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ON A LOWER BOUND FOR MOMENTS OF
POINT ESTIMATORS!
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We consider the problem of estimating an unknown parameter ¢ on
the basis of independent identically distributed observations with a com-

mon density f(x, 6) and give some lower bounds for the accuracy of esti-
mates of § expressed in terms of the Hellinger distance

003 6") = § o (f¥(x; 0) — fHx; 02 v .

1. Introduction and results. Let X, X, --- be a sequence of independent
identically distributed random variables (observations) taking their values in a
measurable space (27, ) with common distribution %;. We suppose that &
depends upon an unknown parameter ¢ ¢ © and that © is an open subset of R*.
Denote the n-fold Cartesian product space by (27", <#") and the n-fold product
measure F5 x --- x 5, by . We write P, instead of F>; E,(.) denotes
mathematical expectation relative to P,.

Suppose that there exists a measure v on .Z2 such that all & are absolutely
continuous relative to the measure v and

"f = f(x; 0), xeZ,0e0.
Lety*=v x --- x vand
Rz
= L0 0 = T30, X = (e x) €2

The Hellinger distance
0(T0 Fo) = (2 |f1(x 0) — fH(x; 0)] dv)?
between the measures & and &, induces the distance
#(6; 0) = 6(F5; Fi)
between the parametric points # and 6’. Let |§ — 6’| be a distance between 6
and ¢’ in R*. Assuming certain regularity conditions it is proved in [2] that if
for some 0 < a < 8,
(1) KO)6 — 0" = p(0;0) Z K,(0)0 — )P, p(0; 0") = 565 0") ,
then there exist estimators ¢, of § such that
(2) limnﬂoo nlmEﬁlt'n - 0|m < ©o
forallm > 0and 0 < 2 < 1/8. If @ = B it is possible to let 2 = 1/8.
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In this paper we prove inequalities which are complementary to (2).

THEOREM 1. Suppose that
0(6; 0') < KO0 — 0], a>0,
and let T, denote an estimate of 0 satisfying
5, ™05 T,) = S,™(0) = Ey| T, — 0"
S, ™@; T,) = S,™(0) = inf,_, S, "™ (@ + (8K(O)n)~*u) .
Then
3) lim inf,_, n™/(S,™(0) + S,™(0)) = 2*"*(8K(0))~™~ .

The analogous result-also holds in a more general situation of sequential esti-
mation. This estimation procedure is as follows. We are given: 1) a stopping
time r, a random variable with positive integer values such that the events
{r = n} are measurable with respect to the s-algebra generated by (X, ---, X,)
and P,{r < oo} = 1 (we shall suppose for the sake of brevity that the s-algebra
of events generated by (X, - - -, X,) coincides with .Z2"); 2) a sequence of sta-
tistics T = {T,(Xy - --» X,)}- As an estimate of the parameter § we use the
random variable T,(X,, ---, X,). Following Ju. V. Linnik, we call the pair
d = [T, 7] a sequential estimation plan.

Let d = [T, ] be a sequential estimation plan. Define

S™(0; d) = S™(0) = E,|T, — 6|",
S§™(0; d) = S™(0) = inf,,_, S™(@ + (200K(0)n)~u) .

THEOREM 2. Under the condition of Theorem 1, for all sequential estimation
plans d = [T, «] with E;= < n, 0 €O,

4) lim inf,_, n™=(S™(0) + S™(0)) > 2-4m=1200K(0))~™'= .

Both Theorems 1 and 2 are almost immediate consequences of the following:

THEOREM 3. Let d = [T, ] be a sequential estimation plan. Then for all
6, 0’ € © with p(0; ') - max {E,z, E, t} < 200~* and all m = 1
(5) S(m)(a) + S(m)(al) g 2—4m—-1l0 — 0l|m .

If in addition v = n, then for all 0, 0" € © with np(0; 0y< }andallm =1
(6) S(m)(a) _I_ S(‘m)(al) g 2—4m—1|0 . 0I|m .

