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TESTS FOR THE GENERAL LINEAR HYPOTHESIS UNDER
THE MULTIPLE DESIGN MULTIVARIATE
LINEAR MODEL

By LYymMAN McDoONALD

University of Wyoming and Kansas State University

The generalization of the standard model for MANOVA which allows
for the possibility of different ‘‘design’> matrices for the variates is known
as the multiple design multivariate linear model. For example, in multi-
variate regression analysis we might have polynomial models of different
degree in the ‘‘dependent’’ variates.

In this paper, new tests are given for the general linear hypothesis under.
the multiple design multivariate model and in one case the corresponding
critical region is ‘‘inverted’’ to obtain simultaneous confidence intervals on
certain functions of the location parameters.

1. Introduction. Consider the multiple design multivariate (MDM) linear
model, Roy and Srivastava (1964) and Srivastava (1967),

(1'1) E(Yi) = X;§,, Var (yz) =o0,l, (i= L - 5 p)

where y,(n x 1) contains the observations on the ith response, X,(n X m,) is a
matrix of known constants, §(m; x 1) is an unknown vector of parameters, and
X = (o,;) is the unknown dispersion matrix of a row of the (n X p) data matrix
Y = (¥ ---,¥,). Further, assume that the rows of Y are independent obser-
vations from multivariate normal populations with common dispersion matrix 2.
If we have X, = - .- = X, then the usual techniques of multivariate regression
analysis and MANOVA become available. However, many practical applications
arise where the X’s are unequal; see for example, Zellner (1962).

The estimation problem for multivariate regression systems, falling under the
general model (1.1), is considered by Mallios (1961) and by Zellner (1962, 1963).

In this paper, Roy’s union-intersection principle of test construction is used
to justify new tests of the (testable) general linear hypothesis H,: {C,§, = 0 for
i =1, ..., p} under the multiple design multivariate linear model. Advantages
of the tests over the step-down procedure proposed by Roy and Srivastava are
that the testability conditions are relatively simple and the standard computa-
tional techniques of MANOVA are applicable.

The critical region of the largest root test is “inverted” to obtain simultaneous
confidence intervals on functions of the location parameters which resemble
bilinear forms.

Finally some simple examples are given to illustrate the theory.
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2. Tests for linear hypotheses. Consider the general linear hypothesis,
(2.1) Hy: {C.&, =0,i=1,2,-.-,p}

where for all i, C, is a known (s; X m,) matrix of rank s5;,, Here 0 denotes a
matrix (of appropriate dimension) each of whose elements is zero. For the arbi-
trary nonzero (p x 1) vector a’ = (a,, a,, - - -, a,) we have from (1.1)

(2.2) E(Ya) = Xy(a,&) + -+ + X,(4,§,)
(2.3) Var (Ya) = (a’Za)l, .
Rewrite (2.2) as

(2.4) E(Ya) = X§,

where X = (X, X,, - -+, X,) and &, = (¢,§/, a,§/, - - -, a,§,’). Note that X is
(n X ¢ m;). Let R(X) =r < Y, m; and assume that p < n — r, where R(X)
denotes the rank of X. Let s = max (s, s,, - - -, 5,) and

(2.5) Ci*:[gJ; i=1,..,p,
where 0, is ((s — s;) X m;). Finally, let

(2.6) C=(EC* ---,E,C*

where E;, E,, - . ., E, are nonsingular (s X s) matrices, and assume the rank of

the (s X X m;) matrix Cis R(C) = s < r.
Clearly the null hypothesis H, holds if and only if C§, = 0 for all a = 0, i.e.,

(2.7) Hy= (. {H,: C&, = 0}.

DerInNITION 2.1. The hypothesis H, is testable if there exist nonsingular ma-
trices E;, ..., E, such that

(2.8) R [%} — R[X].

It is well known that condition (2.8) is a necessary and sufficient condition for
testability of H,,: C§, = 0 against H: C§, = 0 under the “univariate” linear
model in (2.3) and (2.4).

Following Roy, Gnandesikan and Srivastava (1971) let
(2.9) Q, = I, — Xy(X,"Xp) X,

(2.10) Q, = X(Xo'Xy) TC[Co(XyX) 1C T 1C (X X)X
where X, is any basis of X given by X, = XH, C, = CH, and H is any suitable
(X2 m; X r) matrix of rank r.

