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A RESTRICTED SUBSET SELECTION APPROACH TO
RANKING AND SELECTION PROBLEMS!

By THOMAS J. SANTNER

Purdue University

Let 71, - - -, 7% be k populations with =; characterized by a scalar 1; €
A, a specified interval on the real line. The object of the problem is to
make some inference about = k), the population with largest 1;. The present
work studies rules which select a random number of populations between
one and m where the upper bound, m, is imposed by inherent setup restric-
tions on the experimenter. Formally the goal can be viewed as a generali-
zation of the subset selection and indifference zone approaches. A selection
procedure is defined in terms of a set of consistent sequences of estimators
for the 2;’s. It is proved the infimum of the probability of a correct selection
occurs at a point in the preference zone for which the parameters are as
close together as possible. Conditions are given which allow evaluation of
this last infimum. The number of non-best populations selected, the total
number of populations selected, and their expectations are studied both
asymptotically and for fixed n. Other desirable properties of the rule are
also studied.

1. Introduction and summary. Let (2%, <%, P,),i = 1, - .., k be k probability
spaces hereafter referred to as populations and denoted as =, i =1, .-, k.
Specifically it is assumed 2 is a finite dimensional Euclidean space, <Z is the
associated Borel sigma field and P, is an unknown probability measure belong-
ing to a specified family of probability measures, & Each =, is characterized
by an unknown scalar 4, = A(P,) € A a known interval on the real line. Let
Ay = - -+ = Ay, be the ordered 2,’s, @ = {2 = (4;, - - -, 4,) | 4, € A Vi} the space
of all possible underlying configurations of 2,’s and =, the (unknown) popu-
lation with parameter 1;,;. It is assumed there is no a priori knowledge of the
correct pairing of the elements in {z,} and {z,}. The goal is to define a pro-
cedure R to select the “best” population where for sake of definiteness =z, is
taken to be the best population. Insome cases x;, might be the best population.
Of course if T (2 < T < k) populations all have 2, = 2;,;, the selection of any
of these tied populations accomplishes the goal.

This ranking and selection problem was formulated as a multiple decision
problem and specific cases solved by early research workers. The theory in this
field has undergone a somewhat dichotomous development arising from the
detailed formulation of a reasonable experiment goal to pursue. One approach
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pioneered by Bechhofer (1954) has been to allow the experimenter to select one
population which is guaranteed to be r,, with at least probability P* whenever
the unknown parameters lie outside some subset, or zone of indifference, of the
entire parameter space. This has been termed the indifference zone approach.
A variety of authors have contributed papers employing this approach and the
monograph by Bechhofer, Kiefer and Sobel (1968) contains an extensive bibli-
ography. In particular the procedure of Mahamunulu (1967) for selecting a
fixed size subset of size m which contains at least ¢ of the ¢ best populations
employs this approach.

In contrast to the indifference zone approach, Gupta (1956, 1965) proposed
a formulation, called the subset selection approach, in which the experimenter
obtains a subset of the k populations for which there is fixed minimum prob-
ability P* over the entire parameter space that the best population is included.
The procedure selects a random number of populations between one and k, the
actual number depending on the data. A few recent contributors in this area
are Panchapakesan (1969, 1971), Gupta and Nagel (1971), McDonald (1972)
and Huang (1972). A unified account of some of the general theory can be
found in Gupta and Panchapakesan (1972).

The goal in this paper is to study single-sample procedures which give more
flexibility to the experimenter than does either the fixed subset size rule or the
subset selection procedure by allowing him to specify an upper bound, m, on
the number of populations included in the selected subset. Should the data
clearly indicate that a particular population is best, this type of rule retains the
advantage of the subset selection procedure over the fixed size subset rule in
allowing selection of fewer than m populations. On the other hand, if the data
make the choice of the best populations less obvious, this rule selects a larger
subset but guarantees than no more than m populations are selected. Such pro-
cedures will be called restricted subset selection procedures.

