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AN ASYMPTOTICALLY EFFICIENT SEQUENCE OF
ESTIMATORS OF A LOCATION PARAMETER!

By JEROME SACKS
Northwestern University

An asymptotically efficient sequence of estimators for the location
parameter of an (unknown) symmetric density f is given under weak condi-
tions on the tails of f. The estimators are related to the usual linear com-
bination of order statistics except that the unknown f has to be estimated
and only some of the order statistics are used.

1. Introduction. Let X, ..., X, be i.i.d. random variables with common
distribution function F(x — ¢). The problem is to estimate # when F is unknown.
In (1.6) below, we define a sequence of estimators {f,} which is then proved to
be asymptotically efficient in the sense that its asymptotic variance coincides
with the Cramér-Rao lower bound for any F in the class of distributions defined
by Assumption A below.

Such theorems have been the goal of many investigations in recent years. We
mention, only in passing, the work of Huber [6], [7] and many others who deal
with related problems but with a class of F’s more narrow than the class defined
by Assumption A below. More directly related to this paper is the work of Stein
[9], Bhattacharya [1], van Eeden [11], Weiss and Wolfowitz [12], Takeuchi [10],
and Fabian [3].

Stein [9] was the first to indicate the possibility of theorems of the kind given
below. Bhattacharya [1] discusses (among other things) the asymptotic efficiency
of the maximum likelihood estimator when the observations are grouped and
thereby obtains an almost asymptotically efficient sequence of estimators. Van
Eeden [11] converts asymptotically efficient tests (see Hajek [5]) into an asymp-
totically efficient estimator under assumptions stronger than those of Assumption
A (in particular, van Eeden requires 4’ to be monotone on (0, 4)). Weiss and
Wolfowitz [12] give a sequence of estimators which is asymptotically efficient
among all estimators based on trimming away p-percent of the largest obser-
vations and g-percent of the smallest observations. It is not hard to see that 4,
could be easily modified to work in their formulation and without assuming (as
Weiss and Wolfowitz do) that /" exists (see Assumption A for the definition of
k). 6, is close in spirit to the estimator proposed by Weiss and Wolfowitz.
Takeuchi [10] proposes a complicated sequence of estimators but gives no proof
of asymptotic efficiency and some of the data in [10] suggest that Takeuchi’s
estimators may behave poorly when, for example, F is Cauchy. In[3], Fabian
gives an asymptotically efficient sequence of estimators by use of stochastic
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approximation methods. The conditions under which Fabian’s results hold are
overlapping with ours. In particular, he requires a first moment for F, #’ con-
tinuous on (0, 1), and 4 increasing on [0, 1]. Our conditions are different in a
neighborhood of 0 and are minimal outside a neighborhood of 0. The estimators
6, seem to be easier to calculate than Fabian’s.

We turn now to the Assumptions and definition of §,.

ASSUMPTION A. 1. F has a density f/ with respect to Lebesgue measure, f is
symmetric around 0, the support of f is an interval which may be infinite and
f > 0 on the interior of the interval.

2. Let h(f) = f(F~'(#)) with #(0) = k(1) = 0. Then A is absolutely continuous
and
(1.1) 0 < §oh” =ELf'|f) < oo .

3. There is an ¢ > 0 (¢ may depend on %) such that A’ > 0 on (0, ¢).

4. Either

4.1. liminf, ,4’(f) > 0 and there is ¢ > 0 and a constant M, such that for all
0<a<b<e,

(1.2) {2 < (b — a)M,h(a)/a
or

4.2. liminf, ,#(f) = 0, #’ is bounded on (0, ¢), and
(1.3) k'(b) < M. h(b)|b forall 0<b<e.

