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INEQUALITIES OF s-ORDERED DISTRIBUTIONS!

By M. J. LAWRENCE
University of California, Berkeley

Let C be the cone of functions ¢ that are concave-convex about the
origin, continuous at the origin, and have $#(0) = 0, and ¢/(¢) = ¢’(—1) for
t > 0. Necessary and sufficient conditions are given for ¢({ x(¢) dH(?)) <
S #(x(2)) dH(?) to hold for all ¢ e C and all increasing functions x, with
x(0) = 0. This inequality is used to develop comparisons (i) between com-
binations of order statistics, and (ii) between combinations of the expected
values of the order statistics, arising from distributions F and G in the case
that G-1Fe C. If F(0) = G(0) = 4 and the inequality on the gradient of
G-1F, (G-1F)(x) < (G'F)'(—x) for x > 0, is satisfied, then G-1F e C im-
plies F <, G. The inequalities presented preserve the ordering. A weaker
ordering of distributions, called r-ordering, is defined: F <. G if and only
if F(0) = G(0) = 4 and G-'F(x)/x is increasing (decreasing) for x positive
(negative) on the support of F. For symmetric r-ordered distributions, the
ratio of the expected values of the order statistics preserve the ordering.

1. Introduction. In this paper we develop some inequalities of theoretical
interest between functions of the order statistics from certain restricted families
of random variables. The application of these inequalities to reliability theory
and robustness studies will be treated in a separate paper.

If G is a given continuous distribution function with G(0) = 0, Barlow and
Proschan (1966a) have considered the properties of linear combinations of order
statistics arising from the distribution F when F(0) = 0 and G-'F is convex or
alternatively star-shaped, on the support of F. Van Zwet (1964) has studied
some of the theoretical properties of symmetric distributions F and G related by
the fact that G='F is concave-convex about the point of symmetry which he calls
“s-ordering” and denotes by F <, G.

We adopt a more general definition of s-ordering than van Zwet: F <, G if
and only if F(m) = G(m) = §{ and G~'F(x) is concave-convex about m on the
support of F. For convenience we assume m to be the origin. Examples of s-
ordered distributions are: U-shaped density <, uniform <, normal <, logistic <,
Laplace <, Cauchy. (See van Zwet (1964) pages 70-73.)

We will also be interested in a weaker ordering than s-ordering, which we call
r-ordering and define as follows: F <, G if and only if x~'G~'F(x) is increasing
(decreasing) for x = 0 (x < 0), and F(0) = G(0) = 4.

Although r- and s-ordering are defined for distributions that are not necessarily
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symmetric, the results in this paper indicate that these concepts are too weak to
obtain the desired inequalities. For the sake of clarity the definitions are not
made stronger, and the appropriate restrictions are stipulated for each result.

Preliminaries. We adopt the following definitions, grouped here for conveni-
ence, and assume throughout that F and G are continuous and that G is strictly
increasing on its support. We loosely use “increasing” to mean “non-decreasing”
and “decreasing” to mean “non-increasing”, except when qualified by “strictly”.

(i) F <,G if and only if G-'F is convex on the support of F.
(i) F <, G if and only if F(0) = G(0) = 4 and G~'F is concave-convex about
the origin on the support of F.
(ili)y F <, G if and only if F(0) = G(0) = % and x~'G~'F(x) is increasing (de-
creasing) for x positive (negative) on the support of F.
(iv) X=,Yifandonly if (X <a) < P(Y < a), —o0 < a < oo.

Throughout, we let X, , < X,, < --- = X,,(Y1,£Y,,<.---<Y,,) be
an ordered sample from F(G), and we observe that Y =, GT'F(X).
If F, is the distribution of |X|* and F, G are symmetric about the origin, then

fora > 1,
(a) F<,G implies F,<,G,.
(b) F<,G implies F,<,G, on the positive axis.

If G is symmetric about the origin and & = {G(6x) |6 > 0}, then a sufficient
statistic for 6 based on a complete random sample Y = (Y, ,, ¥;,, - -+, ¥, ,) is
given by (|Y,,|, |Y,.]s -5 |Y,,])- Suppose we are interested in studying the
robustness of statistics derived under the assumption that the observations are
distributed according to G, when in fact they are distributed according to F
(symmetric) where F <,G. Since by (a), F <, G implies F, <, G,, the results
of Barlow and Proschan (1966a) apply to linear combinations of the sufficient
statistic for . However, their results do not apply if the sample is censored or
if F and G are not symmetric.

2. Inequalities for concave-convex functions. In this section we develop in-
equalities for concave-convex functions some of which we will need later on,
and some of which are presented for their own interest.

