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AN APPROXIMATE INVERSE FOR THE COVARIANCE
MATRIX OF MOVING AVERAGE AND
AUTOREGRESSIVE PROCESSES!

By PAUL SHAMAN
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Let X denote the covariance matrix of a vector x = (xy, +++, x7) of T
successive observations from a stationary process {x:} with continuous posi-
tive spectral density f{2). Let I' be the T x T'matrix with elements y(s, f) =
(2m)~2 (™ etdte=1) f~1(2) dA. The properties of I' considered as an approximate
inverse of Z are studied. When {x;} is a(n) moving average (autoregressive)
process of order g, rows (columns) ¢ + 1, - -+, T — g of XI" — I are zero vec-
tors. In this case ZT' — I has 2qg positive characteristic roots which approach
paired positive limiting values as T— oo if the roots of 3%_, 8;29-4 =0
are less than 1 in absolute value, where 5y, - -+, B4 are the coefficients of
the process. Statistical properties of x/T'x — x’Z-x and x'I'x/x’Z-'x are
also discussed.

1. Introduction. Let {x,}, t =0, +1, ..., be a real-valued, second-order sta-
tionary process with mean zero and a continuous, positive spectral density f(2).
The covariance function of the process is

Ex,x,,, = o(h) = (. e*f(A)d, h=0,+1,....

Let 2, denote the covariance matrix of x = (x;, - - -, x,)’, consisting of T con-
secutive observations from {x,}. We study the approximation to X,~* obtained
by forming T, with

1
(1) Tr)ee =100 =105 — 1) =

(zﬂ)a S”n eiZ(a—ty‘—l(X) dl s

sst=1,...,T.

Clearly T, is a covariance matrix for all 7. The associated spectral density is
(o)

A class of stationary processes of particular interest is the class of autoregres-
sive-moving average (ARMA) processes. Let {¢,} be a sequence of uncorrelated
random variables with mean zero and variance v. The process {x,} defined by

(2) 2h0 X i = Yihoo Brceos s t=0,+1,...,

with ay = B, = 1, is an ARMA process of order (p, ¢q). If ¢ =0, {x,} is also
called an autoregressive process of order p, and if p = 0 it is called a moving
average process of order ¢q. Let A(z) =1+ a;z+ ... + @,z? and B(z) =
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I+ Bz+4 --- 4+ B,2z7. The spectral density of {x,} defined by (2) is f(2) =
[/ BEN|AED], —7 < 2 < =

Inversion of X, is of interest when {x,} is a Gaussian process and statistical
inference is to be based on the observed time series. In the literature inference
is essentially based upon a modified likelihood function obtained by approximat-
ing Z,7%.

Whittle (1953), (1954, Sections 2.2, 2.5), Durbin (1959), and Walker (1964)
have used the approximation I', defined in (1) to treat estimation in ARMA
models and in models where the spectral density depends upon a finite number
of unknown parameters. The quadratic form x'T', x is

2§ HOF ) A,

where I(2) is the periodogram. Hannan (1969) modified I', by replacing an in-
tegral by an approximating sum. Anderson (1969, 1970, 1971b) has developed
maximum likelihood estimation in a class of models which includes the ARMA
(0, g) processes and modifications of ARMA (p, 0) processes. In Anderson (1971b)
Z,~'is approximated by T',. The sequence {(2x)*7(%#)} has also been studied by
Cleveland (1972).

The exact inverse when {x,} is an autoregressive process was given implicitly
by Champernowne (1948, page 206) and explicitly by Siddiqui (1958). See
also Wise (1955). For a first-order moving average process X,~! was given by
Uppuluri and Carpenter (1969) and Shaman (1969). (See also Lovass-Nagy and
Powers (1969) and Kershaw (1969).) Tiao and Ali (1971) give the inverse for
an ARMA (1, 1) process, and Mentz (1972) and Shaman (1973) give techniques
which can be used to construct the inverse for processes of order (0, ¢).

2. Preliminaries. In this section we motivate the use of (1) to approximate
Z,7'. We shall drop the subscript T from X, and T',.

If both X and T are taken to be infinite dimensional matrices, then X! = T}
that is,
3) P08 —=)y(r—1t) =0d(s — 1), S, t= ..., —1,0,1, ...,
where 6(0) = 1 and 6(r) = 0, r = £1, £2, .. .. This follows because the left
side of (3) gives the convolution of two covariance sequences. The Fourier trans-
form of this convolution is 2z times the product of the corresponding spectral
densities. Therefore the sum in (3) is the covariance function of uncorrelated
random variables with variance 1. -

The element in row s and column ¢ of ZT is, by (3),

2ra0(s — nr(r—1)
=0(s — 1) = 2ieud(s = N)y(r — 1) — XN¥ipyao(s — r)y(r — 1)
4 =0(s — 1) — D7, 0(r(s —t —J) — X" a(r(s — 1 — )
=00 —1) — Nt ao(s—t—Nr(j) — Dfrs-e0(s — 1t = r(j)»
s, t=1,...,T.
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Therefore, if {x,} is a(n) moving average (autoregressive) process of order g rows
(columns) ¢ + 1, .-., T — g of ZT have elements d(s — #). This result was
noted in Shaman (1969) for the moving average case with ¢ = 1.

