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CENTRAL LIMIT THEOREMS FOR MULTINOMIAL SUMS

By CARL MORRIS
The Rand Corporation, Santa Monica

Let (N1, - -+, Ni) be a multinomial vector with n = 3 N; and with pa-
rameter (py, ---, pr), L pi=1. Let fi, .-+, fi be real-valued functions
defined on the integers {0, 1, .-+, n}, and let S; = Zf=l [fi(N:). Suppose
k — oo, and as k — oo, that n — oo and maxi<;<x p; —» 0. Conditions on
the {f;} are given which guarantee that Sy, suitably centered and scaled,
has a normal limit in law. An application shows that if mini<;< (np:) is
bounded away from zero and the {f;} are polynomials of bounded degree
as k — oo, that S; is asymptotically normal provided, only that a ‘‘uni-
formly asymptotically negligible’’ (uan) condition on the {f;} holds.

For testing the specified simple hypothesis p; = p;® for all 1 <i < k,
Pearson’s ‘‘chi-square’” statistic and the likelihood ratio statistic can be
written in the form of Si. It is shown that these two statistics are asymp-
totically normal as k — oo provided they satisfy simple conditions which
are equivalent to their respective uan conditions.

1. Introduction. Let N = (N, - - -, N,) be a multinomial vector with parame-
ter p = (py,- -+, pi) such that 3} N; = n(an integer) and 3 p, = 1. Letf,, .-, f,
be real-valued functions, each having domain on the set of integers {0, 1, - - -, n},
and let S, = Y ¥, fi(N;). We are interested in determining conditions which
insure that S, suitably scaled and centered, has approximately a normal distri-
bution for sufficiently large k. The difficulty in proving such a theorem is that
S, is a sum of dependent random variables.

Statistics of the form S, are of interest because they arise in practice. For
example, several well-known test statistics for testing simple hypotheses in a
multinomial distribution have such a form, most notably Pearson’s “chi-square”
statistic [5] and the likelihood ratio statistic [4]. These particular statistics are
well known to have the same asymptotic chi-square sampling distribution in the
“standard case” where k is fixed and n is large. The results of this paper provide
asymptotically normal sampling distributions for these and other statistics when
k is large. When n/k is moderate, the chi square and likelihood ratio statistics
have different asymptotic normal distributions. These distributions for large k
would be needed, for example, in determining a consistent sequence of tests,
based on either Pearson’s chi-square statistic or the likelihood ratio statistic, that
a given sample comes from a specified probability distribution.

Special cases of the above central limit theorem have been considered earlier.
Tumanyan [9] demonstrated that Pearson’s chi-square statistic is asymptotically
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normal when both min,_,, np, — co and k — oo and the null hypothesis holds.
Under these conditions, the usual chi-square limit holds, but the degrees of free-
dom are large and so the chi-square distribution is nearly normal. Tumanyan’s
method does not lend itself to generalization. Steck [7] showed that Pearson’s
chi-square statistic is asymptotically normal for large k under the null and al-
ternative hypotheses. His approach to the problem is described in the next
section. It is Steck’s approach that was used by the author [3] to show that S,
has a normal limit if for every i, f; is a polynomial of the second degree, and
provided only that

(1.1) max, ;g p; = 0(1),
(1.2) min,_,, np, is bounded away from zero as k — oo

and the “uan (uniformly asymptotically negligible) condition”

(1.3) max, ., Var f(N,)/ 21k, Var f(N,) = o(1)
hold.

In this paper, Steck’s approach is used again to develop a fundamental lemma
(Lemma 2.2) where conditions are given which insure that S, has the same limit
in law as S, *,

(1.4) S* = X fuX),

whenever S, * has a normal limit, X; being Poisson with the same mean as N,,
and {X;: 1 < i < k} being independent. That is, the fundamental lemma re-
duces the problem to consideration of sums of independent random variables.
Then, in Section 3, certain useful lemmas concerning the Poisson-Charlier
representations for multinomial sums are developed before turning to the main
results contained in Sections 4 and 5.

In Section 4, the basic central limit theorem for multinomial sums (Theorem
4.1) gives conditions for asymptotic normality of S, in terms of the coefficients
of the Poisson-Charlier expansion of the {f;}. Then Theorem 4.2 gives sufficient
conditions for Theorem 4.1. Corollary 4.1 to Theorem 4.2 then shows that if
the {f,} are polynomials with bounded degree as k — oo that very simple con-
ditions guarantee the central limit theorem.

Applications to the distribution of Pearson’s chi-square statistic [5] and the
likelihood ratio test statistic (for multinomials) [4] are considered in Section 5.
It is shown in Theorems 5.1 and 5.2 that Pearson’s chi-square statistic and the
likelihood ratio statistic are asymptotically normal as k — oo provided only
that (1.1), (1.2) and the uan condition hold. The uan condition for these two
statistics always holds under (1.1) and (1.2) if the “null hypothesis” is true.

2. Fundamental lemma for asymptotic normality of multinomial sums. The
purpose of this section is to establish notation and to present Lemma 2.2 for
proving asymptotic normality of multinomial sums. The following notation will
be used throughout this paper. The well-known “choice function” is denoted
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by (;,,.%.,) = n!/I]# x,! if X5, x; = n and if the x, are all nonnegative integers.
We define (, .",,) for any other {x;} to be zero. The choice function (3) is
defined tobe (, - ,,) and is similarly extended to be zero when x, is not an integer
in the [0, n] interval. To simplify notation, we adopt the convention that when
the limits of a sum are not specified, the sum is assumed to be over all nonzero
terms. That is, ), x, indicates the sum over all values of x, which are defined
and for which x;, = 0. The symbol & is used to denote the “law” or ‘““distri-
bution” of a random variable. The vector N = (N,, - - -, N,) has a multinomial
distribution with parameters p = (py, - -+, p,), k and n, denoted F(N) =
A(p, k, n), if
PN = (X3 + -+, X)) = (ay-"2) ITi pite

We will assume throughout that p, > 0. Due to the conventions just adopted
for the choice function, N must always be a vector of nonnegative integers with
2. N, = n. We indicate that X has the binomial distribution with parameters
n=1 and p, by ZA(X) = B(n, p) if P(X = x) = (2)p*(1 — p)~~* for integers
0 < x < n, and we indicate that X has the Poisson distribution with mean 1 > 0
by Z(X) = Poisson (2) if P(X = x) = A%¢~%/x! for nonnegative integers x. If
X = (X, - -+, X,) has the k-variate normal distribution with parameters 4 = EX
and £ = EX'X — p/p it will be denoted as (X)) = S (p, Z). If k =1, we
may delete the subscript, writing .4 (¢, Z) = A4 (¢, Z).

