
optimal for all m.

Define the sets of action vectors, F™, as follows:

Fm™ = {f: f~ is (m) moment optimal among stationary policies} .

The set of action vectors, f, such that £ is moment optimal is simply lim,,_,_, F™
which we denote by F~. If F™ is nonempty for each m, then F= is nonempty
and there are moment optimal policies.

In the following lemma and corollary we characterize when the moments of
return for two policies coincide for the first m moments. This also allows us to
characterize F™, the set of action vectors generating stationary (m) moment
optimal policies. In this development we let § .U represent the vector collection
of Taylor series coefficients for 6 ,U(2).

LEMMA 3.1. Let f be fixed and U(R) be an element of <. Then N(f~) =, N,
0,U=,0, and N, = (Q; — nal)y™(nr;oN,_;) for 1 < n < m are equivalent
statements. .

Proor. Examining the expansion for U(4) in (2.4) and observing that
(Q; — nal) is nonnegative off the diagonal and nonpositive on the diagonal
insures that (Q, — nal)~* exists and therefore that §,U =, 0 and N, = (Q; —
nal)™(nr;o N, ;) (1 < n < m) are equivalent. Since 0,U;. = 0, N, (f~) =
(Q; — nal)™(nr; o N,_,(f)) for all n. This shows the equivalence of the first
and last statements in the lemma.
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CoroLLARY 3.2. If f is an element of F™, then F™ = X3_, A,™ where A™ =
fae Am1:0,Use =,, 0 for any g such that g = f except g(i) = a}.

Proor. Lemma 3.1 says that §,U,. =, 0 characterizes all g for which the
m moments of g match those of f~. This then characterizes all g in F™ given
that f is in F™. Restricting F™ to be a subset of F™~!, this condition and (2.5)
gives
(3.1) (Q, — mal)N,(f*) — mr, o N, _,(f*) =0.

In this form it is clear that the selection of g(i) completely determines the ith
component of the left side of (3.1), and thus that F™ can be chosen as the
Cartesian product indicated.

Policy improvement requires more arguments. Our policy improvement
procedure is based on the fact that the Cartesian product nature of F™~* allows
componentwise selection of f to maximize N,,(f*). First we need the following
lemma.

LeEMMA 3.3. Let f be fixed and U(R) an element of <& with Taylor expansion
coefficients N. If 6,U > 0, then N(f~) > N.

We remark that this lemma is true with the other lexicographic orderings
replacing > in hypothesis and conclusion.

Proor. To demonstrate this result we must go through an intermediate
examination of L(f, t)U(2). Suppose (d/dt)L(f, t)U(4) > 0 for all ¢ and 2 such
that 0 < t < t,, 0 < 2 < 4, for some 2, and 7,. Then L(f, t)U(2) > U(2) for all
t in (0, #,] and all 2 in (0, 4,]. By monotonicity and repeated use of L(f, ¢), this
would mean that L(f, r)U(2) > U(2) for all ¢ and all 2 in (0, 4,]. L(f, H)U(4)
converges to U,.(2) as t — oo, and we can conclude that U,s(4) > U(4) for all
A2 in (0, 2. This suffices to show that N(f*) > N. Also observe that
(d/dt)L(f, t) = L(f, 1)0,. Now by assumption §,U > 0, hence 6,U(2) > 0 for
all 2 in some interval close to zero, say in (0, 4,] with 2, > 0. This implies that
(d/dt)L(f, t)U(A) > 0 for r and 2 close to zero and suffices for the proof. For
further technical details see Jaquette (1971), Lemma 7.5 and Jaquette (1973).

LemMA 3.4. Choose any f in F™~'. Either

(a) feF™or

(b) there exists a g e F™ ' such that N(g~) > ,, N(f*).