In Section 2 the problem will be formalized and a class of procedures, {R(n)}
(one for each sample size n), proposed for its solution. The probability of a
correct selection using R(n) for arbitrary underlying 2 is derived. In Section 3
a two-stage reduction is used to determine the infimum of the probability of a
correct selection over the preference zone. Section 4 is devoted to a study of
the properties of the sequence {R(n)} and individual rules R(n), while in Section
5 the number of populations and number of non-best populations selected by
R(n) are studied both asymptotically and for fixed n. In particular their supre-
mum over Q is derived. Some applications of the general theory are made in
Section 6 to univariate normal populations for selection based on means and to
multivariate normal populations for Maholanobis distance to a known control
population. For the normal means problem, tables of the required sample sizes,
expected number of selected populations, and comparisons with the fixed subset
size procedures of Desu and Sobel (1968) can be found in Gupta and Santner
(1973).
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Finally it should be noted that optimality criteria for choosing the form of
R(n) or its defining statistic, 7,, are not considered here.

2. Formulation of the problem. Each r, yieldsi.i.d. observations {X;;} which
are also independent between populations. X;; has cdf F; corresponding to
P, e & which is now assumed to be a parametric family. Furthermore, it is
assumed there exists a sequence of Borel measurable functions 7, so that T, is
defined on 27" and

T, (X« s X)) =Ty >, 44 as n— oo .
In practice it suffices to assume T,, converges to a monotone function of 4; so
that the resulting selection problem is equivalent to the original one. The
assumptions concerning T, are that its cdf G,(y|4;) with support E,* depends
on F, only through 2, and is absolutely continuous with respect to Lebesgue
measure with pdf g,(y|4,). Also for each n it is assumed {G,(y|4)|4 € A} forms
a stochastically increasing family.

An indifference zone will be defined in Q by means of a function of p: A —
R such that

(i) p(+) is continuous and non-decreasing on A,

(2.1) (i) p(d) <2, AeA,
(i) p: A —oo A where A’={leA|p(2)eA}.

Q(p) = {2 Q| A4y = p(Au)}

Q%p) = {2€ Q| Ay = Ay = p(Aw)} -
The subspace Q(p) represents those vectors of 4,’s for which the best and second
best populations are sufficiently far apart so that the experimenter desires to
insure detection of the best one with high probability. Q(p) is called the pre-
ference zone, its complement the indifference zone and Q°(p) contains the so-called
least favorable configurations in Q(p).

Define

ExAMPLE 2.1.

(1) py(A) = 2 — 0,(0, > 0) = Q(p,) = {A| Ay — Ap—yy = 0,}, a location type
preference zone.

(2) ps(A) = 0,7*4(0, > 1and A C (0, 00)) = Q(p,) = {4]| Ay = 0,4p,_13}, @ scale
type preference zone.

3) Po(A) = 4 — 0,6, > 0), 0<2=0,0,/(0, — 1)

= 0,7'4(0, > 1), 2= 0,0,/(0, — 1)

(A = [0, 00)) = Q(ps) = Qps) N Q(p,), a mixed type preference zone.

REMARK 2.1. Since the emphasis in this paper is on the case 1 < m < k the
strict inequality p(4) < 4 insures that the indifference zone does not vanish.
However, it should be noted that the general theory formally reduces to give
the results of Bechhofer and Gupta for the choice m = 1 and m = k respectively
if the weaker p(4) < 4 is allowed.
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Finally, a general procedure for selecting a restricted subset of the k populations
will be defined. Let {#,()} be a sequence of functions such that each #,(+): E, —
R where |J,., E,* C E, and satisfies

(i) Foreach n and x, A,(x) > x.
(2.2) (i) For each n, h,(x) is continuous and strictly increasing in x .
(iii) For each x, A, (x)—>x as n—oco.
Define the procedure:
(2.3) R(n): Select 7, = T, = max{Ty_,.170> A, (Tpgn)} Where
Ty £ Ty = - -+ < Ty, are the ordered estimators.
ExAMPLE 2.2. For &,(x) = x + d/nt
R(n): Select ;<= T, = max{Ty_mi11n> Tien — 4/n%} .

Goal. Given P*, p(+) and the sequence R(n) find the common sample size n
necessary to achieve

(2.4) PJCS|R(n)] = P* V2eQ(p).
The event [CS| R(n)] occurs iff the selected subset contains ry,.

THEOREM 2.1. Forany Ae¢Q

(2.5) P,[CS|R(n)] = k=i ZSZI) V2w I je o bk G, 9(y)

X e 5,00 (G (Ba(3)) — G,'9()} dG, 2 (y)
where

{(FHi)|lv=1, ---, ()"} is the collection of all subsets of size [
from U@ ={1, ..., k} — {i},
FHi) = U() — F0) s
G.(y) = Gu(y | 450 -
The proof of Theorem 2.1 is straightforward and omitted.