A.1 needs little comment except to note that one could relax the condition
that f > 0; the estimator given in (1.6) would then have to be altered. A.2 is
essential for the theorem. A.3 is a mild regularity condition. (1.2) (also (1.3))
is an oscillatory condition which we need in our arguments. Stated as a con-
dition on f, (1.2) becomes, for some y, < 0,

(1.4) f) — f) <M, fx)

F(y) — F(x) F(x)
for all —o0 < x <y < y,. Note that (1.2) is satisfied if #’ is bounded away
from 0 and oo on (0, ¢) so that (1.2) has force when lim sup,_, #'(f) = co. When
k' is decreasing on (0, ¢), (1.2) is satisfied. Most of the “usual” densities can be
handled by A.4.1, but A.4.2 is needed to handle such densities as the Cauchy
and other members of the r-family. A.4.2 is satisfied if A'(¢) ~ ct* (a > 0)
as t—0. A.4.2 can be replaced by other conditions, e.g., #’ ¢ Lip () and
lim, , A1) = 0. We do not give the proof when A.4.2 holds, but it is easy to do so
along the lines of the given proof under A.4.1 with usually less complication.

Everything that follows depends on n, and to alleviate the cumbersome no-
tation we shall suppress this dependence. All limits are as n — oo unless stated
explicitly otherwise. We shall use the usual o and O notation and the o, and
O, notation. Statements of the form ¢, = O(1) will mean sup, ¢, = O(1).
Similarly with O replaced by o, o,, or O,

Let {r}, {4}, {d} be sequences of positive numbers satisfying
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AssumpTiON B. 1. 7,1,d — 0,

2. diy7t = o(1),

3. n7id™ = 0(1),

4. rl|log r|2~* = O(1).

Examples of 4, y, d which satisfy Assumption B are easy to give. d =nt is
an obvious choice for d from B.3 as we shall see below. Then, for example,
r=n"t 2= n"t for 0 < § < § works as does y = n~*logn, 2 = n~¥(log n).
If {r, 2, d} satisfy B then so do {r, 2, d} where 2’ = A and ' — 0.

Let #y, #, + -+, 4, (k depends on n)satisfy 0 = 1, < 1, < -+ < 1, < 1, = 1,
L+t =1, 4>7, ti,, —t;=d. For simplicity we will assume that
t(n + 1) and y(n + 1)/2 are integers. When this is not satisfied some minor
adjustments have to be made in the arguments in Section 3. When #(n + 1) is
an integer let X(f) be the #(n 4 1) ordered observation from the sequence
X -+, X,. Define

(1.5) n=6L+71/2, o=1—72,
h, = 1/(X(ze) — X(0,)) » h= (h + ﬁk—i+1)/2 .
Thus 4, is an estimate of f(F~'(t,)) and % is a symmetrization of 4.

Let I, be the smallest i such that, for all i <j <k —i+ 1, h; > 2. Let
I=1I +1,J =k — Iand define

(1.6) 0, = 57 (hiss — B iy X(ti10) — B X)) TF (hiy — h)* -

A word is in order to explain the motivation behind the definition of 4, and
the significance of Assumption B. When F is known, then, as is well known,
there is an asymptotically efficient linear function of order statistics which,
under enough regularity conditions is given by

2= # () ) X ) e

This is, of course, based on the so-termed score function J(¢) = —h"h/\; h"%. If
we use only the k order statistics X(t,), ---, X(#,) then the corresponding
estimator is

(1.7) d=t 3% — h(t)h(t)X(2)]N R

Approximate 4" by a second difference and §j A" by d=* 3% (h(t,,,) — A(t,))%
Then sum the numerator of (1.7) by parts and ignore the end terms. This brings
us to (1.6) with % instead of % and the sum from 1 to k instead of from I to J.
When F is unknown it is natural to try to estimate A(z;) which we do by A(z,)
and proceed from there (this idea is common to all previous investigations).
Since X(f) is large when ¢ is near 0 and A(z;) may be hard to estimate accurately
when ¢; is near 0 it seems natural to “trim” or “censor” a suitable portion of
the observations. An obstacle to this program lies in the determination of the
appropriate trimming percentage. We determine this by letting the percentage
depend on the observations and {2}.
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The choice of y clearly affects the error in estimating % by 4 and the build-up
of errors in 6, will be affected by the number (~ d-?) of terms in the sums
appearing in (1.6) and we are able to control it only when d, y satisfy the
requirements in Assumption B. The choice of 1 is affected by the observation
that if 2 were too small the effect of trimming would tend to be lost. Some of
the requirements in Assumption B are probably technical but d = O(n~?) is
probably as good as one could expect.