Proor. The proof is familiar and follows closely that of Lemma 4.3 in
Jaquette (1973). For all g in F™* N(g~) =,,_; N(f*) and hence by Lemma 3.1
0,Use =,,_, 0. If there exist g in F~! such that 6, U . +,, 0, then the methods
of Corollary 3.2 allow us to choose a g which maximizes [¢,U,], component-
wise. For this g either 6, U =, 0 or ,U; >, 0. In the former case f is in
F™. This follows since for all g in F»~! either ¢, U <, 0 and hence U, >,,
U,» by a version of Lemma 3.3 or ,U. =, 0 and hence U, =, U, by
Lemma 3.1. In the latter case Lemma 3.3 insures (b) of the lemma.



552 STRATTON C. JAQUETTE

We now state the major result of this section.

THEOREM 1. There is a stationary policy which is moment optimal within the class

of stationary policies. An optimal policy can be constructed in a finite number of
steps.

Proor. Start with F° = X3:_, 4,°, where 4° = 4,. In general Lemma 3.4
indicates a construction to obtain an element of F™ given F™-'. This con-
struction terminates in a finite number of steps with an element of F™ since F
is finite. Corollary 3.2 indicates a construction of F™ given this one element
which again is finite. Thus all stationary (m) moment optimal policies can be
constructed. Theorem 3 in Jaquette (1973) insures that there is a finite number
n* such that (n*) moment optimality is equivalent to moment optimality, this
since the number of stationary policies is finite. This completes our proof.

Operationally we need a way of determining when to stop, i.e. of determin-
ing what n* is. A stopping rule is quite clear: stop at the smallest m, equal to
n*, where R(f*~) =_ R(g~) whenever f, ge F™. This will of course be true if
F™ reduces to a single element.

4. Piecewise constant policies do no better. In Section 3 we showed that
within the class of stationary policies there exists one which is moment optimal.
We now consider a larger class of policies and show that piecewise constant
policies cannot improve upon the stationary moment optimal policy found in
Section 3. We do this in the following lemmas.

LemMA 4.1. Suppose a policy =* and numbers A, > 0 and t, > 0 exist such that
(4.1) U(d) =2 Upe(d)  forall geF, 2e[0,2], and te[0,¢].
Then U,(2) = U,(2) for all 2 € [0, ;] aud all piecewise constant policies =.

ProoF. Write U,..(4) as L(g, t)U,.(2). By repeated application of L(g, f) on
(4.1) for various ¢ < ¢, it is clear that one can obtain U_.(2) = L(g, )U,«(4) for
any desired ¢. Thus we can choose 7, = + oo and dispense with this restriction.

Now choose any piecewise constant policy, =, and any interval of time [0, T].
There is then a finite sequence of tlmes and action vectors, {£,} 0 < £, < -+ <

=T)and {f} (i =1, ..., m), such that n(r) = f, whenever re (¢,_;, t,). Itis
immaterial whether 7(z,) equals foorf,,,. Letm,=fi1fs=t1... fT-tm-17*, Since

Efo ) L(fo s — 1) - (Lfar T — 1a)Ug) -+ ))(A) = U, (4)

m is finite, and L(f, ¢) is monotone for any ¢ and f, we can apply the operators
L(f; t; — t,_,) in turn and preserve the inequality of (4.1) for all 2 in [0, 2]. It
then follows that

U.() = U, (%) forall 2¢[0,4)], any =, and T.

We now let T — co. It can easily be shown that U, (1) — U,(2) as T — oo for
all 4, and we may conclude that U_.(2) = U,(2) for 2¢[0, 4,] and any r. This
is just the required result.
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LEMMA 4.2. A stationary policy is moment optimal within the class of piecewise
constant policies.

Proor. Let the stationary policy found in Section 3, Theorem 1 be f=. It satis-
fies #, U < 0 for all g. By essentially the same arguments given in Lemma 3.3,
this implies that L(g, f)U«(4) < U«(4) for all g and all positive 2 and ¢ small
enough. This is simply (4.1), which implies that no piecewise constant policy
can improve on f~. Note that the fact that such a 2, > 0 and #, > 0 follow from
the finiteness of F.
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