3. Infimum of the probability of correct selection. The calculation of the
infimum of the probability of a correct selection will be accomplished in two
stages. In the first stage the k-dimensional infimum will be reduced to a one-
dimensional infimum and in the second stage conditions will be given which

allow final evaluation.
Let

. _T@a+b) ¢y, 0 w1
I(y; a, b)_wsow (1 — w)t-tdw

denote the incomplete beta function with parameters a and b.
THEOREM 3.1.
infy ,, P,[CS| R(n)] = infgo,, P,[CS| R(n)] = inf; 5, ¢(4, n)- where

§00, 1) = § (G | PO (G T BN sk — mym) 4G, (31
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ProoF. Itsuffices to show for all 1€ Q, P,[CS|R(n)] = inf, 4, ¢(4, n). Define
HT) =1, Ty = max{Ty_pyxys B (Ti)}
=0, Ty < Max{Ty_pia3 2y~ (Tpe)}
where the n is suppressed for ease of notation, and then P,[CS|R(n)] = E,[¢(T)].
Now both Ty,_,,.q; and Ty,; are non-decreasing functions of T, for [ < k when
all other components of (T,, - - -, T,) are fixed. This implies ¢(T) is monotone
in T, for | < k if all other components of (T, - - -, T,) are fixed. The result
now follows from an application of the lemma by Mahamunulu (1967) and Alam
and Rizvi (1966).

If ¢(2, n) is monotone (increasing say) in 4 and there exists a smallest 4, A’
then the k dimensional infimum will be completely evaluated as

infy,, P,JCS| R(n)] = ¢(A 1) -
The following lemma due to Gupta and Panchapakesan (1972) can be applied
to give conditions for such monotone behavior.

LemMA 3.1. Let F(+|2)| A e A} be a family of absolutely continuous distributions
on the real line with continuous densities f(+|2) and ¢(x, 2) a bounded real-valued
function possessing first partial derivatives ¢, and ¢, wrt x and A respectively and
satisfying regularity conditions (3.2). Then E;[$(X, 2)] is non-decreasing in A pro-
vided for all A e A
(3.1) f(x|2) 0p(x, 2) _ IF(x|A) ad(x, A) >0

04 02 ox

for ae. x,

and

(3.2) (i) forall 2eA, 956({;‘;2) is Lebesgue integrable on R ;
X

‘(ii) forevery [2,4] C A and ;€ A thereexists h(x) depending
onlyon A,i=1,2,3 such that

W 12 — DB <y viaein, 2]

and h(x) is Lebesgue integrable on R.

REMARK 3.1. Even though not explicitly mentioned in Gupta and Panchapa-
kesan’s paper, regularity conditions are required in the proof of their result and
(3.2) is one such set of conditions. The assumptions (3.3) on G,(y|4) insure
that (3.2) holds in our application of Lemma 3.1 to ¢(4, n). For any [4,, 4,] C
A’ and 2, ¢ A’ there exist e,(y) and e,(y) such that

63 @ U <ep) vaer, )

where. (5 e(y) dG(y | 2)(S &) 4G.(y|2) < o
) |29 <e) vae 2l

where (§ ex(y) dG,(h.(y) | %))(§ €x(y) dG(y | 45)) < oo .
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THEOREM 3.2. If E,* = E, forall 2e A\, if G,(y|A) is continuously differenti-
able and satisfies (3.3) and all derivatives in (3.4) and (3.5) exist and if for all
re N

G4 0.1 LD _p)g,m,0) 1 p(2)) 201D 2 0
ae.in E,,

(3-5) 9.(y14) @%ﬂ» - gn(ylp(l))@—a(;ﬂ >0 ae.in E,,

then (2, n) is non-decreasing in 2.

Proor. Note that ¢(4, n) = {5 ¢(y, 4) dG,(y|2) for the choice

6(ys 2) = (Go(h(y) | PN} (5%6'{% k—mm).