Let C be the cone of functions ¢ that are concave-convex about the origin,
continuous at the origin and have ¢(0) = 0, and ¢'(t) < ¢'(—¢) for t > 0. We
let H denote a function of bounded variationon [a, 8], —c0c £ a <0< b <
(the interval end points are excluded when not finite). We define H and H by

Hv) = {, dH(x) ~ and  H@) = {,n dH(x) .

Thus H and H are the left- and right-continuous versions respectively. We
always assume that |{;, ;; x(f) dH(t)| < oo.

All theorems are stated and proved for the interval (—co, o) since the
restriction to the interval [a, b] is obvious. In the following theorems ¢ need
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not be concave-convex or even defined over all the interval (— oo, o). But ¢
must be concave-convex on an interval containing the point § x(f) dH(¢) and the
range of x(¢) for ¢ in the support of H.

THEOREM 2.1. The following conditions are necessary and sufficient for

2.1) ¢(§ x(1) dH()) = § $(x(1)) dH(7)
to hold for all ¢ € C, and for all increasing functions x, antisymmetric about the
origin with x(0) = 0:

There exists v, = 0 such that
(2.2) Hv) — H(—v) £ —1 and
2.3) 0< Hw) — H(—v) £ 1 and
(2.4)  H@)H(—v) < Hv)H(—v)) ,

Hwv) <0, for
H(—v) <0,

for 00, <V, =,

0sv <,

for v =,

Proor. Functions ¢ of the type

o(x)=x+ 12, x <L =7z
2.5) =0, -z <x<Zz2
=x—12z, x>z, 02z,

together with the linear decreasing functions ¢ with ¢(0) = 0, positively span
the convex cone C. We may therefore restrict attention to this type, noting
that (2.1) reduces to an identity for ¢ linear.

We first prove the necessity of the conditions. Let

x(t) = —a— b, t< —v,
= —a, —V, < =7,
(2.6) =0, -, Sty
=a, <t 0,
=a+ b, t>v,, 0 v,5v5a,b=0.
For 0 < 7/ < z £ a we have
$(§ x(1) dH(0)) = ¢{b(H(vy) — H(—y)) + a(H(v)) — H(—))}, and

V $(x(1)) dH(1) = b(H(v;) — H(—v,)) — (a — 2)H(—,) + (a — 2)H(vy) .
For this case, inequality (2.1) implies:

(i) If b(H(v,) — H(—vy)) +a(H(v,) — H(—v,)) £ — 2’ then zH(v,) — 2’ H(—v,) <
—z'. For H(v,) — H(—v,) < 0 the assumption may be satisfied by choosing b
sufficiently large. Taking z/ = 0 and then z’ = z we see that H(v,) — H(—v,) < 0
implies that H(v,) < 0 and H(v,) — H(—v,) £ —1 for all 0 < v, < v,

(il) If b(H(v,) — H(—v,))+a(H(v,) — H(—v,)) = z then zH(v,)— 2’ H(—v,) < 2.
For H(v,) — H(—v,) > 0 the assumption is satisfied by choosing ‘a sufficiently
large. Taking 2/ = z we find that H(v,) — H(—wv,) > 0 implies that H(v,) —
H(—v) = 1.
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(ili) If —2 < b(A®) — H(—v) + a(f(v,) — H(—vy) < z then b(H(v,) —
H(—v,)) — (a — 2)H(—v,) + (a — 2)H(v;) 2 0. For 0 < H(v)) — H(—v,) £ |
the assumption is satisfied for a =z, 5 = 0. Thus 0 < H(v,)) — H(—v) < 1
implies that H(—v,) < 0.

The conclusions of (i)—(iii) together with the right-(left-)continuity of
H(v)(H(—v)) are equivalent to the existence of v, = 0 such that conditions (2.2)
and (2.3) hold. This proves the necessity of (2.2) and (2.3). To prove the
necessity of (2.4) we consider the case when z/ = 0 and z = a + b.

Now we observe that

§ $(x(7)) dH(t) = —bH(—v,) — aH(—v),
and hence inequality (2.1) implies:
(iv) If b(H(v,) — H(—v,)) + a(H(v,) — H(—v,)) < 0 then bH(v,) + aH(v,) < 0.

For 0 < v, < v, < v, we have H(v,) — H(—v,) £ —1 and 0 < H(v,) — H(—v,) <
1, and hence

— _b({?('vz) - H(_vz)) >0 ,
H(vl) - H(_vl) o

and any b > 0 satisfy the assumptions.
It follows that

Av,) — HE)H©,) — H(=v)) - for 0< v, <v,<0,,
H(vl) - H(_'Ul)
and hence H(v,))H(—v,) < H(v,)H(—v,) since H(v,) — H(—v,) < 0. This proves
the necessity of (2.4).