Steck’s argument [7] will now be outlined. Let (N) = _#(p, k, n) with

p=(p» -+ p) given. Let X, ..., X, be independent random variables with
Z(X;) = Poisson (4;), 4, = np,, and denote X = (X,, ---, X,). Itis well known
that
(2.1) AN) = AX| Dk, X, =n),
the latter notation representing the conditional law of X given Y X, = n.

Let f;, - - -, f, be real-valued functions, each having domain {0, ..., n}. Let
fi* beany function on the nonnegative integers which agrees with f; on {0, . - ., n}.

(We note that f;* may be taken to be a polynomial of degree at most n by de-
fining f,*(x) = X%, Af,(0)x?[j! with x? = [[i, (x — i+ 1)ifj =1 x© =1
and A the finite difference operator: Af(x) = f(x + 1) — f(x). This fact is dis-
cussed further at the end of Section 4.) Define the function g, on the nonnega-
tive integers by

2.2) 0.3) = f(x) — Ef#(X) — 7(x — 2)
with
(2.3) ;= % S, Cov (f,4(X)), X)) -

Define
(2.4) s = Xk, Var gy (X,) = Sk, Var f;5(X,) — np?
and

(2:5)  ULX) = (1s) Dt 94X, Vi(X) = 1/nt TEL (X — 4) .
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We are interested in the distribution of S, = 3%, f(N,). Since 0 < N, = n
and 3, (N, — ;) = 0, we have
(2.6) Sy = DL fFN) = X 9dNy) + 2 Ef*(X,)

= 5, Uu(N) + 2. Ef*(X) -
From the expression (2.1) we have, since 3 4, = n,

LULN)) = L(UX) | Vi(X) = 0) -
Hence, to study the distribution of 3} fi(N,), it suffices to study the conditional
distribution of U,(X) given V,(X), U, and V, each being sums of independent
random variables. It is easy to see that

EU,(X) = EV,(X) =0,  Var U (X)=VarV,(x) =1 and
Cov (Uy(X), V(X)) = 0,
so conditions guaranteeing that
AU Vi) = AH(0,0,GY)  as koo

are well known. If the conditional law (U, |V,) converges to the conditional
A0, 1) law of the limiting distribution, then
AUV, = 0) > 470, 1) as k— oo,
and hence
A )X f(N) — 5 EfFX)Y) — A0, 1) as k—oo.
Steck’s condition in [7] for convergence of conditional distributions, requiring
uniform equicontinuity of the conditional characteristic functions follows. We
recall that a set of functions ¢,(+) are uniformly equicontinuous on bounded
sets if for every given ¢ > 0 and bounded set C, there exists 6 > 0 such that
for all k,
|gu(v + B) — $u(v)] < e
whenever || < 9, and v + &, v are in C.

TueoREM 2.1. (Steck [7], page 241.) Let (U,, V,) be a sequence of random
variables with limits in law denoted by (U, V), so LUy, V) = ZL(U, V) as k — oo.
Let

$iu(v; 1) = E{exp(itUy) |V = v}
be a version of the conditional characteristic function. If for every fixed t, the family
of functions
{(e50): k=1,2, -}
is uniformly equicontinuous on bounded sets, then
AUV, =v) > LUV =) as k-—oco.

The lemma we prove for convergence to the multivariate normal distribution
is the following.
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LemMmaA 2.1. A central limit lemma for the multivariate normal distribution
A0, D).

Let S, = (Sys +++5 Spp) = kg Xy with Xy, = (X, -+ -5 Xipi) @ p-vector and
{Xus « + -5 Xy} be independent. Suppose EX,;, = O foralli,j, k and ES;,S;, = 05
(Kronecker delta) for all k, j, j'. Suppose all coordinates S;, = Y,¥ X,;, satisfy the
uan condition, this is max,,, Var (X;;) = o(l) as k — co foreachj =1, - -, p,
and suppose £(S;,) — A0, 1) foreachj = 1, - -, p. Then Z(S,) — 4 ,(0, I)

as k — oo.

PRroor. Since each coordinate satisfies the uan condition and is asymptotically
normal, it satisfies the Lindeberg condition ([2], page 280),

Oui(e) = Dics EXijp b o(Xige) = 0(1)
as k — oo for each j, for every fixed ¢ > 0, I being the indicator function.

It will be shown that the Lindeberg condition holds for };2_, a; X, for every
vector a = (a,, - - -, a,) satisfying 37 a;> = 1. Since

(29 Xi5) = 20; X1 < pmax; Xij, ,

0u(e) = Dio1 E(208214;X50) I o) (( 251 4 X1 6)°)
=< 2. Ep(max; X3;) 1. .,(p max; X3;,)
S P2 2 EX iyp,e(X i)
=p 2%, 0,;(e/lp) = o(1) as k-—oo.
This proves the lemma.

The results stated above are now restated in the form of a fundamental lemma
for asymptotic normality of multinomial sums.

LEMMA 2.2. Let £(N,) = LNy, » s Ni) = A (P = (P> ** *» Pra)s ks 1)
be given.

For given k, let the real-valued functions {f,,: 1 < i < k} be given, each having
as domain the nonnegative integers. With A, = n,p,., let {X,:i=1, ..., k} be
independent random variables, £ (X,) = Poisson (4,,). Suppose Ef,(X,) = 0 for
each i and Cov (33, fu(Xu)s 25 Xu) = 25:.Cov (furs Xy) = 00 (The last two re-
quirements of the { f,,} can always be accomplished by a transformation similar to
that of (2.2).)

we have

Define
2.7 o}, = Var f,(X,) , s2= 2k a2 .