2. Proof of Theorem 3. If m > 1 then

S(0) + S™(O) Z (S9(0) + (V@)
> 2" X(SW(0) + SV
so we need only prove the theorem for the case m = 1.

Let
S®(0) = S(0) , E,T. = M(0), M(@@) — 6 = b(0) .
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Taking into account the measurability of {r = n} relative to the o-algebra gen-
erated by X, - - -, X, we may consider {r = n} as a subset of 2°". Then, by the
Schwarz inequality
|M(6) — M(©")!
= |Ef(T. — $(M(6) + M(0")) — Ep(T. — H(M(6) + M(©@"))!
(™) = | %1 St (T — 3(M(O) 4 M(O))(fu(x"; 0) — ful(x"; 07) '
S 28 Stemm [T — 5M(O0) + M@)|(fH(x, 0) + fu(x™; 07)) "
X L7 Sie=m [T — $(M(0) + M(67))|
X (fut(x™; 0) — fH(x"; 0) dv .
It is easy to see that
Siemm | Ta — $(M(O) + MO)I(f(x"; 0) + f1(x75 07)) dv”
< 2(Siemm | Tw = O1fu(x"5 0) " + §iooy [T — O'1fu(x"5 0) ")
+ 2(M(0) — 0] - Pyfe = n} + |M(0') — 0| - Py fz = n))
+ [M(0) — M(0")|(Po{r = n} + Pp{z = n})
and so the first multiplier on the right side of (7) is less than
(8) 4(S(0) + S(9") + 2|M(6) — M(9")] -
Upon setting 4, = {x": f,(x™; 0) = f,(x"; 0")}, we observe that the second mul-
tiplier in (7) is less than
Zin=t (Siemma, |Tn — M(O)|f.(x"; O) dv*
+ Siemmd, [Tu — M(O)|fu(x"; 0") )
) + |M(0) — M) ZF §ie=m (£u(x™5 0) — 1™ 0)) "
= 2(S(0) + S(97)) + 2|M(9) — M(0")]

[ o i (B

To finish the proof we need the following:

LemMmA 1. For any stopping rule ©

10 0<1— k1 (L %59 < 50. p(0; 0)E, < .
(10) <1 -5 1 (JA5)) = 50- 00:0)
If, in addition © = n, then

_ S(X;; 0%) Y
an 0<1—E,1[; <f( )) 2np(0; 0') .

We postpone the proof of the lemma until the next section. The inequality
(10) of Lemma 1 together with (7)—(9) implies that if 50 . p(6; ¢") - max {E,z,
E, t} < } then

P = (4o + 2p)(20 + fp) »



LOWER BOUND FOR MOMENTS 231

where ¢ = |M(0) — M(0")]?, ¢ = S() + S(¢"), and hence that
(12) g = p/l6.

Now if |b(8)| + [b(8")] < 4|0 — 6’|, then |M(8) — M(6")| = 40 — 0’| and (12) im-
plies (5). If |5(8)] + |5(¢")| = 4|0 — 0|, then

o 2 |b(0)] + 16(0")] = 3|0 — 0]
and again (5) holds. The proof of (6) on the basis of (11) is the same.

3. Proof of Lemma 1. Consider first the simpler case z = n. We have

t— £ 11t (L2 00) = 1 — (5, (10 o)t 0 oy

f(X5.0)
< n(1 — § . (f(x, O)f(x, 0")} dv) = 2np(0; 0")
and (11) is proved.
To prove (10) we establish a few lemmas.

LemMMA 2. (Wald). Let 7 be a stopping time relative to a sequence of independent
identically distributed random variables {& 5} with E§* < co. Then

(13) E &, = E§ - Er, Var (237 (§; — E§;)) = Var§, - Er.
For the proof see [1], page 350.