In Section 3 we prove

THEOREM. If Assumptions A and B hold then nt(8, — 6) is asymptotically normal
with mean O and variance 1]\ h".

When F is known, the estimator of (1.6) with % replaced by 4 can be shown,
by arguing as in Section 3, to be asymptotically efficient under Assumptions A
and B. This result is related to results of Shorack [8a] (see particularly his
Theorem 2) but does not appear to be derivable from Shorack’s results.

The proof of the theorem is given in Section 3 and is essentially direct.
Lemma 1 is needed to deal with the randomness of / and J. Lemma 2 gives
the asymptotic behavior of the denominator of (1.6) and the behavior of the
numerator is then studied at (3.16) et seq. In Section 2, we gather some needed
facts.

We wish to acknowledge some helpful discussions with Donald Ylvisaker.
We also wish to thank Jack Kiefer for helpful comments about the result listed
below as (2.6).

2. Preliminaries. We collect some facts here that are used frequently in the
arguments in Section 3. Most are well known or readily obtained. Assume that
¢ = 0 with no loss of generality.

Let U(0) =0, Ul) =1, for 0 < ¢t < 1 with #n + 1) an integer, let U(¢) =
F(X(t)), and for other ¢ € [0, 1] define U(¢) by linear interpolation. The definition
of U implies that

(2.1 X(t) = F7(t) + {7/ @ 711—
When F is the underlying distribution, U(1/(n + 1)), - - -, U(n/(n + 1)) have the

same joint distribution as the n order statistics from a sample of ni.i.d. uniform
(on [0, 1]) random variables. Let W(f) = n}(U(¢) — ¢). Then

2.2) SUPs,c1 W(1) = O(1).
(2.3) lim, _, Sup,,_y<. | W(t) — W(s)| = 0.
(2.4) EW(s)W(t) = s(1 — 1)(1 + O(nY), s<t.

If (r,, 5,), i = 1, - - -, 4 are disjoint intervals then for 2 < m < 4
(@) ETIT (W(s) — W(r)) = O() IIT" (s: — 13) »
2.5)  (b) E(W(s) — W(r))' = O(1)(s, — 1),
(©) E(W(sy) — W(r))(W(s) — W(n))* = O(1)(s; — r)(s; — 13) -
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We will use
(2.6) SUPo<i<1 | W(t + €,) — W(t)| = O,(1)¢,t|log ¢, |t as ¢,—0

provided [log ¢, |t¢,~#n"* — 0. The verification of (2.6) is carried out by esti-
mating w, = sUPog;<i., |W((j + 1)e,) — W(je,)| by use of estimates of binomial
probabilities obtained from Feller [4], pages 168-179 as done by Kiefer [8]
(Lemma 2) and then, again following Kiefer, by showing that P[w, > ¢/6|w, >
c] = a > 0 where w, denotes the left side of (2.6). We will apply (2.6) when
¢, = 1, and Assumption B guarantees that |log y[tytn~! = o(1).

Let x; < X410 < -+ < x;. Let y;, i, <7 < i, be numbers in (0, 1). Let z,
be the smallest of {x,,y;, i, < i < i} and let z, be the largest element in the
same set. Let Xio1 = Zoy X1 = 21 Then y, e [xi+Ni_1, Xiin,] for some integer
N, which may be positive or negative. Thus, if y, > x,,

[h(ys) — h(x)| = 4 W] = Z5E0 (ivn B
and-there is-a similar estimate if y, < x,. Hence
(2.7) i [A(y:) — h(x;)] < max; <i<i, (V] + 1) S:‘} |A'|

which is a crude estimate but enough for our purposes. (2.7) will be applied
when x;, = o;, y, = 7, to yield

(2.8) 25 k() — h(o;)| = O()rd™ §5u |'] .