Suppose as k — oo that n, — oo, max, ., py = 0(1) and the van condition
(2.8) (1/s,*) max,,, o2 = o(1)

holds. Assume that

(2.9) lim, _, sup, sup, (1/s,)E( X ¥ { fue(Law + Mu) — fu(Lu)})* =0,
L, = (L -+, Ly) and My, = (M,,, - - -, M) being independent multinomial vectors
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with £ (Ly) = A p> k, m, + v,n,t) and L(M,) = A (pp» ks hn,}). handwv, are
such that |, = n, + v,n} and m, = hn,} are nonnegative integers and v, is bounded
as k — co.

Suppose further that

(2.10) A(1s) T fXu)) = A0, 1) as k—oo.
Then L ((1/s) X fu(Nu)) — 40, 1) as k — oo.

Proor. Let V, = (1/n,}) 3 (Xy — A4). Then EV, =0, VarV, = 1. V,isa
sum of independent random variables and the Liapounov condition ([2], page
275) is

T E(Xy — Ap)imt = X A + 32} /n < 1, +-3 max, g pu = 0(1)
as k— co.
Hence £ (V,) — #(0, 1) and V, satisfies the uan condition.

Let U, = (1/s,) 2 fu(Xy). Then U, — 470, 1) and satisfies the uan condi-
tion (2.8). We have Cov (U,, ¥,) = 0, and hence from Lemma 2.1 (U, V) —
A0, G D) .

When V, = v,, 3 Xy = n, + v,nt, and so

AUV, = v) = L(1s) Z falLar)) -
Similarly, when V, = v, + &, 33 Xy, = n + ¥, nt + hn,t we have L(U, |V, =
v, + ) = L(1s) 2 fulLa + My)). Letting ¢,(v,; 1) = E{exp(itU,) | Vi = vibs
then
|9V + 15 1) — du(vis 1)
= |Eexp(i(t/si) Xi fulLu + M) — E exp(i(t/si) 2: fa(Lan))
< (18/s)E1 S fr(Lae + My) — 2i fulLa)l -

From (2.9) and the Schwarz inequality, it follows that

lim, o sup, sup,, [u(vi + B 1) — 4u(Vi3 n =0

which is the equicontinuity condition of Theorem 2.1. Hence, AU | Ve =0)—
A0, 1) as k — co. Since LU, |V, = 0) = A((1/s) 2 f1(Nw)), the conclu-
sion follows.

3. Useful lemmas concerning Poisson-Charlier polynomials. This section
contains results concerning the Poisson-Charlier polynomials used in the central
limit theorems of Section 4.

We define the polynomial x‘¥ as
(3.1) xD =Jlin(x—i+1) for j=1 and x© =1.

x may take any real value, and j must be a nonnegative integer.
The addition formula

3.2) (x + )9 = Nis (@)xOpti=o
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is easy to remember from its binomial expansion analogy and is equivalent to the
Vandermonde convolution ([6], page 8). There is also a multiplication formula:
(33) x(i)x(j) = Z}.ﬂ=0 (i)j(‘i—k)x(j+k) — Zk %c)(i)k! x(‘b'+j—k) R

which is easily proved by induction.
The Poisson-Charlier polynomials (Szego [8]) are for 2 > 0:

(3.4) IMy(x, ) = 3, ()(—A)7x®
and
(3.3) p3(x, 2) = ()T (x, 2) -

The reader will find that II; is easy to remember if ‘he compares it to the bi-
nomial expansion of (x — 2)7.
Let (X)) = Poisson (4). Then

(3.6) EIl(X, 2) = Ep,(X, 2) = 8; (the Kronecker delta),
(3.7) Ep (X, Dg(X, 1) = 3,5
(See [8], pages 33-34.)

The inversion of formula (3.4) is
(3.8) X9 = T, (A (x, ) .
The addition formula for II; is

I(x + y, ) = Xico (HxOIL;_(y» 4)

which is proved by using (3.4) and (3.2) and interchanging the order of sum-
mation. Hence for ¢; the addition formula is

(3.9) ol + 3 2) = Tine (1) 2600, 00 D)
i/ (i)t
The differentiation formula for II, is easily established by induction to be
(3.10) I (x, 2)/02" = (—1)jPIL;_y(x, 4) .

The multiplication formula for the polynomials of (3.5) is as follows.
LemMmaA 3.1. With
Pi(xs Dei(x, 2) = Tith con(en(x; 4)
() =0 if RJi—]],
(3.11) = (i) DA OOt
. g oli—ilshsit].
Equation (3.11) is a polynomial of degree 7,;, = max {0, min (i —j + h,j — i +

h,j + i — h)} in the variable § = 2-%. Obviously ¢;;(2) = ;;. The limits of
summation are over integer values of ¢ in the interval

(i+j—m2<t<min{i,j,i+j—h.

then
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ProoF. We use (3.4), (3.3) and then (3.8) to establish

(e, HILi(x, 2) = 2, 2, (E(=)™77=0 3, ()@ x+?
= (=19 X Wy(x, )27 2, ()@t 2By, (b, 1)
with
Byl 1) = Zioe X GZDEIDCHRTN=D
= Dras GHIED(HTO(= D)
= (=)™ (mitiva)
first using the Vandermonde convolution and then [6], page 11. Substituting ¢
for = through (3.5) yields (3.11). That ¢;(2) = 0if 2 < |i — j| follows from
0<2t+h—i—jand ¢ < min(ij). The limits of summation are determined
from the values of + which make all choice functions positive. This completes
the proof of Lemma 3.1.
LEMMA 3.2. Let &£(N) = B(n, p) and define y; = Ep, (N, np). Then p, =1,
= 0and forj = 2,

(3.12) = —(—1) (L;)* i — p(f—;l)* ica

Proor. Using EN® = n®pt, it is trivially shown that Ex (N, np) = pim(n, n).
Now = (n, n) satisfies the recurrence
(3.13) my(n, ) = —(j — Dla;a(n, n) + n7;_(n, n)]
from which (3.12) follows easily. To prove (3.13) note that the right-hand side
may be written as —(j — 1) 3 (423)(—n)i~"'n® using Pascal’s formula. Then
substitute
—(j = DED) = [(n — i) — n)(7)
to get
5 (N —my=nt 4 5 (7Y (=i
The result follows from substituting i — 1 for i in the second term only, and
using Pascal’s formula again to recombine the two sums.

The author is grateful to the referee who suggested this substantial improve-
ment of the original proof.