We now prove the sufficiency of the conditions.

If H and H satisfy the conditions (2.2)—(2.4) then the left- and right-continu-
ous versions of H(x™!) and H(x~') will also satisfy these conditions for every
increasing and antisymmetric x with x(0) = 0. It is therefore sufficient to show
that conditions (2.2)—(2.4) imply inequality (2.1) for x(f) = ¢t and all ¢ of the
form (2.5). Writing 2 = { ¢t dH(t) we have

A= \¢ (H(f) — H(—0)dr, and
§ $(1) dH(t) = §7 H(t) dt — {3 H(—1) dr .
We have to prove that conditions (2.2)—(2.4) imply ¢(4) < § ¢(¢) dH(¢) for

allo0 < 7/ < 2.
We consider three cases:

(i) 02 <z< v, Since H(r) < 0Oand H(f) — H(—1) < —1for 0 < t < v,
and as ¢(x) < x + 2 for all x, we have
§ $(0) dH() = §3 () — H(—1) dr = 2 — {5’ (H(t) — H(—1))dt
=242 = ¢Q).

(i) 0 < v, < 2/ <z Since H(—1) < 0 and H(r) — H(—1) = 0 for t = v,,
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§ ¢(1) dH(r) = §7 (H(t) — H(—1))dt = 0. Also because H(r) — H(—t) < 1 for
all t = 0,

§ $(0) dH(t) Z 7 (B(r) — H(— 1) dt = 2 — 3 (H(t) — H(—)dt = 2 — 2.
Hence § ¢(f) dH(f) = max (0, 2 — z) = ¢(2).

(iii) 0 <z’ < w, < z. If §z H(t)dt < 0, the proof proceeds in the same man-
ner as in (i). If §z, H(—¢)dt < 0, the proof follows the pattern of (ii). It is
therefore sufficient to consider the case when

§2 H(f)dt >0  and (% H(—1)dt > 0.
We shall show that this case is impossible and thus can never arise. Suppose to
the contrary that it is true, then together with conditions (2.2) and (2.3) we
observe
§:o Hiydt > — (% H(Hydt =0 and
2 H(—t)dt > —§; H(—ndr 20,

which implies

§z, H(r)dr - §2 H(—1)dt > 2 H(r) dr - §z, H(—1)dr .

However, this contradicts condition (2.4) which ensures that

§z, H(r)dr - §0 H(—1)dr < {2 H(r) dt - §:5, H(—1)dr.

This completes the proof. []

COROLLARY 2.2. If in Theorem 2.1 the restriction is added that H be continuous,
then the necessary and sufficient conditions are

(2.7) 0<Hv) —H(—v) <1, H(—v)<0 for v>0.
Proor. Immediate since both H(—v) and H(v) tend to zero as v — co. []
We let C’ denote the cone of functions ¢ that are concave-convex about the
origin, continuous at the origin and have ¢(0) = 0 and ¢'(¢) = ¢'(—1) for ¢ > 0.

We note that if ¢(x) € C then —¢(—x) e C’, and from this we obtain the follow-
ing corollary.

CoROLLARY 2.3. The following conditions are necessary and sufficient for

¢ x(1) dH(0)} = § ¢(x(0)) dH(2)
to hold for all ¢ € C', and for all increasing functions x, antisymmetric about the
origin with x(0) = 0:
There exists v, = 0 such that
H(—v) —Hv)< —1  and H(—v)<0 for 0<wv<v,,
0 < H(—v)— Hv) < 1 and  Hw)<O0 for v=v,,
H(—v)Hv,) < H(—v)H®v,) for 0< v, < v, < v,.

If in Corollary 2.3 the extra restriction that H be continuous is added, then
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necessary and sufficient conditions may be found using the same approch as in
Corollary 2.2. It will not be presented here.

By noting that if ¢ is concave-convex then —¢ is convex-concave, we can
obtain similar inequalities for convex-concave functions. These results follow
trivially.

THEOREM 2.4. Inequality (2.1) is true for all ¢ € C with ¢ antisymmetric and
all increasing antisymmetric x(t) with x(0) = O if and only if there exists v, = 0
such that _

Hwv) — H(—v) < -1, 0=v <,
0<Hw)—H(-v) <1, V= ,.