(2.7) will also be applied when x, = ¢, and y, e (¢, U(t,)) so that |y, — x,| =
0,(1)n~t = 0,(1)d and then max, (|V,| + 1) = O,(1) and

2.9) 25 1h(t) — h(y)| = O,(1) §a1|#] .
An estimate related to (2.7) is
(2.10) 2 () — K(x)I* < max, guq, |y — x| max, g (IN;] + 1) 2147

which is obtained by noting that |A(y;) — k(x,)] < |y; — x,| §2: 4%, and then
applying an argument like that used to get (2.7). When x;, = g,, y, = 7, we get

2.11) 24 (b(z:) — k(o) = O()rd=" §zi b

and when |x, — y,| = d 0,(1) we get

(2.12) 28 (A(ys) — h(x,))) = O,(1)d §z1 b .
Note also that

(2.13) lim, o h(H)t7 2 =0

because A’ e L,[0, 1] and A(f) = §¢H' < t3(§§h™?)t = o(1)r* as +— 0. Because
k' e L,[0, 1] it is also true that, when t, =0, t,—1, ~

(2.14) L (S hyfd — § o
(2.15) L (St byfr ~ rd= §o .
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3. Proof of Theorem. As noted in the introduction we will not give the
proof when A.4.2 holds instead of A.4.1. Otherwise Assumptions A and B will
be assumed throughout. We set ¢ = 0 with no loss of generality. Whenever
we write Y, we mean ),7.

From (2.1), the symmetry of F, and the symmetry in the definition of % (see
(1.5)) we obtain

3.0y 4, = B (o= h)es(FH(Ult0) = FHt0,) = hi(FHU) = F7H0)
5 (yys — hoy

Let ¥V, = F~YU(z,)) — F-((U(s,)) and then 4, = y/V,. Lets=sup{t|0 <=1,

h(f) = 2}. From A.1, A.2, A.3 we conclude that # > 2 on (s, 1 — ), A(s) = 4,
and 2 < A on [0, 5) if 2 is small enough.

LemMA 1. P[lt; — 5| > 27] > 0 as n — oo.

ProOF. Letd > 0and let & be the event {|sup; W(t;)| < K, all n = n,} where
n,, K; are such that P(£) > 1 — . Then to prove Lemma 1 it is sufficient to
show P[t;, — s > 27, &]—0and P[t;, — s < —27,&]—0. Let J, ={j|#; >
2y —2d + s,t; < 4}. Then

Plt; —5s>2y, &1 < 5, Plh; £ 2, &)
(3.1) <23, Pli, <2, &]
S22, P £V, &

=22, P[0 (hix)) — ) < Wisy) = Wo), & |

where x; is a (random) point in (U(s;), U(z;)) and because of the definition of
&,0;, — Kint < x; < 7; + Kjn~i. Let t;, = ¢ define I, for small ¢. Then, if
J £ 1,jel;, wehavefrom A.4.1, h(x;) — 2 > A(x; — 5) > A(0; — s — K;n™}).
Ifj > I, jeJ;, and n large enough we get h(x;) — 2 > p(¢) from the continuity
and positivity of 4 on [e, 4]. Then, using the Chebyshev inequality, (2.5), and
Assumption B, the right side of (3.1) is dominated by
Diieapist, PIW(T;) — W(o;) > A4 (o; — 5 — KinY)]
+ Djerpisr, P[W(z;) — W(o;) > rnti~'p(e)]

1
= O0(1) D;eriser 7702
( ) Z] J1»J§Ig T: (O'j — 5 — Kln_%)z

— O(lyr~n~' T4, (1 + md)~ + o(1)

— 01y~~~ T 1 4 d= 294 m™) + o(1)

= O(l)yy*d=n=22 + O(l)y~n=2d~ £50 m™ 4 o(1)
= O(l)y=d-'n=12* + o(1) = o(1).