LeMMA 3.3. ¢,;;(R) defined in (3.11) satisfies for some appropriately large con-
stant A > O (independent of i, j, k):
(3.14) 0 < cu(d) < A9 {1 + <——i -;j)MH)M_M/?_“H)/“}

and
(3.15) 0 < ¢(3) < A {1 + (%)“} A5 {1 + (%)’“} .

Proor. Clearly ¢;;,(2) = 0. Let I = (i +j — k), u = min(i,j,i +j — k).
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If k < |i — j|, (3.14) holds and otherwise / < u and

k! \? et v
(3.16) o) = (7)) i 7 O Darrst )
(3.17) ﬁ — (.iJZJ') < 2i+4 < 2+ (_e_)“
it EEHent @t 21
using Stirling’s inequality and interpreting 0° = 1. We have
(3.18) Isug2i+j.

Making frequent use of inequalities like (}) < 2¢ and of (3.18), (3.16) and (3.17)
gives

l ‘
(3.19) cind) < A,"+f<_'j-> T 2t < A Yt - mm)

Sonfue (57

for appropriate 4,, 4,, 4.
The result (3.14) follows by noting

(3.20) u—lgmin{%,l}:i':j_lg_i‘!;j’.

To prove (3.15), use (3.14) and note the result is trivial if i + j < 2. If i 4
J > 2 then (3.14) gives for approximate A4,

(3.21) i) < A+ (i .; j)(i+.1’)/4

a0 () () (2
o\ 2 i j '
The function f(p) = p?(1 — p)*~? is minimized for 0 < p <1 at p =1 and

f(3) = 4. Hence the last two terms of (3.21) are bounded by 2¢+/ (letting
p = i/(i + 1)), and so (3.21) yields (3.15). The proof is complete.

LEMMA 3.4. Let ¢; be defined as in (3.5) and &£ (N) = B(n, p), A = np. Suppose
a > 0 satisfies |(A — a)/(Ap)t| < B for a given constant B < oo. Then there exists
a constant A (depending only on B) such that

(3.22) Eo(N, a) < Ai {1 i (L>i} .
n
Proor. Using Lemma 3.2, we first prove by induction that

(3.23) 1l = [Epy(N, D] S (4p)P{L + (i)
Note that (3.23) holds for j = 0, 1. (3.12) yields forj = 2,

ip\}
(3.24) 1 = (22) ltged + pliseal -
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The proof proceeds by induction, taking two cases. For the casej < n, assume
lts] < (4p)¥2 for all i <j — 1 and use (3.24) to prove |z, < (4p)”*. When
J > n, assume |p,| < (4pi/n)* for i =j — 1 and j — 2 and show this holds for
i = j by using (3.24).

We now prove if (A — a)/(4p)}| £ B < oo (we take B > 1), then

(3.25) |Eg (N, a)] < (Cp)*” {1 + (%)jﬂ}

for appropriately large C (depending only on B).
Using (3.10), expand ¢,(N, a) in its Taylor series about a = 2 to get

0
(3.26) oiNs @) = T (]) Y sV
where § = (4 — a)/(4p)t. Hence, using (3.23) and |0| < B,
§|0lpi/2 — ] — (§=1)/2
Eo (N, (5-1)/2
BN @)l = Bt (1) B @pon {14 (L25)7
. . ] (§—=1)/2
< @pBy mia {1+ (L)
which yields (3.25) for an appropriately large C.

To estatlish (3.22), we use Lemma 3.1, Lemma 3.3, (3.14), and then (3.25).
Hence, for sufficiently large D given by Lemma 3.3, and assuming C > 1,

Ep (N, @) < 31l ¢;iu(A)|E@y(N, @)

< DiCi” Yi_, { n <2;>k/2} {1 N (_k_)k/z} e
ol (e ()

Note that the preceding bound is increased by setting p = 1. The result (3.22)
then follows from simple inequalities and choosing A4 large enough.

LeMMA 3.5. Let £(N) = #(p, k,n) and r = 0 be an integer. Then there
exists a constant A < oo such that
(3.27) EN,"N;" < rl (Anp,)"0,; + (An’p; p;)" .

Proor. If i # j, then EN,/" N7 = n®" * which satisfies (3.27). If i =,
J Pi'P; J

use (3.3) to get
EN;™ = 3, (3)*k! EN,*—®)

— Zk (z)2k! n(2'r—k)pA21‘—k
k!
221' 2r
(mp)*" Xm0 — o
1
< Ar(npy 11 + L
(np:) { (npi),}

if A is large enough. This is equivalent to (3.27).
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4. General central limit theorems for multinomial sums.

THEOREM 4.1. Basic central limit theorem for multinomial sums.

Let £(N,) = A (py» k, n,). Suppose as k — co that n, — co and max, ¢, Py, =
o(1).

Let {f,: 1 < i < k} be real-valued functions with domain the nonnegative integers,
and express f;, as

Su%) = D50 i 0(X> Aa)

where A, = n, py,. Here, o, = Efy(Xu)@i(Xins Au)s <£(Xu) being Poisson (2;,)
and {X,,: 1 < i < k) are independent. The {¢;} are the Poisson-Charlier polynomials
of (3.5). Assume Ef,(X,) = 0, i.e., ay, =0, and 3, Cov (fi(Xe)s X)) = 0, ice.,

Z (sz)%azlk =0.

Define
4.1 o3, = Var [, (X)) = 25 @i and 2= 2k, 0.
Assume that as k — oo, the uan condition
1
(4.2) i max, g, 0% = 0(1)
k
holds, and assume that for every fixed A, 0 < A < oo
1 . i \¢
(4.3) o) = 5wt msatadi {1+ (LY = o)
Sk nk
is bounded as k — co. This will be called ‘““condition-0.”
Suppose
(4.4) .g(i N fik(Xik)) S H0,1)  as k—oo.
S

Note this is a sum of independent random variables, appropriately scaled and centered.
Then

4.5) z(s_lk N fik(Nik)> S 40,1)  as k—oo.

ProoF. It is only necessary to verify condition (2.9) of Lemma 2.2. The
notation of Lemma 2.2 will be used. Denote l, = n, + v,n,}, m, = hn,}, and
assume £ < 1.