THEOREM 2.1. Under H,, the matrices
(2.11) S, = Y'Q,Y (the matrix due to the hypothesis)

(2.12) S, = Y'Q,Y (the matrix due to error)

are independent central Wishart matrices with degrees of freedom t = min (p, 5) and
n — r respectively.
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Proor. The theorem follows immediately from the fact that for every a + 0,
a’S,a and a’S,a are independent central chi-square random variables with de-
grees of freedom ¢ and n — r respectively. Note that S, is positive definite and,
under p < (n — r), S, is positive definite with probability 1.

Let c¢(A), i =1, ..., p, denote the characteristic roots of the symmetric
(p X p) matrix A ordered ¢,(A) = --- = c,(A). Application of Roy’s union-
intersection principle of test construction leads immediately to the largest root
¢, = ¢(S,S.7Y), as a test statistic for H,. The test statistic ¢, together with a size
a critical region, R = {¢,;: ¢, = 4,}, is selected because of its connection with
the simultaneous confidence intervals to appear at the end of this section. How-
ever, as for the standard multivariate model, other criteria may be proposed for
the hypotheses H,; for instance Wilk’s generalized likelihood ratio statistic,
IS.|/IS: + S.|, Hotelling’s trace, tr (S,S,™*) and Pillai’s trace, tr (S,(S, + S,)™)-

Tables for the percentage points of the test statistics are readily available as
are illustrations of their use; sce for example, Sections 5 and 7 of Chapter 4 in
Roy, Gnanadesikan and Srivastava (1971).

We now consider the problem of obtaining simultaneous confidence intervals
for all (standardized) “bilinear” forms b’C§, where all symbols are as previously
defined. The intervals are obtained by the well-known technique of inverting
the critical region for the largest root test. Consider

(2.13) 6 = Cy(X,/Xo) XY,

andlet § = E(é). Clearly S,* = (é’ — ON[Cy(X)X)IC/ 1O — é) has a central
Wishart distribution with # = min (p, s) degrees of freedom. Thus with proba-
bility (1 — a) we have

(2.14) (S8, = e

where 2, denotes the upper 100(«) percentage point of the (null) distribution of
the largest characteristic root of S,*S,~* with degrees of freedom p, sand n — r.
From the extremal formulation for the largest characteristic root, it follows that
(2.14) is equivalent to

(2.15) b'da — (1,a'S,a)t < b'CE, < b'da + (1,a'S,a)t

for all (p x 1) vectors a and all (s x 1) vectors b subject to the “standardizing”
constraint

(2.16) b[Cy(X, X)) Cy'Tb = 1 .

Thus (2.15) supplies us with a basis for multiple comparisons on all standard-
ized “bilinear” forms b’'C§,.

3. Monotone MDM models. In this section we develop the theory for a class
of hypotheses which are testable under a special MDM model defined in

DEerFINITION 3.1. The MDM model (1.1) is monotone in the design matrices
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if it is possible by reordering the responses to reparametrize to the form

(3'1) E(Yi):Xi*ei*; i=1,2, s p
such that
X = [X* ] X5
(3'2) Xs* : [X,* I X3 I X5
X,* = [X,* | X5 | X5 - | X
where X,* is (n X m;*) and m* < m,* < ... < m,*. Note that X} is (n x (m* —

m} ) fori=2,...,p. We will drop the superscript, *, from the notation for
a monotone MDM model in the following. This should cause no confusion since
we could just as easily have started with this particular ordering of the responses
and parametrization in the definition (1.1).

The partitioning of X,, X;, - - -, X, in (3.2) induces a partitioning of §,, ---, §,
as indicated in

(3.3) 52' - [e{za 6;2]9 esl = [5{3, 6539 e;s]a ALY e,,' = [E{pa e;p, cty e;p]

where §,;is (m, X 1) forj=1,...,pand §,,is (m; — m,_,) x 1) forj =2,..., p;
i=2,---,j, and we have dropped the superscript as planned.

DeriNITION 3.2. The hypothesis

(3'4) Ho: {Ciei: 0 for I = 1, ...,P}

is monotone if fori =1, ...,k —1,C; =01is (s X m,) and for i =k, .-, p,
C,=[0]A,|:--|A;] where 0is (s X m,_;) and A; is (s X (m; — m;_,)) for j =
ky e+, p.