+ O(lyy~'n~12d-1

Thus P[t; — s > 27] — 0.
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Let J, = {j|t; — s < —2y}. Then, as above,
Plt, — s < =21, €] = 2 3, P[A7nd(h(x;) — 2) > W(z;) — W(o;), €]
= Oy~ Z=*0/4 (r + md)™ = o(1) .
The proof of Lemma 1 is now done.
LEMMA 2. d' Y (B, — h))* — §§ ™ in probability.

Proor. To prove Lemma 2, it is enough to show that it holds with A, replaced
by 4,. Recall the definition of ¥, made before Lemma 1. It is easy to obtain

— (Uley 1 _ 1 7+ ”_éop(l)
(3.2) Vo= 356 (5~ i) t e
—__T k(o) — h(q.) —1p,—
= g+ gy e
where g, € (d,, 7;). Let
(33) atw) = $557 (4~ 05)
= ap e (L1
= @A (h(ai) h("i)>

for some a, € (U(z,), U(z,,,)) Where A ** = W(z,,,) — W(r,). Let a(s,) be defined
similarly with A;* = W(a,,,) — W(o,) instead of A;** and then let

3.4 a; = a(t;) — a(o;) .

L _ U
(3-5) B = He)  He)
(3.6) 0; = n~HA** B,

nt Kk _ A K
(3.7) § = h(a,) (4, A%).
Then
(3.8) Vin—=Vi=a, +dB; + 0, + §
and
(3.9) ﬁi+1 — b =7V, — VirdlViVin

= —h(o)h(o: 1) N, + dB; + 0, + E)(1 + p,)
where ,
o ~1p- k(o)) — 1(q:) | M(0441) — B(qira)

(3.10) o= o (it + 0(h) i) Mow) =1 ).

From (3.3) we get, with the use of (2.12),
77T X B o)k (o) (1 + p)
(3.11) = (1 + 0,()rd-0,(N X (Y1 ') + (328 H)']
= 0,(1)yyd*.
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From (3.5) and (2.15) we obtain

(3.12) 1 X Ko )i(0,,) (% _ %ﬂ))z (1 + oy

=171+ 0,(1)) T (554 = (1 + 0,(1)) §i 7.
We also obtain from (3.6)

T—2d—1 Z hZ(o.i)h2(o-i+1)n—lAi**2‘87;2(1 _|_ pt)2

(3.13) = (1 + o,()md==* T A**({5i k)
= 0,()nd?
where we have used
(3.14) EX Ayl < DY EAM(Se By [y
= O(l)dyd=* = O(1)y .

The same kind of argument (using the boundedness of #) and Assumption B
produces

1T L (0 )E(04)E (L + 0,)
(3.15) = (I + o,()n77d* T K(0,,,)0,(1)d

= Op(l)n_lr_zd_l = Op(l) .

Combining (3.11), (3.12), (3.13), and (3.15) proves Lemma 2.

We turn now to the numerator in (3.0) and replace / by 4 (this will not affect
the conclusions), and put G; = n¥(F-%U(t,)) — F~Y(t,)). Then, using (3.9),
(3.16)  nid~' . numerator of (3.0)

= —d D MO+ df+ 0+ €)1+ p) (St - G,
Vi Vi
We will show that the right side of (3.16) is ~ N(0, { #”%), and this used with
Lemma 2 gives the theorem. To this end we prove Lemma 3 below, which,
together with (3.29)—(3.34), reduces the problem to the statement at (3.36). A
further reduction (described at (3.36)) to (3.42) then follows, after which we
prove (3.42), thus concluding the proof of the theorem.