LB e + Ma) = full))

1 oo
= _2 E(GE, 25 @ ei(La + My 44) — ¢,(La A

4 lzk

2
s ’)% Mgc)soj—s(l’ik’ '%))

= Bt I B ()
using (3.9),

4.6 _lE o sk Au sz :
(4.6) = = L= ihs

k
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where we define
B, = D5 @ia(9) 05-o(Liks Aur) -
Note that from the Schwarz inequality

EBfks = (1/2‘ 1) Z:J—s z:k(])szSo] s(sz’ zk)

o audiai= {1+ (1227
k

A, being guaranteed by Lemma 3.4 since the hypothesis of that lemma

Ly Pue — M P n 4
4.7 k Pik kPir| — g ( k ) — 0(1
4.7) ipa [Vl v (1)
holds, |v,| being bounded by assumption. )
Define

ea(A) = Dim alp A’ {1 + (’ >} '

n,
Since [,/n, = 1 + o(1) as k — oo, there exists a sufficiently large 4, such that
(4.8) EBY, < e(4) -
Then (4.6) is dominated by
- Z, % —E(Zz -1 A" M3 By,)?

= Lnn X B b 4 EMMEB . By,

1

= p it — Zi 1 b ARG (AymyPpy p ) EYBY, EX B,
s

+ = Zgll 20 3t Aw(Asmy pu ) EBY,,
k2
using A4; guaranteed by Lemma 3.5,
8, 2
Ly 2 (shan () pem)
k
(4.9) + T2 o (B ) EB,
Sk n,

1 o 1 (2A3m,f

n,

1 24 8
+ — pIpei <—3—mk> 1’,“:1 Eik(AZ) .
Sg n,

) Dk Pl 2k EBY,

Since
— Z,_l ein(As) = 04(4s) » mg = h'n, ,

and
24,myfn, = k- (24,/n,2) < hJ2



CLT FOR MULTINOMIAL SUMS 177
for sufficiently large k, (4.9) is dominated for sufficiently large k by

(4.10) 1 exp(24,)6,(4;) + hd,(4;) T, 7}_ —o(l) as h—0.

The proof of the theorem is complete. '
We now give a condition, called “condition-»,” which guarantees both con-
dition-0 and the asymptotic normality of

1
- Zf:l fik(Xik)
S

of Theorem 4.1.

THEOREM 4.2. With the notation of Theorem 4.1, suppose that as k — oo
(4.11) n, — oo, max, g, Pa = 0(1)

and that the uan condition
1

— MaX g, 03 = 0(1)
Sk
holds.

Then
(5 Bt falMa)) > A0 )

provided the following condition, condition-y, holds.
For every fixed A < oo,

@12) ) =SB Tt {1+ ()] = o

Ny Pk

as k — oco.

Proor. Clearly condition-» implies condition-6. It therefore remains to show
that (4.4) of Theorem 4.1 holds. We check the Liapounov condition, that with

A(X,,) = Poisson (4,,), 44 = m,py.s
1

(4.13) — L= Bf(Xa) = o(D) -
k

Eft(Xu) = oh + Var (D5 2 @i @ 05(Xies 2i)0o( Xt Aue))
= oy + Var (X; 21 agn @ 2258 €10 (R 00 (Xt Aat))
using Lemma 3.1
= o} + Var (X7 dur 0,(Xies Aat))
=0y + N dh,
where we have defined d;;, = X}, 23, @, @;.€;1,(2), the region of summation
beingj, I =1,j4+1=r.
From (3.15), |dy,| < 20, 20, 94k i With g3} = |a;;4|47{1 + (j/A4)"}. Hence
S e < (5540 5, T S gl gl
< (554 4B = (S0 (B2’
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using the Schwarz inequality and with B enough larger than 4 to account for
itt1 =j 4 1. The left side of (4.13) is therefore bounded by

1o, 1
oy 2105 + Y 2 (D5 atu) (25 Gin(B2Y) i)
k k

IA

2 4 ; . ;
4.14) max g + Py 22 9% 205 %en(4BYHL + (jlAa)Y
%

52

MaX Tk (1 4 p(@BY} = o(1) as k—oo.

S

IA

This completes the proof.

CoroLLARY 4.1. If, with the notation of Theorem 4.1, the {f,} are polynomi-
als of degree at most r as k — co (r independent of k), if there exists ¢ > 0 such
that n,p,, = ¢ for all i, k, and if max,_,., py = o(l) as k — oo, then the uan

condition

(4.15) Lmax goh=o() a5 ko oo
Sk

is sufficient to guarantee that
A(s) Lias faWNa)) — 270, 1) as k—oco.

Proor. We have n, — oo since 7, p,, = ¢, and from (4.12), assuming 4 > 1,
u(A) < A" {2 n (f_)} —0(l) as k—oo.
[

The hypothesis of Theorem 4.2 therefore holds, thus establishing this corollary.
It may be useful to note that the functions f;, are always equivalent to poly-
nomials of degree n so that they may be expressed as a finite sum

(4.16) Suan(%) = G0 Xijin(Ain) 0 5(Xs Aut) -

This follows from the fact that every function f(x) is equal to the polynomial
(BF(x) = f0x + 1) — f(x), A7f(x) = AQ™() if r = 2).

(4.17) (%) = 200 ATf(0)x 71!

at the values x = 0, 1, - .+, n ([6], page 201).
The Poisson-Charlier coefficients «;;,, of (4.16) are calculated as

(4.18) %jen(R) = A7) LSBT fu(0)} st
if j < nand a,;,(4) = 0if j > n. To prove this, we suppress the i, k subscripts.
Then if j < n, from (4.17) we have

a;u(8) = E 170 A0 X p,(X, 2)/r!

_ 1 n AFO) s rare
- W Z'r=0 —r!_‘ Zl (l)'2 EH!(X’ Z)HJ(X’ 2)
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using (3.8)

1 . A0 A Ir—lil 24
(j!)*}j/z r=0—{!(‘—) 2 (z)'2 l]! Zfﬁu
= (e gy MO (1) 2,
T\
which, upon substituting r = 5 4 j, is (4.18). Clearly a,,(2) = 0 if j > n since
f» 1s a polynomial of degree at most n. This completes the proof of (4.18).
If A(N,) = #(ps> k, 1), then

21,2;1 fik(Nik) = Zf:l fikn(Nik)

with f;,, as in (4.16) and a,;,(2;) as in (4.18) since N, is an integer between 0
and n. When this representation is used, we have a;;,(= a,;.(2;)) = 0ifj > n
and therefore condition-d (4.3) simplifies to a “condition-*,” this condition
being that for every 0 < 4 < oo,

(4.19) 0. %(4) = (1/s,) Tk, 2iny a2 A7 = 0(1) as k—oo.