Hence

20D = (k= UG () P08, | POV OV B K = )

+ {G (B () | ()Y *B(K(ys NG (Ra(¥) | P(A))9.(Y | P(2))
— G, (y | p(N)R (¥) - 9.(h(¥) | P(A))}

W01 — (k= (Gt @)y LoD 1k (5, 205k — m, m)
+ {Gu(a() | PANF =00k, 2)
x {6,100 | ) 28D gy pay) 25N [P
where

Ku(ys 2) = Gu(y | P())[GCu(hu(y) | P(2) and
b(y) = (k — m)(EZu)y "1 — )™,
So (3.1) becomes: for all A1¢ A’

0,012 — 1) GEONPED (6, 1, (3) K. 15 k = m, m)
B ) {Gulta() | p(@) 202D
3.6) — Gy 1@y DI ] _ 7612
X [0k = DG,(1a(0) P01 ) | PO DK, 25 ke = m,m)

+ O(Ku(y> ONGu(hu() | P())9:(7 | P(2))
= k(DG | P(A))Iu(B(Y) [P} 2 0 aecin E,.

By rearranging terms, (3.6) can be seen to hold if for all Ae A’

@1 a1 2B0PA) 601D o papl 20 aein E,
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and

{60 12) 2GLDNPED 1 13)9,0,(7) 2y 221D

(3-8) X Ak — DIK(y, 2); k — m, m)G,(h,(y)| p(2))
— b(Ky(y, )Gy [p(A)} 20 ae.in E,.

Now a simple computation shows that forany0 <aea<c<landl <m<k
(3.9) (k — l)cK(a/c; k — m, m) = ab(a/c)

and so the second factor in (3.8) is nonnegative since for all y e E» and 1e A’
we have 0 < G,(y|p(R)) < G, (1, (y)|p(R)) £ 1. Hence (3.8) and (3.7) reduce
to (3.4) and (3.5). Similar arguments show that (3.3) implies the regularity
conditions required for Lemma 3.1 and hence completes the proof.

REMARK 3.2. The proofs of Theorem 3.2 and Lemma 3.1 also show that if
(3.4) and (3.5) are identically zero, then ¢)(4, n) is independent of 4, and if (3.4)
and (3.5) are non-positive, then ¢(4, n) is non-increasing in 2.

4. Properties of {R(n)}. The properties of both the sequence {R(n)} and the
individual rules R(n) will be studied. It will first be shown that any (P*, p(+))
requirement can be met by choosing a sufficiently large common sample size .
For 2¢Q let

4.1 pi"(i) = P,[R(n) selects =] .

DEerFINITION 4.1. The sequence of rules {R(n)} is consistent wrt ' means
infy, P[CS |R(n)] — 1 as n — co.

DEerFINITION 4.2. The rule R(n) is strongly monotone in  , means

p."(i) is 1 in  2A;; when all other components of 4 are fixed,
is | in A (j # i) when all other components of A are fixed.

THEOREM 4.1. If there exists N =1 and 2 e A’ such that for all n = N
inf, ., ¢(4, n) = (4, n), then any sequence {R(n)} defined by (2.3) is consistent
wrt Q(p).

Proor. From the hypothesis of the theorem and the result of Theorem 3.1
we have for alln = N

(42)  infy,, pCS|R(n)] = § u(y, A) dG.(y | ) where

ap(_Gu(y1p(R) .
w3 D) = {Gala(0) | PN (2L POD ke — m,m)
G.(.(y)| p(2))
Also T;, —, 2, as n — oo = G,(y|4;) — {1355
Since ¢(4,, n) < 1, it suffices to show that forall 1 > ¢ >0 3M> forall n >
M, §u(y, 2)dG,(y|4) > 1 — ¢'. Since p(d) < 4y, Fa 3 p(A) < a < 4,. Given
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1>¢ >0lete=1— (1 —¢')tand choose M > N>

(@) G (a]4,) < ¢ (since a < 4y)
() {Gu(hu(@) | p(A)Y UG o | p(A0)); k — m, m) > 1 — ¢ (since hy(a) > a >
P(4))-

Soforally > &

(2) 1 2 G,(1(y)|P(2) Z Gu(h(@) | p(40))
(b) G.(y|p(4)) = Gu(a|p(4))
which implies that for all y > «

Wps ) Z (Gl @) | AN (—G—%‘(‘—y')ﬂl(l% k—mm)z1—e.

So finally for all n = M,
§ (95 40) dGo(y [ 20) = §Z¥(p> 4) dG.(y | 40)

(1 —¢) §2dG,(y]4)
1 —¢. O

v v

THEOREM 4.2. Any rule R(n) of form (2.3) is strongly monotone in x,, for any
i=1,..-., k.