We consider

) d =x'Tx — x'Z7'x
and
(6) r=xTx/x'Zx

and their moments when {x,} is Gaussian.
The difference d can be written in the canonical form

() d= Yi,vz’,
where v,, - - -, v, are the characteristic roots of ZI' — I and z,, - .-, z, are in-
dependent and N(0, 1). The ratio r in canonical form is
3) r = i (1 4+ v)z? .
DI

Since T and X are positive definite, v, > —1, ¢t =1, ..., T.

3. The approximate inverse for moving average and autoregressive processes.
Comparison of £~ and T is of particular interest when {x,} is a moving average
or an autoregressive process of order g. Let Zy, = (dy4(s, #)) denote the T X T
covariance matrix of the ARMA (0, ¢) process specified by (2) with 8, + 0.
Then

GMA(S’ t) = o‘MA(s_ t)
%) _._1)24 Is_tlﬂjﬁj+|s—tl’ |s— t| =0,1,...,9,
=0, s—tf=qg+1,g+2,---.

Moreover, let Z,; = (0,x(s, 1)) denote the T X T covariance matrix of the
ARMA (g, 0) process given by (2) with By ---» B, in place of a, - - -, a,. Then
if T — 2q > O the elements of X3} = (s*%(s, 1)) are (see Siddiqui (1958))

oA¥s, ) =¥ (T +1 -1, T+ 1—y5)

:;_1_ mln(:t)—l‘B ‘BJ+|3—‘|’ s, t =1, < g,
v
(10) = L Sez18,8;00 0 max(s, 1) > g, min(s, ) S T — ¢,
v

s—t=0,1,---,9,
=0, s—t=q+1,qg+2,-
If Z is chosen to be Z,,, then T' is v~2Z,;, by the discussion following (2).

Inspection of (9) and (10) reveals that v—*Z,, and vZ;}; are identical except
for the ¢ X ¢ submatrices in the upper left and lower right corners. Specifically,
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v'Zy, = vE3} + E, with E = (e,,) given by

€t = €rii-¢,741-s

(11) = }leﬁxf'(s,n thj+|a—t| s s, t=1,-.., q,
=0, max (s, t) > ¢, min(s, ) < T —gq.
Then v22y, Z,s =1+ vEZ,; =1 4+ A and A = (a,,) is
Ayt = Ari1-s, 7411t
(12) =07 Y Dkl BiBivis—rnOar(r — 1) s=1,..-,q,
=0, s-—_—:q-]_l,...,T_q.

In a similar fashion to the above we can consider »’Z;%LZ;i. We have
vEREG, =1 —vEZl =1+ Bandrowsg + 1, ..., 7T — gof Bare 0.

That X} is approximated by v—2Z, ; was noted by Anderson (1971b, Section 3).

We study 4 and r when Z is X, or Z,;. Then in (7) v,, - - -, v, are the roots
of v=*Zy, X, — I = A. Sincerowsq + 1, ---, T — g of A are 0, 2q of the roots
are zero. Designate the remaining roots by v,, - - -, v,,. It was noted below (8)
that the roots v;, - - -, v,, are > —1. When X is X, or Z, a more precise result
is easily derived.

LemMA. If B, # O the nonzero roots of v—*Zy, X,z — I = A are positive.
Proor. When {x,} is the ARMA (g, 0) process
d=v%Zy, X — X' ZEx
(13) = v x'Ex
=07 D ims (X, Xy + Xpi1_gXpi1-e)
=0t ?:lﬁfls,n ﬁjﬁjﬂs—tl(xsxt 4 Xpp1_eXr41-t) 5
where the last two lines follow from (11). By algebraic manipulation the last
line of (13) can be rewritten to give
d= v T (D Bere ) + (D028 BowXra-e)'} -

If B, # O, this expression is positive unless x, =0, t=1, .--,q, T—q+1, .-+, T.
The lemma implies that the 2q nonzero roots of »’Z;1 X5} — I = Barenegative.
THEOREM 1. Let{x,} be a Gaussian ARMA (0, q) process with B, + 0and T X T

covariance matrix Zy,. Let X,y denote the T X T covariance matrix of the ARMA

(9> O) process with the same coefficients and z,, - - -, z, be independent and N(0, 1).

Then d = v*X'Z, X — X'Zyi X has the 'distribution of 324, v,z,* where v;, - -,

va,» the nonzero roots of v=*Zy, X,y — I, are positive. The distribution of r =

VX', X/X' gk X is that of 1 + d] Y., z,>. The same results hold if {x,} is a Gaus-
sian ARMA (q, 0) process and d = v*x'Zy, X — XT3} X, r = v7x'Zy, X/X'Z3; X.