Furthermore, the a, ;,,(2;,) given in (4.18) always exist, but the a,;, of Theorem
4.1 may not exist if f;, does not have sufficiently many Poisson moments. (Of
course this latter condition can always be corrected by altering the definition of
Sfu(x) for x > n.)

5. Central limit theorems for Pearson’s chi-square statistic and the likeli-
hood ratio statistic. Let <(N,) = _#(p,, k, n,) and suppose p,* = ( Pl s Por)
is a specified vector. Of the many statistics that have been proposed for testing
the simple null hypothesis

H,: py = ph forevery i=1,..-,k

against all possible alternatives, Pearson’s chi-square test in [5] and the likelihood
ratio test in [4] are the best known and most often used.
Pearson’s test is to reject H, if and only if

(5.1) o1 (N — me pl)Imeple = ¢y -
The likelihood ratio test is to reject H, if and only if

(5:2) 2 3t Nalog (M) 2 .

oy
¢, and ¢, are determined by the H, distribution of their statistics and the desired
level of significance.

The asymptotic distributions of the statistics in (5.1) and (5.2) are well known
to be the chi-square distribution under H, and the noncentral chi-square distri-
bution under the alternative hypothesis, provided k is fixed, n, p?, — oo, and
m,p,, — . The distribution of (5.1) as k — oo has been considered by
Tumanyan [9] and Steck [7]. The distribution of (5.2) as kK — oo has not been
considered before, although an example of Stein’s [1] assumed the asymptotic
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normality of (5.2) in considering the power properties of the likelihood ratio test
as k — oo. Here, we will determine the distribution of both statistics as k — oo,
beginning with Pearson’s test statistic (5.1).

These distributional results for the tests (5.1) and (5.2) provide a basis for
efficiency comparisons. In the examples of Stein [1] and of the author’s [3] it
is shown that Pearson’s chi-square test is the uniformly best test in a class which
contains the likelihood ratio test, assuming near alternatives and kK — oo. Un-
like the familiar case with k fixed, (5.1) and (5.2) are not equivalent tests under
these circumstances if n,/k is moderate, so that (5.1) is superior. The author in
unpublished work has obtained numerical results which show how much
Pearson’s chi-square test dominates the likelihood ratio test.

THEOREM 5.1. Asymptotic normality of Pearson’s chi-square statistic when
k — oo.

Let AN, = A (pp k,n,). Let {pl:1=<i<k} be given with py > 0,
2P = 1. Suppose
(5.3) max, ;. pa. = 0(1) as k— o

and that there exists ¢ > 0 such that

5.4) M, P = € forall i, k.

Denote

2
(5-5) He = Zzﬁzi +m 2 —_(Puc Pi)
Pik Pk
(5-6) TkEZi< 10 +2£—;£>Puu
Ny Pik Pik
1 ) 2
(5.7) zk—2p1k+nk( 5 +2—P%k-—7’k>]7ik
ik ny Pik Pik

and
(5.8) 2= >, 0% .

Suppose the uan condition,

max, ;< Os _

(5.9) _-—%—""_0(1) as k— oo
holds.

Then
(5.10) .,gﬂ(i {Z(_]Y&“_”ofli"_k)_z - ,,z,,D S H0,1)  as koo

Sk Ny Pik
Define

o, = Z (pzk i sz) ik — Z (p‘tk _Opglt:)2
Pk Pik
and
0, = P — Pir Pk _

sz
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Then s,* is asymptotically of the exact order of
(5.11) k + ka® + m, 3% O pae s

and the uan condition (5.9) is equivalent to the condition that

(5.12) Makisise MOuPie  — o(1)  as k—>oo.
k + ko + ny 33 0% pa

When the “null hypothesis” p,, = p. for every i, condition (5.12) is trivially met
and so (5.10) holds provided only that (5.3) and (5.4) are valid.

Proor. With II; defined as in (3.4) and with 4, = n, p,,,
and using Y7, II,(N,, 4,) = 0, it follows that

N, — 0.)?
(5-13) Zz&%’i — the = 20i fu(Nu)
Ny Pik
with
(5.-14) fu(N) = ! Iy(Niss A) + ( + 2 £k P'k - Tk> IL(Nyes Aig) -
ny Pik n, P %

Let {X,, ---, X,;} be independent, ~7(X,) = Poisson(4,). We have
Efu(Xu) = 0, 3, Cov (Xy, fu(Xyu)) = 0 and o}, = Var f,(X,), using (3.5)-
(3.7). The other conditions of Corollary 4.1 are met, and since the {f;} are
polynomials of the second degree,

(5.15) g(_sl_ 5 f,.,c(Ni,,)> > 40,1) as k- oo

provided only that the uan condition (4.15) holds. This is assumed in (5.9),
and so (5.10) follows from (5.13) and (5.15).

We now establish the asymptotic equivalence of (5.8) and (5.11). The symbol
O, will be used to denote “exact order of”” as k — co. Thatis, a, = O,(b,) if and
only if @, = O(b,) and b, = O(a;) as k — co.

Define
1 )
—n P, = —xLr . Br=n3 Bup
‘5: t ny, ng n, ng t ¢ L Pk
and
Th Ty} =n, 2 0% pa -
en
(5-16) s, = 2D, 4 B} 4 4T, + 4n, 3] ﬁikaikpik

= 2D + B2 + 4T, + O(B,T,)

using the Schwarz inequality. But

(517 Besim ey 2(pley <ty s Ry P _ oy,
n P ”k Pl P ny Pik

Using (5.16), (5.17) and that 5, > D,* always, from (5.7),

(5.18) 52 =0,D}+ T, .
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Note D} = 3 (1 + a; + 0,4) = O(k + ka,? + 31 03,). Since 31 6, < m,fe X
2 pu0% = O(T}?), then D2 + T,? = O(k + key* + T,?). This must be the exact
order, for if not, both 7\ and D,? are o(k + ka,?) implying both }; 6, and D,?
are o(k + ka,?), which contradicts the fact that D,* = Y] (1 + a, + 6,)*. With
(5.18), 5,2 = O,(k + kay? + T,?). Thus (5.11) is established.