Proor. Since p,"(i) = E,[W(n)], where
(4.3) Wyn) =1, Ty = max{Ty_pixp 2™ (T}

=0, otherwise,

the result of Mahamunulu-Alam-Rizvi can again be used to show the desired
monotonicity. Arguments similar to those in the proof of Theorem 2.1 show that

(A) Wy(n) is non-increasing in T, (j # i) when all other components of T
are fixed

(B) W,(n) is non-decreasing in T,, when all other components of T are fixed,
and hence complete the proof.

Gupta (1965) has proved that the subset selection rule which he studied pos-
sessed the properties of monotonicity and unbiasedness. Recall these definitions.

DEFINITION 4.3. The rule R is monotone meansforalll < i< j< kandle
Q, P,[R selects 7 ;] = P,[R selects «,,].

DEFINITION 4.4. The rule R is unbiased means for all 1 < i< kand 2¢Q
P,[R does not select 7] = P,[R does not select x,].

CoRrOLLARY 4.1. All rules R(n) in the class defined by (2.3) are monotone and
unbiased.

Proor. Since monotonicity implies unbiasedness it suffices to show that
P i) < pMi + 1)foranyi =1, ...,k — 1 and 2€ Q. Assuming for notational
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ease that 4, = 4, it follows that

pa"(i) = Py, ap(d)
S POy hyap 2y Ao () since p,"(i) is 1 in g,
= P:le'"»11—1’1i+1’1i+1v2i+z"“»1k>(i + 1)
since both z,, and r,,,, have the same cdf
éP(nxl""’zi—l’xi'1i+1”"’Zk)(i + 1) since p,"(i + 1) | in Ay,
=pi+1). g
REMARK 4.2. The above proof shows that any rule which is strongly mono-

tone in 7, for i = 1, ..., k is monotone.

5. Number of selected populations. If S(n) is the number of populations
selected by R(n), if T(n) is the number of non-best populations selected by R(n)
and if p,*(i/) and W(n) are defined by (4.1) and (4.3) respectively, then the fol-
lowing representations hold
G1)y Sy =ZiaWin),  TmZIS Win),  pi() = E[Wym)].

THEOREM 5.1. Forany 2e¢Q

k-1 . .
E[S)] = Tt Dtk B8 17 Te ,100:90) e s t0lGaP(a(2))
— G, P())}dG, () -
Proor. It follows from (5.1) that E,[S(n)] = Xk, p,[R(n) select w;)]. An

argument similar to that in the proof of Theorem 2.1 serves to evaluate each
term in the sum and completes the proof.

REMARK 5.1. The expected value of T(n) can be derived in a similar manner.
In the remainder of the section two topics will be studied:

(a) Asymptotic properties of the sequences {S(n)} and {T(n)}.
(b) The supremum of E,[S(n)] and E,[T(n)] over Q.

THEOREM 5.2. Forany 23 Ay > Ay_yy, p"()) — 1 fori = kand — 0 fori < k

asn— oo.

Proor. Case A: i = k. The strong monotonicity of R(n) implies p,*(k) =
pu(k)y where 2 = (Ay_1p + + 5 Ageys Apy)- NOW taking 2) = Ay, and p(2)) = A_y
in the proof of Theorem 4.1 yields p%(k) — 1 as n — oo, and gives the result.

Case B: 1 <i< k. Let
(5.2) [ ) = e #,10Ga (D) Ilie 5 ,10{Galha(y)) — Ga()} 5

then p,"(i) = Xki .. Z}S’zl) § fi4(»)dG,”(y) and it suffices to show
{ fi*(y)dG, " (y) — 0 as n — oo for all [ and v.

Subcase (1): For land v such that k € &'(i). Pickaanda’s 2, < a<a’ <
Ay- Now since A,(a) — a and a’ < 4y, for all ¢ > 0 there exists 3 N3 for all
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n=N

G, ®(a") < ¢f2, hy(a) < o, G, a) >1 —¢f2
which implies that for alln > Nand y < «

[ () = {62 (1(y) — G ()
< G.P(hy(y))
< G,®(h (@) £ G, P (a') < 2.
So finally
0= {f(»)dG.O(y) = (2 /2(9) 4G, (y) + §2 i1 (9) dGLO(y)
< 12¢/2dG,0(y) + §214dG,(y)
<e Vn=N.
Subcase (2): For [ and v such that k e & }(i). Again using a straightforward
argument like the above, the desired result follows.