LeMMma 3.

47 5 Woh(osa)er + 0+ 8)(1+ o) (et — G0) = o,1).

Vi+1 V,

(a;, 0;, &; are defined in (3.4)—(3.7).)

Proor. Letc; = h(a;)h(0;,:)(a; + 9, + &)(1 + p,). Then, from (3.11), (3.13),
and (3.15), we get
(3.17) y7d= 3 cf(t) = o,(1) .

Hence, using G; = O,(1)/h(t;), Cauchy-Schwarz, (3.17), and Lemma 2,

1 1 I
3.18) 4 Gi( __)=0 1)7-1d-1 37 e, hyyy — b,
( ) PIEA Vi V. H(Dr 2 e 10 L |
=o0,(1).
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Next, we let A, = W(t,,,) — W(t,), note that V, = y/h(y;) for some y, € (U(a,),
U(z;)), and obtain

(3.19) G =G = Ay + 0,008 h(p) ()
2
+ W(1) (h(x;) — h(x.11))H()s)
h(x)h(x;42)(r + O,(1)n~%)
for some x; e (¢, U(t;)). Since (A(y,)/h(x,))W(t;) = O,(1) we can use Cauchy-
Schwarz, (2.12) and (3.17) to conclude that the contribution of the second term
on the right side of (3.19) to d~* 3] ¢,(G,,, — G,)/V;is 0,(1). Use of (3.3), (2.12),
and Assumption B yields
0,(Vyd™" X h(o:)h(0:11) | |A4]
(3.20) = 0,()r (Tt AN (A(z)) — h(a)))?
= 0,()dHr™ = o,(1).
Referring to (3.5) and (3.6) we obtain

» h(y:) 1
. 0)h(0:41)0,(1 DA
e A i S L v ey

=777t (1 + 0,)A Ay (h(z,) — h(a)))
where 0, = o,(1). Since E|A**A,| = O(d) by (2.5), we get, with the use of
(2.11),

rd=nmt 3 0,0 *A(h(z;) — h(a}))

(3.22) = 0,(1)r™'n% 3] |h(z;) — h(a,)|
= o,(1)n¥d~*
= op(l) .
Similarly,
rodtnmh Yt A A(h(T,) — k(o))
(3.23) = 0, ()n~¥y= 1k |h(ry) — (o))

= o,()n~td* = o,(1).
From (2.5), (2.11) we get
E(R7: A7 By(h(z:) — k(o))* = O(1) Lzed*(h(z;) — k(o))" 4 O(d’)
= O(l)dy?,
and then
(3.24) a7 nt 3 A Ay(h(z:) — k(o) = O,()ntd™
= Op(l) .
Combining (3.22), (3.23), (3.24), shows that the left side of (3.21) is o,(1).
Use (3.10) and argue as in (3.22), (3.23), (3.24) to obtain

-1 h(ys) 1
3.25 d h(o)h(o,,)E(1 + p)A,

= 0,(1) + 7t T A(AS — AMR(y,)
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Let ; = s. From E|A;A**| = O(d), we get
y'nmid Z{x‘i’axus-zyd*l,n |A; AF*]|A(y)|
= r7in7d70,()y max,g, [A(y:)|
= o,()n~id= = o,(1)
and use of Lemma 1 then shows that
rinmidt 11 A AFHR(y,) = 0,(1) .
E(3 7 A;A**h(0,))" = O(d) so that
(3.26) r7inidt e Ay A **h(o) = O, (1)y~in~td
=o,(1).
Now let ¢ be a continuous function with {} (¢’ — ¢)* < 6. Then
h(y:) — k(o) = §2(F — @) + rd(o:) + 0,(L)r -
The argument which yields (3.26) and some by-now obvious calculations
produces
lr=in=td=t T A, A% *(A(yo) — h(o)))]
< (ST (A AN (35 () — ¢)) 4 0,(1)
= O, (Lyr~'n~d7adM(§5 (B — ¢))trd™ = O,(1)d .
These calculations imply that the left side of (3.25) is 0,(1), and this together
with (3.20), (3.21), and the remark preceding (3.20) yields

dt Y CEHV_—@ = 0,(1)

which with (3.18) gives the conclusion of Lemma 3.
To enable the further reduction of (3.16) we note