Proor. Necessity of the conditions. Let ¢(y) = y* and

x(t) = -1, < —
=0, —vtsv, v=0
=1, t>wv,
then (2.1) implies that {—H(—wv) + H(v)} < —H(—v) + H(v). Hence either
0 < H(v) — H(—v) £ 1, or A(v) — H(—v) < —1.

Note that in Theorem 2.1 we assumed ¢ antisymmetric in showing that if
H(v,) — H(—v,) < 0 then H(v)) — H(—v,) < —1 for all 0 < v, < v, This
proves the necessity of the conditions.

We will now prove sufficiency, As in Theorem 2.1 we will assume without

loss of generality that x is the identity. If 2 = § r dH(f) < 0, then by noting that
(2.1) can be written in terms of a concave function only,

P2 1d(H(1) + H(—0)} = (Lo §(1) d(H(0) + H(—1))
we see from Theorem 3.2 in Barlow, Marshall and Proschan (1969) that the
conditions are sufficient.

If 2> 0, we see, using a similar argument as in Theorem 2.1 that we need
only show for all » > 0 that

(a) A— (ﬁ(t) — H(—1))dt Z max (0,2 —r).
We will consider two cases:

(i) 0<r <2 Since H(Y) — H(—1) < 1 for all ¢, §; (H(r) — H(—t))dt < r,
and (a) is true.
(i) 0<2<r If v,>r, {;(H({) — H(—t))dt < —r and (a) is obviously
true. If v, < r, then by noting that '
2= §5 (H(t) — H(—0) de = 2 (H(t) — H(—1))dt 2 0
we see that (a) is satisfied. This proves the theorem. []

THEOREM 2.5. The following conditions are necessary and sufficient for

(2.1) #§ x(r) dH(1)} < § ¢(x(1)) dH(?)
to hold for all ¢ e C and for all increasing functions x with x(0) = 0:
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There exists uy, < 0 < v, such that

(2.8) —1=<H@u<o u=u,,
(2.9) H(u) = 1 u<us0,
(2.10) Hv) < —1 0=v <,
(2.11) 0< Hw) s 1 v = v,.

(2.12)  If H@u) >0 forsome u<0, then Hw)<O0 forall v=0.
(213)  If u<0<Zv andeither Hu) >0 or H(v)<O0 then

A(w) — Hu) < —1.
(2.14)  If u<0=v andeither Hu)<O0 or Hw) >0 then

Aw) — Hu) < 1.

Proor. For ¢ € C and increasing x with x(0) = 0 we have
§ x(r)dH(1) = § sdH(x7X(s)),  § ¢x(r) dH(t) = § $(s) dH(x7X(5)) ,

where x~'(s) is increasing with x=(0) = 0. On the other hand, for every increas-
ing y and every increasing antisymmetric z with y(0) = z(0) = 0, there exists
an increasing x with x(0) = 0 such that

§ x(1) dH(1) = § 2(s) dH(y(s)),  § ¢x(r) dH(1) = § pz(s) dH(y(5)) -

Hence necessary and sufficient conditions for (2.1) to hold for ¢ € C and all
increasing x with x(0) = 0 can be obtained by requiring that the left- and right-
continuous versions of H(y(s)) and H(y(s)) respectively, satisfy conditions (2.2)—
(2.4) for every increasing y with y(0) = 0. Writing u(s) = —y(—s) and v(s) =
¥(s), s = 0, necessary and sufficient conditions are:

For every pair of increasing functions # and v with
u(0) = v(0) = 0, there exists s, > 0 such that the left- and
right-continuous versions of H(—u(s)) and H(v(s)) satisfy:

(2.15)  H@w(s)) — H(—u(s)) = =1,  Hw(s)) <0 for 0<5< 5,
(2.16)  0< H@w(s) — H—u(s)) <1, H(—u(s)) <0 for s=s,,
(2.17)  Hu(s)H(—u(s)) < Ho@)H(—u(s)  for 0<s5 < 5=

We have to show that conditions (2.8)—(2.14) are equivalent to conditions
(2.15)—(2.17). We first note that conditions (2.15)—(2.17) simply state that for
everyu < 0 < veither H(v)—H(u) < —1or0 < H(v)—H(4) < 1; that whenever
H(v) — Hu) £ —1, then H{") — Hw') < —1foralla’, v withu < v’ <0<
v' < v, and that whenever 0 < H(v) — H(u) < 1, then0 < H(v") — Huw") £ 1
forall #” < u <0 < v < v". Because of the left(right)-continuity. of H(H) we
may therefore restate conditions (2.15)—(2.17) as follows:

There exists an increasing function ¢ on (— o0, 0] with 0 < ¢(u) < oo for all



420 M. J. LAWRENCE

—oo < u < 0 such that

Hv) — Hu) £ —1, Hv)<0 for 0Zv<g¢@m), u<0,
0<Hv)—Huw)<1, Hu)=<0 for v=¢@u), ugo,
H(v,)H(u,) < H(v,)H(u,)

for 0<v <¢w), v,=¢w), u <0, u,<0.