To establish the equivalence of (5.9) and (5.12), note that

max, g, 0% = max, {2(1 4+ a, + 0,) + n, pu(Bu + 20.4)%}

will vanish relative to (5.11) if (5.12) holds and if n, p,, 8}, vanishes relative to
(5.11). But

—lgnkﬁk}’zk<—{p’k +(Z sz> }§ <Pw> +2pm—ZP”‘
Sy sz P sz

= 2,01 + o + 02)) + puODA)5¢
k

= Lo+ a) + Lompati) + L puodd) = 0(1)
S S Sy

from (5.11), (5.3) and (5.18). Therefore max, ¢}, = o(s,*) + max, (np,,63,),
giving the result. The proof of this theorem is complete.

Discussion. The conditions (5.9) or (5.12) are probably the weakest possible
for asymptotic normality of the chi-square statistic when n,p, = ¢ and
max, ., pa. = 0(1). Steck’s conditions [7], that as k — oo,

0 ¢ k? 0 \2
Pir > Pix = — > — — 00, n(pu — Pi)’ — 0,
k n,
and that
(min g, pl) i P—;k =ez=0,
ik

are weaker than those of Theorem 5.1 only when (5.4) fails, and otherwise easily
imply (5.9). When (5.4) holds, our condition for the null distribution (p,, = p3,)
of the chi-square statistic is considerably weaker than Steck’s condition which
requires constants ¢, and ¢, such that ¢, < kpf, < ¢,. Our conditions are also
much more general for the alternative hypothesis.

The likelihood ratio statistic (LRS) (5.2) will now be considered. Theorem
4.1 can be applied, but condition-d of that theorem holds for the LRS if and
only if max,_,, n, p,, is bounded. Instead, we will use Lemma 2.2 directly to
get a general central limit theorem for the LRS, not requiring n, p, to be
bounded. As with the chi-square statistic, the essential requirement of the
ensuing theorem is that p,, and pj, be sufficiently close to one another for the
uan condition to hold. When n,p, = ¢ and max p, = o(1), the condition of
Theorem 5.2 is probably necessary as well as sufficient.

THEOREM 5.2. Central limit theorem for the likelihood ratio statistic.
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Let A(N,) = A(pis ks m)s p = (P> - - -5 Pha)- Define
(5.19) 9, = log (P_ok_> — 3, palog (P_;_> :
Pik Pik
Define the function I(+, +) for x = 0, 2 > 0 by
(5.20)  I(x, ) = xlog(%) _x42  if x>0 and I0,1) =2.

((+, +) is the Kullback—Liebler information kernel for the Poisson distribution.)

Letting
LX) = Poisson (4;,) , A = My Pt >

define

. 1 N
(5.21) Te = . 2it=1 Cov (I( Xy, Ay)s Xyt s

k

(5-22) o = Var {I(Xy, 24) + Xu(0u — 70)}
and
(5.23) 50 = Dkl
Suppose
(5.24) max, ., pa. = 0(1) as k— oo,
and
(5.25) mpy=¢  foral i, k, some ¢>0 fixed.
Suppose
(5.26) MaXgigi WPl _ 5(1) a5 k- oo.

k + ny 2 pati
(5.26) is equivalent to the uan condition
1
(5.27) — MaX, g 0h = o(1) as k—oo.

S
Then

(5.28) 5;/(1 { S1E, N, log (L';_> — SV EN(X e, Ay)
Sk My, Pik
= Sha lpun )} ) > A0 1) a5 koo
When the hypothesis p,, = pY, holds for every i, k,

(5:29) 7 (> {StaNalog ([NE) — B ENXy 2} ) - A0, 1)
Sk e Pk
as k — oo

provided only that (5.24) and (5.25) hold.
Before proceeding to the proof of Theorem 5.2, we first list some of the

properties of the Kullback-Liebler information kernel I(., ).
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LEMMA 5.1. The function I(+, «) defined in (5.20) satisfies

(5.30) 0<I(x,2) < ("_—jiﬁ

(5.31)  |I(x + p, D) — I(x, )| < Z; b, ) 0 xy=0,1,2, .

where
(5.32) h(x, 2) = |x — 4| {L + _2_} .
2 x 41
Letting &£(X) = Poisson (1),
1
(5.33) EIX,2) < C {ﬁ + 1}
for some constant C,
and
1 2
5.34 = EI(X, Doy (X, ) = — —~ |
( ) ay ( ) s ) = 27+ 2

¢, defined in (3.5).

Proor. (5.30) is proved by noting g(x) = (x — 4)*/4 — I(x, 2) is concave on
[0, 2/2] and thereafter convex. Since g(0) = g(2) = 0 and g’(2) = 0, g must be
nonnegative.

To establish (5.31), the mean value theorem gives |I(x 4 y, 2) — I(x, )| =
y|log ((x + ty)/4)| for some 0 < ¢ < 1. Assuming x = 1, the two cases x + 1y = 4
and x 4 ty < 4 must be considered separately, and each time the inequality
‘log(z) <z—1is used. If x=0 and y =1, then |/y, 1) — /0, 2) =
y|log (y/2) — 1| < y{y/2 + 4[y + 1} yields the result. Thecasex = Oandy = 0
is trivial.

Inequality (5.33) is a simple, direct computation from (5.30).

Inequality (5.34) uses (3.5) and then (3.4) to get

oy = %{ EIX, DIL(X, 2, I, asin (3.4)

1 —iy
= o Z%=o EI(X’ 2)(3)(_'2)2 X

LS, @)= R 2, 2)

T (x — i)l
A2 : ,

= A O(— 1) S R (y + i, 2)
2% y!

= A Eaux, 2) .
24

From applying the mean value theorem twice, and for every x = 0 (since
I(+, 4) is continuous on [0, o)), for some 0 < 6 = 6(x, 2) < 1,

A(x, 2) = I"(x + 26, 2) = 1/(x + 20).
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Therefore

— from Jensen’s inequality.

The proof of the lemma is complete.