COROLLARY 5.1. For any 2€ Q 2 > Ay_yyp Wi(n) —, 1 for i =k and —,0
fori < kasn— .

Proor. Foranye > 0, P,[|W,(n) — 1| > ¢] = P,[W;(n) =0] =1 — p;"(k) —
0 as n — oo and for i < k, P,[|W,(n)| > ¢] = P,"(i) —> 0 as n — co.

REMARK 5.2. Since all random variables studied in this section are uniformly
bounded it follows that convergence in L? and probability are equivalent.

Using (5.1) and (S(n) — 1) < (S(n) — 1)* together with the convergence in
probability of the W,(n) random variables we obtain

COROLLARY 5.2. For A€ Q such that Ay, > Ay_y

(1) S(n)—,, and T(n) —,0 as n — oo and hence

(2) E,[S(n)]— 1 and E,[T(n)] — 0 asn— co.

The next results will study some properties of S(n) when n is fixed. In parti-
cular, conditions will be given which guarantee that the supremum of E;[S(n)]
in Q occurs at some point 2 = (4,, - - -, 4,) for which 2;; = 4;,. The condition
(5.3) will be assumed in some of the theorems which follow.

(5.3) (i) EA=E, forall AeA.
(ii) For any [4,4,] C A there exists ey(y) depending only on

A, and Zzslgﬂgl—z) = e(y) where

(§ €(1) dGo(h(y) | 1))(§ ex(hu(y)) dGu(y | X)) < oo forall ' = 4,.
THEOREM 5.3. If (5.3) is satisfied and for all 2,, 2, in A with 2, < 2,

0G,(h(y)| 4) 9.y 4,) — 3Gy | 4) 9| 2D () =0 ae.in E,
o (y14) 7 (ha(y) )
1 1

then E,[S(n)] is non-decreasing in Ay on A(A) = {Ae A4 < Ay} for any fixed
ez~ ++> Aww)-

(5.4)
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ProoOF. Fix Ay < - -+ < Ay, for the following argument and then E,[S(n)] =
Ty(A) + T,(A) where

Ty(2) = Sizhn 80§ f(9) 4G,0()
Ty(2) = =, 20§, () d6,9(y)

where f;*(y) is defined by (5.2).
Now T,(2) can be rewritten as

TZ(Z) Zl=_ —m Z( ! ) Ziele U0 SEnfil'V(y) dGn(”(y)

Zl k—m ZSIZI) Ziele Fyl SEnfil,y(y) dGnm(y) ‘

For any A C {1, - - -, k} of size s, let {F(4)|v =1, ---, (")} be the collec-
tion of all subsets of size [ from {1, ..., k} — 4. Note that for any fixed / =
k—m, Jk—1landi=2, -,k {F)|1 e F) = (L1, i u {1} v =

1,k )}, whlleforanyl_ k —m, -, k—2andi =2, .-, k, {F)|1l¢
A = {1 v =1, - (7))
So

-1 k ¢=D) Ly @ 0]
Ty(A) = 2iili-m PP It SE W ()G, M (y) 4G, (y)

D D B0 s, ZEONGO) — 6,0} 6,0)

where

(1) Wil’y()’) = Hjey,,l—lu,i) Gnm(y) Ha‘e .;yl‘l(l,i){G'lb(j)(hﬂ(y)) - Gn(j)(y)}

@) ZM(0) = se o a0 G0 e 710,0{00 P (B(3)) — G.P()} -
Next integrating 7'(2) by parts and noting that for fixed [ = k —m, -+, k — 1
andi =2, -+, k, {FH) |ie S )} = (AL u i}y =1, -+, (1)), while
for any l=k—m,-..,k—2 and i=2,...,k, (F()]ieFK1)}=
(ML, i)|v =1, -+, (%)}, we obtain that

1(,2) =1 Zl L Z(z 1) SE,, WJ’”(y)Gn‘“(y) dGn""(y)

— oy o, 2 5, 2B 0060 (). ()R ()
g dy

Hence combining and cancelling terms it follows that

ES()] = 1+ Sitn Dhe 18D §o ZI(HG (1))

— G, 209D (YDA (V)} dy
and finally

¢.5) O mi L w28 6 200)

3G, (13 oy Ga®) o h (o
x (PO 0D g 0y) — EO) g0 )]



RESTRICTED SUBSET SELECTION 345
But (5.4) gives for everyi =2, ..., k
G LD go(y) — WD g 0, (/) 20 mecin E,
04y 04y
which implies the derivative in (5.5) is nonnegative and completes the proof.
ReMARK 5.3. Condition (5.4) is essentially the same requirement as that made
by Sobel (1969) and Gupta and Panchapakesan (1972) in order to show that
sup, E[S] be attained for their rules when the distributions are identical. In
location or scale parameter problems it reduces to the requirement of MLR.