(3.27) 7Y (tigs) — R(E) W) (R(s) — h(on)[R(t) = 0,(1)
which follows with little difficulty from Lemma 1 and the observation that
W(t,)(h(z;) — h(a,))[H(t;) = o,(1), which itself is trivial when I, < i < J, while
forl, <i< I,
W(t,)(h(zs) — h(o))/H(t;) = Op(l)r/tz‘ih(ti)
= o,(L)r/k(t)
= 0,()r~* = o,(1)
(here we have used A.4.1, (2.4), (2.13) and Assumption B). We also use

(3.28) 17 X h(risn) — A(zi) — ((90s) — B(a )| V()]

X (Ih(z:) — h(o)|/h(t) = 0,(1) .
To get (3.28) first restrict the summation to I, < i < J, so that A(t,) is bounded
away from 0 for such i, then let ¢ be a continuous function with §3 (' — ¢’ < ¢
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and proceed much as in the argument following (3.26) to obtain that the
(restricted) sum is 0,(1). For I, < i < I, take the second moment which is

O™ Lrsisisr, [M(eem) — h(E)| 1(z540) — h(z))||A(z:) — h(o))|
o |h(z5) — Aoyt
h(t:)h(1;)
and use (A.4.1) and 3§ |A(ryy,) — k(7)) = 23, (h(zi1) — A(z;)) = O(L)A(t;) to
gain the estimate for the second moment
O™ % |h(zj42) — h(zy)|A(e;) — h(oy)| = o(Da(e)
where w(¢) »0ase—0. For /,_, <i<I,, weuseA.4.1and (2.13)to getto

O(D)d Ziigxar [W(t)h(t:)[1 = o,(1)s7dyd™ = o,(1) .

These estimates imply (3.28).
We obtain

(3.28a) 7 % Ah(z) — Ko} () = o,(1)

(4; is defined above (3.19)) by first summing (3.28a) by parts and then using
(3.27) and (3.28). It is not hard to obtain from results like (3.27), (3.28), (3.28a)
and arguments like those in Lemma 3 that

(3.29) % o)h(au)fooe (S — 94 = 0,1)
(recall p, is given in (3.10)).
Let
(3.30) Ay = B0 )h(o,,,)p, foﬁ))
B, = h(o,)h*(0:41)B, ‘Zi;wl))

where x; is some point in (¢, U(t))). Then we can sum by parts and use (3.2)
to obtain

% k(o) (Se — O1)
(3.31) =2 (B — A )r <1 + ———*—h(oi)h(;.)h(qi) + op(l)y‘ln-%>

+ (Ar — Ay (1 4 0,(1)) .
It is straightforward to see from (3.5) and Assumption B that
2 (B, — Ao, (Lyr=*nt
(3.322) = 0,()77 =t ¥ |h(0) — Kool k(=) — A(s)]
+ 0,(D)r~*n~t T |h(7iyr) — B(z:) — (h(0411) — h(a)))]
= 0,(1)
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and from (3.27) and (3.28) we get

(3.32b) 2 (Bi — Aua)(h(0:) — h(q:))[h(q:) = 0,(1) -
Similar reasoning permits us to conclude that
(3.33) 1L (B — Al) = 0,(1) + 77 X (B — Ai)

where A4/, B/ are obtained from 4,, B, be replacing k(x;) by A(z,).
We next show
(3.34) @) 774, =0,(1), (b) 77470 = 0,(1).