ProOF oF THEOREM 5.2. We use Lemma 2.2 and its notation. Define 45, =
n, ph and define

(5:35) falx) = I(x, 2y) _&EI(Xik’ Ag) + (X — 2)(0u — 10) -
Then the statistic of (5.28) can be expressed as
1 N;
(5.36) —‘{Z Ny, 10g< & > — 2 El(Xy, 24) — me 23 1(pass ng)}
Sk M Pin

1
= - Zfik(Nik) .
Sk
The {f,}, so defined, satisfy the requirements of Lemma 2.2,

Efu(Xu) = 0, 21 Cov (fu(X)s Xu) =0,
while ¢2, of (5.22) is the variance of f,,(X,,) and s5,> = }; ¢, as required. Con-
ditions (5.24) and (5.25) assure that n, — oo as k — oo and max,_,, p,; = o(1).
We first show that the variance s,? and k - {,? where
(5.37) Cl=m Y pubu
are of the same order as k — co. We have
st = 2t var fu(Xa)
= 2 Efu(Xa) ol Xuts Ak
= 2 EM( Xy Au) (X Aite) from (5.35) and (3.7)

>3y <_2'*_£2_>“ using (5.34)
ik
SO
. 1 :
(5.38) stzak  with o= (- - 5) > 0.
Define
(5.39) Bu = % Cov (I(Xis Aix)s Xix) — 7 -

ik

Let T,(Xy) = I( Xy Au) — Xi/Au Cov (I( Xy, 4)s Xy), so that Cov (T(Xy)s
X;) = 0. Then

(5.40) st = 2oy = X Var Ty(Xy) + X 2a(Ba + )
(5.41) =22 2uBubu + X A0 -
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However,

1
ny 23 P + M = m X pa o Cov? (I(Xys Air)s Xit)
ik

(2

(5.42) < 14 X pa gy DX 2y) Var X,,

ik

= 2 E(Xy — )4, using (5.30)
zgam+3mwa<k(§+3)

Hence,

(5.43) mrd=0(k) and  m X pufh = O(K).
The Schwarz inequality applied to (5.41) with (5.43) yields

(5.44) 5, = O(k,) 4 ¢,.° .

(5.38) and (5.44) together guarantee the existence of a constant ¢ > 0 such that
(5.45) 5tz ok + &) = e(k + my 2 pi;O) -
From (5.40), we also have
s = 2 {Var Xy, 2u) — 2a(Bae + 1)’ + e 2 pu(Bue + Ou)?
(s46) s mEe Ay on 7 pupn + 2n 3 puth

ik

<k <% + 3> + O(k) + 2¢,2 using (5.42) and (5.43).

(5.45) and (5.46) together imply that
(5.47) 52 = Ok + n, 2 pu0%) -
We now turn to the condition (2.9) of Lemma 2.2. Note that the function 4
of (5.32) satisfies
2(x — 2y (x — Ay
k(x, ) < 8
A= ey
2(x — 2)? (x — 2y
5.48 k(x, 2) < 16
s48) w5 2T te K
=2(x—-2)2+16{1_3-|—22 4-|—42+22}.
2 x+1 (x4 D(x+2)
Let {L;,} and {M,,} and other notation be as in Lemma 2.2. From (5.48) and
the easily verified inequality that E1/(x 4 i)® < 1/(n + i)"p™ < 1/(np)* when
X ~ Bin(n, p), then

2
Ehz(Lik’ Xi,,) = Fon {lkpik(l - Pik) + (lkpik - Zik)z}
ik

+ 16{1 _3+221k+4+4'{zk+23k}’_
lkpik lkngk

since x = 0
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Since [, = n, 4+ v, n,} with v, = O(1), then
(5.49) b —o1)y and M —oq).
n L
Obvious inequalities using (5.49) and the fact that
) 1 =224/l pu + 2a/liPi = (b — m)*[L* = v’m/[l?
yield

(5.50) ER (L, Ag) = O(1/2y) -

IA

2
;“2 E(Zi';l {I(Lik + Mik’ 'zik) - ](Lik’ zik)})z
k

2
+ ‘*‘2 E(2 e My(Os — 70))°

—2— <Zz -1 2"‘ + M, {h(sz, Ag) + 7 Dz

2
ik ik

ll/\

+ "; E(3.: M, 0, — m, 1)

Sk

4

k & @ Af2
— D Dl 2 2 EMIMS
5 ik Ak

+;‘:_2E(Zi Mik{h(Li,,, Zu) + H)z

ik

(5.51)

IA

4 2., 2
+ —iE(z,.Mu,eim + 4’”—7—

Sk

II/\

1,_1(4mk(3)p1.k + ka(z)P )}

(4)
Z ZJZ 2

2
+ 4S’”k Z EM”‘E{h(Lk, 1) + ]

k ik

4mk Mik 02 am’r?
k Zi mk ik + Sk2 .
Using (5.50) together with obvious identities and inequalities, the assumption
m? = O(h*)n,, and finally (5.43) and (5.47) shows (5.51) is O(k) and hence that

condition (2.9) is satisfied.
Conditions (2.8) and (2.10) can be checked simultaneously by verifying

Liapounov’s theorem in the form
(5.52) Lse EpX) =o()  as koo
Sy
Referring to (5.35),
Ef:k(sz) =< 8EIXy, 'zik) + 8(0y — Tk)4E(Xik — 4 %)
=0(1) + 8(8y — 70 (A + 34%) = O(l){l + (0% + 794 AR
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using (5.33). Hence (5.52) is bounded by

1
o O(O){k + n? X phn0t + nlri* 20 P}
A

=0(1) {% + T asish gnkpika?k) + MaX, g pik} =o(1)

Sk
from (5.43), (5.47) and then is o(1) as k — oo from assumptions (5.24), (5.26).
This establishes (2.8) and (2.10).
Thus (5.26) = (5.27), and it only remains to show the converse. But
max, 4,, 8% = 0(1) and max, Var (T,,) = O(1) by repeating the inequalities lead-
ing to (5.42) and (5.46) respectively, excluding the summation signs. Therefore

ai/s = {Var (Tu) + Au(Bu + 0u)}s’
= 0(1) + O (n, pu0%/(k + 22 1y puO3))
from (5.47). Thus (5.27) = (5.26). The proof of this theorem is complete.
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