Suppose now that conditions (2.8)—(2.14) are satisfied. Noting that (2.12)
implies that either u, = 0 or H(v) = 0 for all v > v,, one easily verifies that the
conditions above are satisfied for a function ¢ defined by ¢(u) = v, for u < u,
and ¢(u) = oo for u, < u < 0.

It remains to be shown that (2.15)—(2.17) imply (2.8)—(2.14). Suppose that
(2.15)—(2.17) hold. Let u(s) be defined as follows

u(s)=0, s=0
= o0, S>0.

Then since H(u) — 0 for u — — o0, (2.15)—(2.16) reduce to

Hois) < —1, 0<s<s,
O0<Hv(sH =1, s= s,

which can be written as Hv) < —1, 0<v <wv,and 0 < Aw) < 1, v = v,
In a similar way we may show that (2.15) and (2.16) imply that H(x) > 1 for
U, <u=0,and —1 < H(u) < 0 for u < u,. This shows that (2.8)—(2.11) are
satisfied.

Assume that H(—u(s)) > 0 for some s > 0, then from (2.8) and (2.9), it fol-
lows that H(—u(s)) = 1. We can choose the function v such that v(s) is very
large (hence H(v(s)) is small) and H(v(s)) — H(—u(s)) < 0. Now since (2.15) and
(2.16) are assumed true, we have that H(v(s)) — H(—u(s)) < —1, and A(v(s)) <
0for0 < 5 < 5,. Since v is an increasing function with v(0) = 0, we have that
H(v) < 0 and H(v) — H(—u(s)) < —1 for all v > 0. The former inequality
proves that (2.12) is satisfied. Similarly, H(v(s)) < 0, s = 0, yields H(v(s)) —
H(—u(s)) < 0 for all sufficiently large u(s), which together with (2.15) and (2.16)
ensures that H(v(s)) — H(—u(s)) < —1 for all u(s); or alternatively, H(v) —
H(u) < —1 for all u < 0 if H(v) < 0. This, together with the previous result
proves that (2.13) is satisfied. Since (2.15) and (2.16) together imply that
H(v) — H(u) < 1 for all u < 0 < v, condition (2.14) is satisfied. []

REMARK. In proving that (2.15)—(2.17) imply (2.8)—(2.14) we have not used
(2.17). Hence (2.15) and (2.16) together imply (2.17). However, it does not
seem worthwhile to remove (2.17) from the proof, as you essentially need to
prove (2.12) first to do it. Note that in the symmetric case (2.2).and (2.3) do
not imply (2.4). A simple counterexample is easy to construct.

COROLLARY 2.6. If in Theorem 2.5 the restriction is added that H be continuous,
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then the necessary and sufficient conditions are
Hu) <0
Hw) =0
Hw) — Hu) < 1 us0=vw.
Proor. H(v) and H(u) tend to zero for v — co and u — —oo. []
COROLLARY 2.7. The following conditions are necessary and sufficient for
B{5 (1) dH(1)} = | gx(1) dH(r)
to hold for all ¢ € C' and for all increasing functions x with x(0) = 0:
There exists u, < 0 < v, such that:

0<Hm=1, u=<u,
Hu)< —1, 4, <uz0
Hw) =1, 0=v<,
—1<Hw)<0, v=v,.
If H(w) >0 forsome v =0, then H@u)<0 forall
u<0.
If u<0=<wv andeither H®v) >0 or H(u) <0 then
Hu) — Hv) £ —1.
If u<0<wv andeither H(v) <0 or H(u)>O0 then
Hu) — Hwv) < 1.
The following corollary can be derived from Theorem 2.4 in a similar way to

that in which Theorem 2.5 was derived from Theorem 2.1. The proof will be
omitted.