LEMMA 3. Let p = 0 and & be random variables. Then
(14) Eyet = Ey - exp { %rl 2 B+ Bey.
The first part of (14) is a consequence of Jensen’s well-known inequality (see
[3], page 159); the second part follows from the elementary inequality
e*>1+4y, yER'.

Let B = {x: § = (f(x; 0")[f(x; 0))} = 4}. Denote by y, the indicator of the
random event X; € B. Define random variables Z; in the following way:

Z]_%lnj}(( 0')) X;eB
=0, X,eB

LeMMA 4. The following inequalities hold:

(15) P{X;EB} = Ey(1 — x;) < 90(0; 0')
Po{X;EB} = E,(1 — y;) < 90(0; 0") .

Proor. If x€B then either fi(x;60') — fi(x; 0) > Lf¥(x; 0) or fi(x,0") —
fi(x; 0) < —1f¥(x; 0). In both cases

PX;E B} = {5 f(x; 0) dv = 9 15 (f1(x3 0) — f3(x; 0')dv < 9p(6; 0 .

The proof of the second part of (15) is the same.
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LEMMA 5. The following inequalities hold:
(16) |E, Z;| < 230(0; 0"), E,Z2 < 1p(0;0), Var, Z; < 7p(0; 0') .
Proor. For xe B
110 S5 0) — _(fi(x; 0) — fi(x; 00)) - fHx 0) + R
2 ) ’ ’ + ’
fx5 ) )
where |R| < 3(f*(x; 0) — fi(x; 0") - f7(x; ).
Using (15) we have
|Es Z,| < 155 (fH(x; 0) — f}(x; 0))f4(x; 0) dv|
+ 30(6; 0) S [1 — §o (f(x; O)f (x5 )} d]
+ 21p(0; 0") = 23p(0; 0") .
Further, for x € B |fi(x; 0) — fi(x; 0")] < %f¥(x; 0), so that
E,Z} £ 28, (£} 0) = f3(5 00 + R f(x; O)] dv < To(6; 0).
We are now ready to prove Lemma 1. We have
T X; 0' b T T
(17) 1 — E I (ff(r(’,. ; 07)) <1 — E,(ITi ;- exp{Zi Z3) -
By Lemmas 3—5
1 — E(TI5 2; - exp{Xi Z4)
<1 — E, [Ii x; — EolIli x; 21 ZJ]
= E,(1 — TIi x5) — Eo(z TTi 15) - Eo Zy
(18) + E(1 — TI{ 1,0 Zi Z; — EZ))
< E, i (1 — 15) + Egt|E, Zi| + E(1 — TLi 1s)* - Vart 1 Z;
= E,t - E(1 — 3;) + Eot|E, Z)| + E(1 — TIi 1) - Eole Var? Z,
< 41p(0; 0")E,7 .
Thus Theorem 3 is proved.

4. Remarks. 1. It is easy to see that it will be sufficient to suppose that e
is a subset of a normed space B. Theorems 1—3 are valid in this case if 0] is

the norm in B.
2. The requirement of absolute continuity of all measures 7; relative to some

common measure v is unnecessary. It is sufficient to take

N dF o —
1050 = g 50 = gt

when points 6, ¢ are being considered.

Acknowledgment. The authors thank the referee for suggestions for shorten-
ing a proof, and also for comments concerning English usage.



LOWER BOUND FOR MOMENTS 233

REFERENCES

[1] Doos, J. L. (1953). Stochastic Processes. Wiley, New York.

[2] IBrAGIMOV, I. A. and HAs’MINsKII, R. Z. (1973). On the moments of generalized Bayesian
and maximum likelihood estimates. (in Russian). Teor. Verojatnost. i Primen. 18
535-546.

[3] LokEve, M. (1963). Probability Theory. Van Nostrand, Princeton.

DEPARTMENT OF MATHEMATICS
LENINGRAD UNIVERSITY

10 LiN1A, 33

LENINGRAD, U.S.S.R.