From A.4.1, we have

(o )h(0112)Br = Op(1)(h(z,) — h(ay))
= 0,(Hh(o)r[o;
and then, with the use of (2.13),
(3.35) 77 = O, ()YW(t)h(t))[t; = o (1) W(t))]t; .
From y < 22 = ({§ /')’ = o(1)s, Lemma 1, (2.5), (2.6), and Assumption B, we
get
Wit = 0,(1) (DO yrgyst)

= O,(I)riflog r[ts™ + O,(1)

= o,(1)rtllog 7[*27* + 0,(1)

= 0,(1)
which we use in (3.35) to conclude (3.34) (a). (3.34) (b) follows similarly. The
effect of (3.29), (3.31), (3.32) (a) and (b), (3.33), (3.34), and Lemma 3 is to
reduce the study of the asymptotic distribution of the right side of (3.16) to the
study of y=* 3} (B, — A4},,). To prove
(3.36) 1t 4 (B — Al,) ~ N, §5 4”)

we first use Lemma 1 to obtain (3.37) and (3.38) below, which permits us to
replace / by I, and J by J, in the summation in (3.36). (3.39) and (3.40) then
enable us to reduce (3.36) to (3.42). The verification of (3.42) is then the final
step.

Because of Lemma 1 we can restrict attention to the set where lt; — 5| < 2r,
and as in the proof of (3.27) we get

77 200 (h(0:) — h(0,42))(0:41) B Wt 1) H(t:10)
(3.37) = 0,(1)d Zietar [W(te) At 41) [t
= 0,(1)d Zf;t;; (ti40)[th
— o0,(1)d(47d-)s~ = o,(1) .
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For similar reasons

77 Lt B(0,40)h(0445) (B — Bip) W(tina)[h(ti11)

(3.38) = 0()r=* i (|A(0441) — B(o)| + [A(Tira) — A(zD)]) - [W(ti1)]
= O(L)dy™ Zietir Ho)|W(ti)lfos = 0,(1) .

The argument producing (3.27) also produces
(3.39) 17 Dz 1h(ia) — ()| 1BlA(0540) W (ti1)|
and (3.28) produces
(3.40) 7 D |Sim b — S B W ()|

h(0;41) 1l =
oy = 1| = o

h(0:41) — h(ti41)
h(t;41)

= 01,(1) .
From (3.37)-(3.40) and a summation by parts

2 (B — Ay
(3.41) = 0,(1) + Z'f; 7 M A0 )(0:11)Bi — P(0:41)(0 140)Bi) W (Ei11)
= 0,(1) + X777 h(0,)h(0:41)B: 4,
= 0,(1) + L7 77 (A(z:) — h(o:)A,
where A, = W(z,,,) — W(t,) as in the proof of Lemma 3.
The last step is to show

(3.42) L7 (h(z:) — k(0 ))A; ~ N(O, i A7) .

This is done quite easily if we use the representation of order statistics by
exponential random variables as in Breiman [2], let S, be the mth partial sum
of independent and identically distributed exponential random variables, put
m, = t,(n 4 1), write

Nin = 77H(1(7) — B(0))(Sp,y, — S, — (Miyy — m)n4,
and note that the left side of (3.42) is asymptotically the same as 227 Nin- Since
{n,} are independent,

Epe =0,  Z7Ep, =1+ o(1)§h",

and the estimate (E},)} = O(1)dy=*(h(z;) — h(s,))* permits us to use the Lindeberg
condition for normal convergence, we conclude (3.42) and thereby the theorem.
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Added in proof. Since this paper was revised R. Beran has published “Asymp-
totically efficient adaptive rank estimates in location models,” [Ann. Statist. 2
(1974) 63-74]. Beran’s estimators are based on ranks and are more complicated,
but are valid under minimal conditions. A recent manuscript by C. Stone “Em-
pirical approximate maximum likelihood estimators of a location parameter”
also gives an asymptotically efficient sequence of estimators which works under
minimal conditions.