THEOREM 3.1. The monotone hypothesis (3.4) is testable under the monotone
MDM model (3.1) and (3.2) if and only if C,§, = 0 is testable under the univariate
linear model
(3.5) E(y,) = X,§,
withy, ~ N,(X,§,,0,,L,).

Proor. The assumption that C,§, = 0 is testable under the univariate linear

model E(y,) = X, §, is equivalent to the condition that there exists a (s X n)
matrix B such that BX, = C,, i.e. from (3.2) and (3.4),

(3.6) B(Xjr [ Xia| -+ [ Xp0) = (0] Ay -+ [A,)

where X, ; = [X;|Xy,| -+ | X,_1,]- By comparing individual terms in (3.6) we

have

3.7 BX,=C, =0, i=1,..., k-1,
BX, = C, = [0|A,] - |A], =k p

Thus, B[X,,---,X,] =[C,,- - -, C,], which by the definition in Section 2 is a nec-
essary and sufficient condition that the monotone hypothesis in (3.4) is testable.
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4. Applications and discussion. Consider a multivariate regression model with
(for the sake of simplicity) two “dependent” variables Y, and Y, and one “inde-
pendent” variable X. Assume that the joint distribution of (Y,, Y,) given X is
bivariate normal with means

4.1) E(Y|X)=ay + ay X, E(Y,| X) = ay + ay X + a, X*.

Clearly for a sample of size n, (Y, Y5, X;), i = 1, - - -, n, we have a monotone
MDM model with

1 X 1 X, X
4.2) X, = , X, = y
|1 X, 1 X, X
- 400
é = . 10] s §,=|ay|, etc.
ay gy

Under the assumption that X, is of full column rank, any monotone hypothesis
is testable by the procedure outlined in Sections 2 and 3. For example,

- i fra =0, [ o2]=[o]}

i.e. C, =[0 1], C, = [0 1 1] in the notation of (3.4), is monotone and testable,
as are

(4.4) Hy: {ay, = 0}, Hy: {a, =0, ay = 0}.
On the other hand, the hypotheses
4.5) Hy: {a, = 0}, and Hy: {a;, =0, a,, = 0}

are not monotone and hence by Theorem 3.1 are not testable under the above
monotone MDM model.

For a second example consider again p = 2 responses with 2 block systems
(for a description of practical situations calling for 2 block systems, see Roy and
Srivastava (1964)). Suppose that there are n = b experimental units with each
of ¢ treatments applied to b units. Further assume that the 47 units are divided
into b “blocks” of ¢ units each and that each treatment occurs once and only
once in each “block”. Let Y,,; denote the value of the rth response from the jth
experimental unit receiving treatmenti; i = 1,...,¢ j =1,...,b. Assume that

(4.6) E(Yy;)) = m+ Tu

E(Yzij)=/‘2+72i+ﬂ2j (i=1a“'7t;j=1a"‘ab)-
Thus the motivation for the name 2-block systems, is that for response 1 there
is prior knowledge indicating no block effects while there are possibly nonzero
block effects for response 2. Again the MDM model is monotone and it can be
easily checked that the monotone hypotheses Hy, : {8y = By = -+ = By} and
Hy:{ey=7143=+-- =1, and 7, = 7y = --- = 7,,} are testable.
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As can be seen in the above examples, the test procedures proposed herein are
satisfactory (in the sense that the null distribution of the test statistic is known,
the union-intersection principle has a good intuitive appeal, etc.) in some cases,
e.g. Hy in (4.3), and not in others, e.g. H,, and H,, in (4.5). It is true that H,,:
{a;, = 0} and the components of Hy;: {a;, = 0, a,;, = 0} can be tested in the uni-
variate manner by taking only one response into consideration. However, this
procedure disregards the correlation between the responses, and, in as far as the
author is aware, no procedures exist which do take the correlation into account
for hypotheses of the type in (4.5). The same situation exists in the standard
MANOVA model (i.e., X; = --- = X, where C, + C,i+ji,j=1,---,p).
The author hopes to be able to consider these problems and related material in
a later communication.
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