CoROLLARY 5.3. If for every fixed Ay < - -+ < Ay, {dE,[S(n)]/dAy} = O for
Ay in A(Ary), then the supg E,[S(n)] = sup,., 7(4, n) where

5.6 A, n) =k 5 2{G(h(y)| 2 k—q(M;k_m,m)dG,, 2).
(5:6) 14 n) = k{5, {Gu(h(y)| D)} G.h )1 (14)

Furthermore, if the hypotheses of Theorem 5.3 hold for 2, = 4, then y(Z, n) is
non-decreasing in ; hence if there is a greatest element 2, e A, then supg E,[S(n)] =
(40> 7).

Proor. It suffices to prove for all ¢ < k and fixed 4;,,,; < --- < 4, that
E,»[S(n)] 1 in 2 on A(Z;,,,;) where the underlying A(q) = (4, - -+, 4, Agp1p> ** *»
Ay). Let 2 = (4, - -+, 4y;) and note from Theorem 5.1 that E,[S(n)] is
invariant under permutations of the elements in 4. So

dEo[S(M] _ sog OEASM]|  _ q9E4[S(n)]
da oAy, e 04 Q)
But from the previous proof
B[S 5.
0y e —

Hence the supremum over Q of E[S(n)] occurs at some point where all the 4;,;’s
are equal. Since y(4, n) = E[¢(Y, 4)] for
(G014 .
90 2) = (GO | D1 (20D — m, ),
Gu(ha()14)
Lemma 3.1 can be applied and the sufficient condition (3.1) that y(4, n) be non-
decreasing reduces to

(Gt () | D= {g(y 1 3 20ED _ IGULD 6,15 1, ()}

G.y1Y) ., _
X {(k — 1G),(hu(y) | )] <W sk —m, m)

y G.(y|4)
— G (y| )b <W>} >0 Vi andae. y

= {0y 2EEND _ IGOND .4, 3) |1, ()} 2 0

Vi anda.e. y
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since the third factor is nonnegative by (3.9). The final part of the result is
obvious.

REMARK 5.4. While the hypotheses of Theorem 5.3 imply those of Corollary
5.3 in the regular case, these hypotheses are also satisfied in some non-regular
problems, for example, in selection from uniform populations.

Note that the expected number of non-best populations selected can be writ-
ten in the form

(5.7) E[T(n)] = EJ[S(n)] — pa"(k) -

COROLLARY 5.4. If the hypotheses of Corollary 5.3 hold then supg E,[T(n)] =
[(k — 1)/k] sup;cs 7(4, n) where y(Z, n) is defined by (5.6).

ProoF. For any 2 = (A, - -+, Ayy) € Q let A([k]) = (Augs - - -5 Apey); then for
all 2 € Q the hypotheses imply E,[S(n)] < E,u,[S(n)]. Also the strong mono-
tonicity of R(n) implies p,"(k) = p%u (k). So by (5.7)

(k —1)

E[T(n)] = Exup[T(n)] = 7(Ags 1)

implies supg E,[T(n)] = (k — 1)/k sup,c, 7(4, n).

REMARK 5.5. From Corollary 3.3 it follows that y(4, n) is non-decreasing in
2 if the hypotheses of Theorem 5.3 hold for 4, = 4,.

6. Applications. In this section we apply the results of this paper to some
problems of selecting from univariate and multivariate normal populations.

I. Suppose m, ~ N(y;, 0%),i =1, ..., k where the common variance ¢* is
known and the experimenter is interested in selecting the population having
largest p,. We take T,, = (I/n) Y}"_, X;; and then 2, =y, and G,(y|4,) =
D{n}(y — p,;)/o} where @ is the cdf of an N(0, 1) random variable.