~ CoROLLARY 2.8. Inequality (2.1) holds for all antisymmetric ¢ € C and for all
increasing x(t) with x(0) = 0 if and only if there exists uy, < 0 < v, such that
—1<H@u<o0, u=<u,
Huyz1, #,<u<0
Hv)< -1, 050 <,
0<Hw) <1, v = ,.
If w<0<wv andeither Hu) >0 or Hv)<O0 then
Hv) — Hu) < —1.
If u<0<v andeither H(u)<O0 or H®) >0 then
Hv) —Hm) < 1.
We will be interested in a discrete version of Theorem 2.5. We use the nota-
tion 4, = Yta;and 4, = > 7a
COROLLARY 2.9. The following inequality

(2.18) (Xt aix) = 21 a; p(xy)

i
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istrue forallp e Cand forall x, < x, < --- =, <0< x5, < --- £ x, if and
only if there exists 0 < iy < k < j, < n + 1, such that

—1<4,<0, 1=<i<i

A4,=1, i <i<k
‘;ijé““l’ k<j<jo
0<4;,<1, j<j<n.
(2.19)  If A4, >0 forsome i<k then A;<0 forall k<j<n.

If 1<i<k<j=<n andeither A, >0 or A; <0 then

A; — 4, < 1.
If 1<i<k<j=<n andeither A, <0 or A;>0 then
A;—4, 1.

The following corollary follows from the previous one by noting as before
that if ¢ € C and ¢*(x) = —¢(—x), then ¢* e C'.

COROLLARY 2.10. The following inequality
(2-20) H(27T ax) = 27 a,P(x,)

holds for all¢ e C'and forall x, £ x, < -+ £ x5, <0< x5, < -+ Z x, if and
only if there exists 0 < iy, < k < j, < n + 1, such that

0<4,<1, 1=<i<i,

A< -1, (<igk

A,=21, k<j<j,

(2:21) 14,0, j<jsn.

If A;>0 forsome j>k then A, <0 forall 1<iZ<k.
If i<k<j andeither A,>0 or A, <0 then A, — A, < —1.
If i<k<j andeither A; <0 or A, >0 then A, —A;<1.

Al

3. Inequalities for combinations of order statistics. In this section we obtain
stochastic comparisons between combinations of order statistics arising from
distributions F and G in the case that G-'F e C or G-'F e C’. We see immedi-
ately that if G='Fe C(C’) and F(0) = G(0) = }, then F <,G with the added
stipulation on the gradient of G—'F that (G-'F)'(x) < (G~'F)'(—x) for x > 0
((G'F)'(x) = (G'F)'(—x) for x > 0)., One notes in the special case where F
and G are both symmetric that (G-'F)'(x) = (G~*F)'(—x) for all x > 0.

Let X, < X,,< --- £X,, be a random vector of ordered observations,
and for any outcome Xx,, < X, < -+ < x,, let k(X) = k(X, 5 Xy 0 + -5 X,.,)
denote the largest index i with x, , < 0. If X, ,, X, ,, ---, X, , is substituted for
Xy, Xy + -+, X, in say (2.18), then the weights a,, a,, - - -, a, need to be chosen as
a function of the random variable k(X) in satisfying inequality (2.19). That is
we require ay(k), ay(k), - - -, a,(k) to satisfy (2.19) for every k =0,1,2, ..., n.
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In this case we say that [a] satisfies (2.19). In a later paper some useful inequ-
alities will be developed by using simple weights which satisfy these conditions.

We now use the previous inequalities to construct stochastic comparisons be-
tween the order statistics from F and G when F <,G and G-*Fe Cor G'Fe C'.
These find use in constructing tolerance limits.

THEOREM 3.1. If G-'F € C, and [a] satisfies (2.19) then

G(Zt alk(Y))Y i) 2o F(Z1 ai(k(X))Xe0) -
Proor. From Corollary 2.9 we have that if [a] satisfies (2.19) then

G F(X1 a(k(X))X;,) = X1 alk(X))GTF(X, ) =, 21 a(k(Y))Y, . -
The stochastic equality follows from the fact that G-'F preserves order with
respect to the origin, and G-'F(X,,), GT'F(X,,), - --, G'F(X, ,) are jointly
distributed as the order statistics from G. []

CoRrOLLARY 3.2. If G*Fe C', and [a] satisfies (2.21), then
G(Zt ak(Y))Y,,) <. F(ZT af(k(X))X,,) -

4. Inequalities on the expected values of the order statistics from r- and s-
ordered distributions. Marshall, Olkin and Proschan (1965) and Barlow and
Proschan (1966a) have developed inequalities for the expectations of order sta-
tistics arising from distributions F and G in the case that G—'F is starshaped on
the support of F and G(0-) = F(0-) = 0. Van Zwet (1964) has extensively
treated inequalities for the expectations of order statistics arising from c-ordered
and symmetric s-ordered distributions. We shall develop some new inequalities
for the expectations of order statistics and for power combinations of the random
variables in the case of two symmetric r-ordered distributions, except for the
following inequality where we require the stronger s-ordering.