We consider the question of whether d has a proper limiting distribution as
T — co. A sufficient condition is that the roots v;, - - -, v,, have finite limiting
values, not all 0, as T — oo.
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Assume the roots of

(14) 2Bz =0

are all less than 1 in absolute value. The roots v,, - - -, v,, depend only on the
elements of A in the ¢ X ¢ submatrices in the upper left and upper right corners
(@ = @ry1_g,741-1)- By (12) the ¢ X ¢ submatrices in the upper right and lower
left corners of A involve o,5(r), |f| = T — g + 1. Hence the elements in these
submatrices tend to zero as T — co. Thus the characteristic equation

[0 s Zan — I — oI = |A — I = 0

is for large T approximately (—v)"~*|A,, — vI]* = 0, where A, denotes the g X ¢
submatrix in the upper left corner of A = v—'EX,;. From the proof of the lemma
preceding Theorem 1 we see that the ¢ X ¢ submatrix in the upper left corner
of E is positive definite if 8, = 0. Moreover, the ¢ X ¢ submatrix in the upper
left corner of X, is a covariance matrix and is positive definite when no root
of (14) is on the circle |z] = 1. Therefore A,, is nonsingular and thus has no
roots equal to 0. That is, as T — oo the rootsy,, - - -, v,, approach finite positive
paired values. (A, does not depend on 7T.) Also note 7-* times the denominator
of r — 1 tends to 1 in probability as 77— oo.

THEOREM 2. Let the conditions of Theorem 1 hold and assume the roots of (14)
are less than 1 in absolute value. Then as T — co the nonzero roots vy, - - -, vy, of
v’ Zys Zpyp — 1 have positive paired limiting values p,, - - -, p, and d and T(r — 1)
have the limiting distribution 3.1_, p,w,, where w,, - - -, w_ are independent y,* random
variables.

We analyze d and r when ¢ = 1. The issue of interest is the accuracy of the
approximation of L3} by v=*Z, , when {x,} is the Gaussian moving average process
with x, = ¢, + B,¢,_,, a special case of (2). Weassume |8,| < 1. References to
published explicit expressions for Z3} are given in Section 1.

If ¢ = 1 the characteristic equation |A — vI| = 0 has nonzero roots a,, + a,,.
They are both positive and designated by 0 < v, < v,. By (12)

V. — B 71
(15) Y1, 2—-1——W(1 £ B .

The exact distribution of s = r — 1 has been studied by von Neumann (1941).
If T = 2n, the density of s is a polynomial of degree at mostn — 2 in 0 < s < v,.
The derivative of order n — 1 of the density in the interval v, < s < v, is
(T even)

(I = A)(=1)"n = 1)! _
n.su—x[ﬁlzrw _ {(1 _ ;812)5 _ [312}2]%

If T is odd the distribution can be derived from the distribution for T — 1. See
Corollary 6.7.4 of Anderson (1971a), e.g.
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The exact distribution of d is that of

2

_‘8_12_[212 + 222 + l‘BIlT—l(Zl2 _ 222)] .

1 — 4
When T is large and |8,| is not too close to 1, v, and v, are both approximately
B2/(1 — B;%). However, if T is large and 8, = 1 — ¢/T, ¢ > 0, then

vy, Yy = T —c) <1 -4 e‘°> .

c(2T — ¢) T

Therefore v,, v,, and v, — v, can assume rather large values.

Approximate distributions for d and s are obtained from Theorem 2, which
states that both d and Ts are approximately /(1 — B,%) times y,? if T is large.

For general ¢ the roots v,, t = 1, ..., 2, can assume large positive values if
any of the roots of (14), all assumed to be inside the unit circle |z| = 1, lie close
to the circle.

If ¢ = 2 the equation [A — vI| = 0 is (—v)”~* times a fourth-degree polynomial
in v with coefficients that are functions of a,,(s = 1,2, 1 =1,2,T — 1, T). We
note the limiting values p,, g, of the nonzero roots, specified by Theorem 2.
They are the roots of

a,; — v G | _90.
an Ay — V
Therefore
sty = $(an + ay) + ${(au — au)’ + 4aya,)
= —307{oua(1)04r(1) + 20ua(2)94r(2)}
+ 307 (D)okn()) + 40ua@)osn(Doua()oax(2) + oua(DoanG))] -
Detailed computation gives
_ Bl — By + 28 (1 + By) & BB — B + 487}
(16) His Mty = 2 2 .
2(1 - 182){(1 + ﬁz) - 181}
The region in the B,, 8, plane where the roots z,, z, are less than 1 in absolute
value is the interior of the triangle formed by the lines 8, = 1, 8, = 8, — 1, and

B, = —B, — 1. It is easy to verify that p,, u, defined by (16) are positive inside
this triangle, except along the line 8, = 0 (see the lemma preceding Theorem 1).
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