Since this is a location parameter problem we take p(y) = ¢ — 6(6 > 0)
h,(x) = x + do[n* and obtain Q(p) = {¢| gy — -1y = 0} and R(n): Select 7,
X, = max{Xy,_,...» Xy — do/n?}. Using Theorem 3.1 and Corollary 5.3 it can
be seen that

(6.1) infy,, P[CS|R(n)] = sgm{@<y+d+(£;)_a>}k_l

Oy + 4) Ck
I(@(y S A m> @)

(20,
6.2)  supy E[S(n)] = k 2 (0 + P (5 Pk — mym) d(y)
(6.2) Pa E[S(n)] = k {2 {D(y + d)} o0y -+ ) )
One choice of {R(n)} can be made by setting the right-hand side of (6.2) equal
to 1 4 ¢ and solving for 4. Having chosen the sequence {R(n)}, the proper
sample size can be found by equating the right-hand side of (6.1) to P* and
solving for n. Additional details including comparison with the fixed size
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procedure of Desu and Sobel (1968) and tables of constants required to implement
the proposed procedure are given in Gupta and Santner (1973).

II. Now suppose =, is p-variate normal with mean vector g, and covariance
matrix Z(N,(g,;, X)) fori = 0,1, ..., k. The common X and g, are both known
and 7, may be thought of as a standard or control population. It is desired to
select that population which is furthest away from =, in the sense of Mahalanobis
distance so that 4, = (g, — £,)’Z7 (¢, — p1,). Gupta (1966), Alam and Rizvi
(1966) and Gupta and Studden (1970) have considered this problem. We take
T,, = (Xi; — t)'E7YX,; — #), p(2) = py(4) of Example 2.1, h,(x) = d*x(d >
1) and

1y AT
F(x]|2) = e Za’=0‘27-j—!

. yqlz_le—y/2
" D(g/2)2+"
sothat T, —»,p + 4,asn — oo and G,(y| 4;,) = F,,(¥|4), Q(p) = @, n Q, where
Ql = {ZH[H — 2[,,_1] _2__ 51} and Qz = {le[k] z 522[k_1]}. AISO R(n): Select 7Ti d
T, = max{Ty_ni1im 47" Tpign}-

The following are known properties of F,(y|4):

) where E (x) = §

b

%gg_'ﬁ = 3[F, oy |2) — Fy(y| D]

= —fpra(¥|4) where f,(y]4) = de;j,)lx) ,

Lo 1D 4) | indand {2f,, (]| )}/f,(¥]4) T in 4. Inaddition a result from
Chapter 7 of Lehmann (1959) can be applied to show that £, ,(y|2)/{yf,(y]4)}

is non-increasing in y and yA.
Since f,(y|4) has MLR, Theorem 3.1 can be applied to show that

infg,, P[CS|R(n)] = inf;5; ¢(A, n) where
P4, n) = {7 {Fo,(yd"" | (2 — o))}
Fo,([(A—=101))., _
(6.3) x 1<m,k m, m) dF,,(y|2), lel

= & {Fap(yd¥™| 0,712}

Fop(1]0,712) .
><1<W,k—m,m>dFM(y|2), el
where I, = [d;, 0,0,/(d, — 1)) and I, = [0,0,/(0, — 1), o0).

In this problem the one-dimensional infimum ¢(4, n) is not independent of 2
as was the case in the normal means problem. However, for 1 < d < 4, and
using the properties of the f,(y|4) density listed above, a piecewise application
of Theorem 3.2 on 7, and /, shows that ¢)(4, n)is | in 2on/ and { in 2 on I,
and hence infy,, P[CS|R(n)] = ¢(0,0,/(d, — 1), n). Theorem 4.1 applies since
8,0,/(0, — 1)e A = [0, o), and hence infy,, P,[CS|R(n)] — 1 as n— co. All
other usual properties hold for R(n) and in particular (5.4) holds (as verified by
Panchapakesan (1969)) and hence sup, E[S(n)] = sup;s, 7(4, n) and (4, n) 1 in
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A where

-— o " - n. (ylz) .
A,n) =k F, (yd'™| A} 11<—”-_,k m, m)dF 1) .
7(4, n) §& {Fap(ydi™ | 2} F, (yd"*|2) w(V | 4)

Using a probability argument this supremum can be evaluated as lim,_,, (1, n) =
m. We obtain sup, E[S(n)] = m. Details of the above problem as well as other
applications to regular and nonregular problems can be found in Santner (1973).
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