Van Zwet has obtained necessary and sufficient conditions on a,, a,, -+, a
such that

n

FXiaaEX;,) £ G(XiaaEY,,)

for F <,G. (Personal communication.) We derive necessary and sufficient con-
ditions on ay, a,, - - -, a, such that the above inequality is true for some special
cases of s-ordering.

THEOREM 4.1. If EY, , exists for alli = 1,2, ..., n, then for all F and G such
that F <, G with G*F e C,

4.1) F(Xrae,EX;,) < G(Xra,EY,,)

ifand only if forall 0 S u < {<v <1
(4.2) A, — T AL —wrt + (L — o) < T
(4.3) Zt AW —ut <0,

@.4) A, — Tp AG(L — vyt 2 0.
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Proof. Let
— ¥ n! i-101 __ p\n=i
o) = Lt a e’ 1=y
and ¢ = G~'F. Hence (4.1) can be written as
(4.5) S oMEF () dy} = G $(F()e(y) dy -

Note that we have already assumed that F-'(}) = 0. From Corollary 2.6 we see
that the necessary and sufficient conditions for (4.5) to be true are given by

e dy — Go()dy =1,
Le(p)dyz0 and  (Fo(y)dy <0
for 0 <u < { <v < 1. The theorem follows from the fact that

n!

» xk—ll_xn—kdx= n n wl_ n—w.
CoROLLARY 4.2. If EY, , exists for all i = 1,2, ..., n, then for all F and G
such that F <,G with G'Fe C,
(4.6) F(2ta,EX;,) = G(X1 @, EY,,)

if and only if forall 0 Su <4 <v =<1
A, — Zr AW — w4 (1 — )z — 1,
4.7) Zr AU —uy 20,
A, — Zr AL —v)t 0.
Using the inequalities developed in Section 2 many alternative cases of Theo-

rem 4.1 may be proved, but we shall here only treat two relatively common
cases, F symmetric and both F and G symmetric.

CorOLLARY 4.3. If EY, , exists for all i = 1,2, .., n, then for all F and G
such that G='F ¢ C and F symmetric about the origin,

F(Xta,EX;,) = G(Xta,EY,,)
if and only if forall s <y <1,
04, — 2t 4OD'A =" +y~1 -nt=sl1,
Zr Ay =y =0.

COROLLARY 4.4. If EY, , exists for all i = 1,2, ---, n, then for all F and G
such that G~'F ¢ C' and F symmetric about the origin,

(4.1) F(XraEX,,) =z G(Li 4, EY,,)
if and only if forall $ <y < 1,
—1S 4, — D AU -yt (1 =)t 0,
Ay — T AGY( =y < 0.
From Theorem 2.4 we may prove the following corollary.
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CoROLLARY 4.5. If EY, , exists for all i = 1,2, ..., n, then for all F and G
both symmetric about the origin such that G-*F ¢ C

if and only if forall $ <y < 1

0=(2)4, = Zr AGU A =)'+ )y == U=z -1).

Barlow and Proschan (1966 a) showed that if F(0) = G(0) = 0 and x"'G~'F(x)
is non-decreasing in x > 0, then the ratio of order statistics EY, ,/EX, , is also
increasing in i = 1,2, -.., n for all n; i.e., r-ordering on the positive axis is
preserved by the expected values of the order statistics. Van Zwet (1967) showed
that c-ordering and symmetric s-ordering are both preserved by the expected
values of the order statistics. Independently of van Zwet we have proved a re-
lated result, namely that for r-ordered symmetric distributions the expected
values of the order statistics preserve the ordering.

Define r :

j = (n+1) i1 _ n—i
K@i, n, x) = TOT(n =7 + 1) Fi~Y(x)(1 — F(x))~*.

In a similar way to Barlow and Proschan (1966 a) we use the fact that K(i, n, x)
is TP, in 1 £i<n, and —co < x < co. (For a treatment of total positivity
see Karlin (1964).)

We observe that

EX;, _ § xK(i, n, x) dF(x)

EY,, G 'F(x)K(i,n, x)dF(x)’

i,m

and we define the value of this expression for i = §(n 4+ 1) by continuity.

THEOREM 4.6. Let F <, G, F and G symmetric about the origin, then

@) % as a function of i isincreasing for i < 3(n+ 1)
andl;ecreasing for i=3n+1),

(ii) EXin  asa functionof n (integer) is decreasing for n =
2i l;znnd increasing for i < n < 2i.

Proor. Let

h(i) = {=, (x — ¢cG™'F(x))K(i, n, x) dF(x)
- EY, (ﬂ - c).
“*\EY,

i,n
Since F and G are symmetric, we have that
h(i) = —h(n —i + 1) for i=Z¥n+1);

i.e., h(i) is antisymmetric about 4(n 4 1). Since K(i, n, x)is TP, for1 <i < n,
—o0 < x < o0, and (x — ¢G™*F(x)) changes sign at most three times for ¢ > 0,
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we have by the variation diminishing property of TP, functions that A(f) must
change sign at most three times. If (i) does change sign three times, then the
order of the signs must be the same as for (x — ¢cG™'F(x)); viz. + — + —.

Since k(i) is antisymmetric about §(n + 1) we see that EX, ,/EY, , is increasing
as a function of i for i < 4(n + 1) and hence by continuity for i < 4(n + 1) and
decreasing for i > 4(n + 1) and hence by continuity for i > 4(n + 1). This
proves (i).

We can verify the recurrence relationship for all 7 in [1, n]

. . b

r@,n —1) — r@, n) = i + 1, n) — r(i, ,

(5o = 1) = r(l, n) = — 2 11+ 1) — 1 )]

where r(i, n) = EX, ,/EY, ., a = (1 — i[n)EY, ,and b = (i[n)EY,,, ,.

Take n > 2i; Observe that @ + b < 0 and r(i + 1,n) — r(i,n) = 0. For n >
2i 4 1, since b < 0, the recurrence relationship above is nonnegative and hence
r(i, n) is decreasing in n (integer) for n > 2i.

Take n < 2i; In a similar way and from continuity it follows that r(i, n) in-
creases in n (integer) for n < 2i. []

Van Zwet (1964) proves that if F <, G and F, G symmetric about the origin,
then
(4.8) (E|X]") ~ (E|Y]")" <a<
(EIX|7)" — (E[YT7)’
for those values of b such that E|Y|® exists. We will prove a stronger result;
namely that given F <, G and F, G symmetric, the inequality (4.8) holds stochas-
tically for the usual estimates of the expectations, and hence by the strong law
of large numbers, for the expectations themselves.

We need to introduce the concept of majorization, and one of the theorems
applying this concept. For a fuller treatment see Hardy, Littlewood and Polya
(1959) and Ostrowski (1952).

DEFINITION. A sequence a = (a,, - - -, a,) is said to majorize a sequence b =
(by, - -+, b,) (writtena > b)ifa, = --- = a,, b= --- =2 b, and }7a, = 37 b,
forr=1,...,n—1, while };7a,= 370,

THEOREM 4.7. (Hardy, Littlewood and Pdlya). If f is convex on the interval I
and X > y where Xy, «++, X} V1, + -+, ¥, belong to I, then

i f(x) =z 2 f() -
THEOREM 4.8. If F <, G, F and G symmetric about the origin, then
i P [ Xal)" o (D [Yial')"
(l) (Zt—l I z,na §8 i=1 T, 0 g a é b s
(T Xy = (S Yy

and if E|Y|® exists then
i) (B _ (EYY
(E|X]*)* — (E|Y]")
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Proor. Raise to the ath power the absolute value of the observations from
F, and order so that
|X|t1l,u g |X|g,n g ttt g |X|?t,n .

Now if F (x) = P,(|X]* < x), a = 0 we see that G,7'F,(x*) = [G'F(x)]* and
since x'G~'F(x) 1 x = 0 we have

Ga—lFa(x) T X g 0 .
X

It follows from Marshall, Olkin and Proschan (1965) (cf. Barlow and Proschan
(1966a) Theorem 3.12) that for Y, , = G7'F(X, ,)

k |X|‘iz,n ) < Zk < |Y|?n )
i=1\ S . = i= v I~
( X, T Y.
fork=1,2,...,n.

Now from Theorem 4.7, by considering the convex function f(x) = x°, x = 0,
¢ = 1 we obtain the stochastic inequality

Pl B Vil
(T Xl = (S Vel

thus yielding (i).
Now if E|Y]® exists, then E|Y|* exists, and by a limiting argument we can see
that E|X|® exists. (ii) is then true by the strong law of large numbers. []

CoROLLARY 4.9. If F <, G, F and G symmetric about the origin, then if EY>"}

exists
EXk < EY}k for k=1,2,....
(EX2)s = (EYpr)F o7

Proor. The proof follows in the same way as for Theorem 4.8 and by the
observation that
G Fu(x) = G'F(x),
where F,,(x) = P(X;, < x). I
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